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Incompressible, two-dimensional flow around a porous square cylinder placed in an infinite stream

is simulated using the d2q9i model of the lattice Boltzmann method. The Reynolds number �based

on the height of the cylinder� is kept at 100. The porosity � of the cylinder is varied from 0.25 to

0.9 and permeability through the Darcy number Da from 0.0001 to 0.1. The velocity data at a point

downstream of the cylinder are collected at each time step. Discrete Fourier transform analysis of

this data is carried out to extract the dominant frequencies of the unsteady flow field behind the

cylinder. Strouhal numbers �St� calculated using these dominant frequencies are compared with

those of corresponding solid cylinder to bring out the effect of the porous medium on the wake

structure and the vortex shedding. At Re=100, as the nondimensional permeability Da is increased

from the solid cylinder limit, more flow results through the porous cylinder. The reduction in the

value of the dominant frequency with increasing porous medium permeability Da and porosity �

indicates a substantial reduction in the vortex shedding. Corresponding static pressure plots and St

values corroborate this observation at Re=100 and 200. © 2010 American Institute of Physics.

�doi:10.1063/1.3407667�

I. INTRODUCTION

Numerical simulations of the unsteady flow in the wake

of rectangular cylinders immersed in an infinite stream have

been widely studied. Davis and Moore
1

numerically investi-

gated the vortex shedding behind rectangles using finite dif-

ference methods for Reynolds numbers up to 2800. They

compared the numerically computed values of Strouhal num-

bers �for Re�1000� with experimental results. Franke et al.
2

performed numerical calculations of flow around square cyl-

inders using finite volume techniques for Reynolds numbers

up to 300. The power spectra of the time varying drag

and lift coefficients from these calculations showed a domi-

nant frequency as reported by Davis and Moore,
1

but for

Reynolds numbers as low as 250, there were noticeable

peaks at other frequencies as well. Detailed experimental

measurements of the vortex shedding in the wake of square

and rectangular cylinders were performed by Okajima
3

for

Reynolds numbers between 70 and 10 000. For the square

cylinder the Strouhal number increased sharply from 0.1 to

0.15 for Reynolds numbers ranging between 70 and 100 and

then stayed within a narrow band of 0.13–0.15 for Reynolds

numbers up to 20 000. For rectangular cylinders with aspect

ratios �defined as the ratio of the length along the flow direc-

tion divided by the height of the cylinder� 2 and 3, the un-

steady flow field showed abrupt changes in the value of the

Strouhal numbers �mode shifts� as the Reynolds number was

varied. For cylinders with aspect ratio 4 the Strouhal number

was more or less independent of the Reynolds number.

Numerical calculations of this flow were performed by

Okajima
4

for Reynolds numbers up to 800 using finite dif-

ference methods.

Since the advent of discrete lattice kinetic theory and in

particular lattice Boltzmann method �LBM� for solving the

Navier–Stokes equations,
5

scores of important isothermal

flow simulations have been performed using LBM. They

have been reviewed in the excellent monograph by Succi.
6

Simulations of the unsteady flow around a square cylinder

situated between two parallel planes using finite volume and

the traditional LBM were performed by Bruer et al.
7

for

flows up to Re=800. The interpolation supplemented lattice

Boltzmann �ISLB� proposed by He et al.
8

allowed nonuni-

form meshes to be used in the lattice Boltzmann calculations

which were, until then, limited to uniform Cartesian meshes.

This enabled higher Reynolds numbers to be simulated with-

out an enormous increase in the computational requirements,

as shown by Baskar and Babu
9

who simulated the unsteady

flow for the same range of Reynolds numbers studied experi-

mentally by Okajima.
3

The method was later successfully

employed in Ref. 10 to simulate high Rayleigh number en-

closure convection. An alternative approach for using non-

uniform meshes, based on the concept of hierarchical grid

refinement, was proposed by Filippova and Hanel.
11,12

How-

ever, the former approach is easier to implement as it re-

quires only a simple modification of the traditional lattice-

BGK procedure for simulating incompressible flows.

The objective of the present work is to study the effect of

a porous square cylinder on the wake structure and vortex

shedding frequency. A lattice Boltzmann model for simulat-

ing flow through porous media with the linear and nonlinear

velocity drag terms �the viscous and form drag terms respec-

tively� included was proposed by Guo and Zhao.
13

An im-
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proved version of this model is used in the present work

along with the interpolation supplemented LBM.

II. PROBLEM DESCRIPTION

Consider a rectangular cylinder of height H and length L

placed in a uniform stream as shown in Fig. 1 �for conve-

nience, H=1 and L=2H in the figure�. Although the aim is to

simulate flow around the cylinder when it is placed in an

infinite stream, for practical reasons, the computational do-

main shown in Fig. 1 was limited to a rectangular region

32H�20H. This results in an acceptable blockage ratio of

5%.
9

The center of the cylinder was located on the horizontal

centerline of the computational domain at a distance of

10.5H from the inlet boundary. Unsteady velocity data were

collected at a point 10H downstream of the cylinder and 5H

above the centerline �shown as a filled circle in Fig. 1�.

III. SOLUTION METHODOLOGY

A. d2q9 model

The 9 bit lattice-BGK model �called the d2q9� for po-

rous media was proposed by Guo and Zhao,
13

which was

later used by Wu et al.
14

for isothermal flows in porous me-

dia and by Seta et al.
15

to simulate natural convection in

porous media. In this d2q9 model, each node of the lattice is

populated by three kinds of particles: a rest particle that re-

sides in the node, particles that move in the coordinate direc-

tions, and particles that move in the diagonal directions. The

total number of particles in each node in this model is nine.

The speed of the particles is such that they move from one

node to another during each time step. These speeds can be

written as

ei = �
0, i = 0,

c�cos��i − 1���,sin��i − 1���� , i = 1,2,3,4,

�2c�cos��i − 5��/2 + �/4�,sin��i − 5��/2 + �/4�� , i = 5,6,7,8.
	 �1�

Here c=�x /�t, where �x and �t are the lattice spacing and the

time step respectively. In the traditional LB method the par-

ticles at each node undergo collision followed by advection.

In terms of distribution functions, this can be written as

f i�x + ei�t,t + �t� − f i�x,t�

= −
1

�
�f i�x,t� − f i

�eq��x,t�� + �tFi, 0 � i � 8, �2�

where � is the dimensionless collisional relaxation time and

is related to the kinematic viscosity 	 of the lattice fluid as

	 =
�2� − 1�

6

�x
2

�t

, �3�

and Fi is the force term that accounts for drag effects due to

the presence of the porous medium. This can be written as
13

Fi = wi

1 −
1

2�
��3

ei · F

c2
+

9

�

�ei · u��ei · F�
c4

−
3

�

u · F

c2  ,

�4�

where � is the porosity. Here, F is the body force due to the

presence of the porous medium and is given as
13

F = −
�	

K
u −

�cF

�K
�u�u + �G , �5�

where 	 is the kinematic viscosity of the fluid, K is the per-

meability, cF is the nondimensional Forchcheimer form-drag

coefficient, and G is the body force due to gravity. The first

term in this equation, which is linear in velocity, is the vis-

cous drag term and the second term, which is quadratic in

velocity, is the form drag term. Owing to the low velocities

encountered �Re=100 and 200�, in the present work, the vis-

cous drag term alone is retained and the second and the third

terms are neglected. Thus,

Fi = −
�	

K
wi

1 −

1

2�
�

��3
ei · u

c2
+

9

�

�ei · u�2

c4
−

3

�

u · u

c2 , 0 � i � 8, �6�

Eq. �2� above describes the evolution of the LB automaton.

The equilibrium functions that appear in the right hand side

of this equation can be evaluated
13

as follows:

X

Y

0 10 20 30

0

10

20

FIG. 1. Computational domain and schematic of the grid.
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f i
�eq� = wi
�1 + 3

ei · u

c2
+

9

2�

�ei · u�2

c4
−

3

2�

u · u

c2 ,

�7�
0 � i � 8,

where w0=4 /9, wi=1 /9 for i=1,2 ,3 ,4, and wi=1 /36 for

i=5,6 ,7 ,8. Also, 
 is the density and u is the velocity of the

fluid. These are given as


 = �
i=0

8

f i, �8�


u = �
i=1

8

eif i +
�t

2

F . �9�

If we substitute for F from Eq. �5�, we get


u = �
i=1

8

eif i −
�t

2

�	

K

u . �10�

B. d2q9i model

In the LBM, the pressure is calculated using an equation

of state. Pressure and density are related through the speed of

sound as

p = cs
2
 , �11�

where cs=c /�3 is the speed of sound. The entire governing

equations can be written in terms of pressure rather than

density using the above equation so that the pressure field

can be obtained directly.
8

This is the d2q9i model that has

been used in the present work.
9

Another advantage of this

approach is that the incompressible Navier–Stokes equations

can be recovered from the LB equations to within O�Ma2�
where Ma is the Mach number, in contrast with the d2q9

model which recovers the incompressible N-S equations only

to within O�Ma�. The derivation of the working equations for

the d2q9i model follows.

Upon multiplying Eq. �2� by cs
2 and defining pi=cs

2f i, we

get

pi�x + ei�t,t + �t� − pi�x,t�

= −
1

�
�pi�x,t� − pi

�eq��x,t�� + �tcs
2
Fi, 0 � i � 8.

�12�

Since the flow is incompressible, the density is essentially

constant but with small fluctuations, viz., 
=
0+�
. The

quantity 
0 can be thought of as a reference density and it has

been conveniently taken to be equal to 1 in the present work.

The exact value used for 
0 is immaterial as the solution

obtained is independent of this value. It should be noted that

�
 is O�Ma2� in the incompressible limit.

The equilibrium functions that appear in the right hand

side of Eq. �12� can be evaluated by first multiplying both

sides of Eq. �7� by cs
2 and then substituting for 
. After ne-

glecting product terms like �
�u /c� and �
�u /c�2, which are

actually O�Ma3� and O�Ma4�, we get

pi
�eq� = wi�p + 
0�ei · u� +

3
0

2�
�ei · u�2 −


0

2�
u · u,

�13�
0 � i � 8,

where p is the pressure as defined above. In a similar man-

ner, it is easy to show from Eqs. �6�, �8�, and �10� that

Fi = −
�	

K
wi
0
1 −

1

2�
�

��3
ei · u

c2
+

9

�

�ei · u�2

c4
−

3

�

u · u

c2 , 0 � i � 8,

�14�

and

p = �
i=0

8

pi, �15�

and


0u =
1

cs
2�

i=1

8

eiipi −
�t

2

�	

K

0u . �16�

TABLE I. Values used for porosity and Darcy number.

Da

�

0.25 0.5 0.75 0.9

0.1 ¯ ¯ ¯ �

0.01 ¯ ¯ � �

0.001 ¯ � � �

0.0001 � � � �
x/H

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

(a)

x/H

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

(b)

FIG. 2. Validation result: streamlines around solid block for �a� Re=100 and

�b� Re=200.
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C. Implementation on nonuniform grid

In the ISLB method, the lattice Boltzmann automaton is

assumed to reside on a uniform lattice with spacing equal to

�x. During each time step, the particles on this lattice un-

dergo collision followed by advection as dictated by the

lattice-BGK model.
8

However, the particle distribution func-

tions f i �and hence the density 
 and velocity u� are evalu-

ated on the nodes of a computational grid overlaid on the

lattice. The nodes of the computational grid need not coin-

cide with the nodes of the lattice and after advection on the

lattice the particles can be off node. The particle distribution

function at each node of the computational grid can then be

determined by using second order accurate Lagrangian

interpolation.
8

This is, however, not required in regions

where the spacing of the computational grid equals the lattice

spacing. The particle distributions on the boundary nodes of

the computational grid are then modified according to the

imposed boundary conditions. On the top and bottom bound-

aries, which are zero-shear boundaries, slip boundary condi-

tion is imposed using the particle reflection rule. At the inlet,

the particle distribution functions are set equal to the corre-

sponding equilibrium distributions. At the exit, the particles

are simply allowed to leave the domain.

The Cartesian computational grid used for the present

calculations �Fig. 1� consists of several zones in the x and y

directions. The innermost zone surrounding the cylinder is a

uniform grid with equal spacing in both the coordinate direc-

tions. The spacing of the grid in this zone is the finest in the

entire domain. The spacing of the grid in the outer zone is

twice that of the inner zone. The outlines of the zones for the

grid with two levels in the x direction and two levels in the y

direction are shown in Fig. 1.

(d)

φ=0.9, Da=0.0001

x/H

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

(c)

φ=0.9, Da=0.001

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

(b)

φ=0.9, Da=0.01

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

(a)

φ=0.9, Da=0.1

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

FIG. 3. Streamlines for time averaged mean flow in porous block at

Re=100, �=0.9, �a� Da=10−1, �b� Da=10−2, �c� Da=10−3, and �d�
Da=10−4.

(d)

φ=0.9, Da=0.0001

x/H

y
/H

8 9 10 11 12 13 14 15
8

9
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11

12

(c)

φ=0.75, Da=0.0001

y
/H

8 9 10 11 12 13 14 15
8

9
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(b)

φ=0.5, Da=0.0001

y
/H

8 9 10 11 12 13 14 15
8

9
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11

12

(a)

φ=0.25, Da=0.0001

y
/H

8 9 10 11 12 13 14 15
8

9

10

11

12

FIG. 4. Streamlines for time averaged mean flow in porous block at

Re=100, Da=10−4, �a� �=0.25, �b� =0.50, �c� =0.75, and �d� =0.9.
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D. Dimensionless parameters

With the height of the cylinder as the characteristic

length and the freestream velocity u� as the characteristic

velocity, the relevant dimensionless parameters are Reynolds

number, Re�=u�H /	�, Darcy number, Da�=K /H2�, and po-

rosity �. Since the flow simulated by the LB method is

weakly compressible, Mach number, Ma�=u� /c�, is also a

relevant parameter. Based on the values for these parameters,

values for u�, �, and K for simulations on the lattice can be

determined as follows. From the definition of Mach number,

it is easy to see that u�=Ma c.

The Reynolds number can be written as

Re =
u�H

	
=

Ma cN�x

	
, �17�

where N is the number of lattice nodes along the character-

istic length. Upon using Eq. �3� and rearranging, we get

� =
1

2
+

3 Ma N

Re
. �18�

The permeability K of a porous medium made of packed

spherical particles is related to the volumetric porosity � and

characteristic pore length scale through the Carman–Kozeny

relationship.
16

In nondimensional form this empirical rela-

tion can be written as

Da =
K

H2
=

1

180

�3�Dp�2

H2�1 − ��2
. �19�

The above relation is used as a guideline to arrive at suitable

K and � combinations that yield porous media with physi-

cally realistic pore scales Dp not exceeding H, the character-

istic porous cylinder size. In light of Eq. �19�, for a chosen

Da, since H is also fixed, the pore scale Dp changes

correspondingly when � is varied. Table I provides the pos-

sible combinations within the range 10−4�Da�10−1 and

0.25���0.9. Porosity and Darcy number are set to 1 and

1020, respectively, in the clear fluid region.

Reynolds numbers tested are 100 and 200 ensuring the

flow is kept two dimensional. The Mach number is kept fixed

at 0.1. In all simulations, N is equal to 16, an adequate value
9

for this range of Reynolds numbers. Since the flow is un-

s/H

(p
−

p
∞

)/
ρ

U
∞2
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φ=0.9,Da=0.1

FIG. 5. Variation of dimensionless static pressure Cp along the upper half of

the cylinder at Re=100, �=0.9 for several Da values.
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FIG. 6. Frequency spectra at Re=100 for all physically realizable porous media from Table I.
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steady, during postprocessing, another dimensionless quan-

tity, the Strouhal number, has to calculated. It is customary to

define the Strouhal number, St, as fH /u�, where f is the

frequency in Hertz. For lattice calculations, it is easy to show

that

St = fN/Ma, �20�

where f is the frequency in lattice units.

Discrete Fourier transform �DFT� of the unsteady veloc-

ity data collected at a point downstream of the cylinder is

performed to extract the dominant frequencies of the un-

steady flow field behind the cylinder. St values calculated

using these dominant frequencies and corresponding stream-

lines for several porous cylinder configurations are analyzed

to reveal the effect of the porous medium on the wake struc-

ture and vortex shedding.

IV. RESULTS AND DISCUSSION

In Table I, the marked pairs indicate the combination of

volumetric porosity � and nondimensional permeability Da

that yields physically realizable porous media, satisfying the

Carmen–Kozeny relationship, Eq. �19�. For fixed Re=100

and porosity �=0.9, the effect of permeability Da variation

on the flow around the porous block is brought out through

streamlines of the time-averaged mean flow in Fig. 3. In Fig.

3�a�, since the nondimensional permeability is very high

Da=0.01, the streamlines are nearly undisturbed across the

control volume around the porous block. As Da decreases by

successive orders in frames of Figs. 3�a�–3�d�, due to the

corresponding increase in the porous medium viscous drag,

reduced flow is observed within the porous block. The

streamlines of Fig. 3�d� are almost identical to those for the

solid block case shown in Fig. 2�b�.
Reducing the porosity, in principle, reduces the flow vol-

ume �area, in the present case� within the porous block.

Thus, from Eq. �19�, the pore size Dp changes for a fixed Da.

However nondimensional the permeability Da has to be low

when the porosity is reduced in order to achieve physically

realizable porous media as shown in Table I. This ensures the

viscous drag inside the porous block to predominate. There-

fore, compared to the identical Da values from Fig. 3, the

effect of porosity reduction on the streamlines is observed to

be minor in Fig. 4, where, for fixed Da=0.0001, the effect of

� on the streamlines through physically realizable porous

block �bottommost row in Table I� is shown.

The variation of the dimensionless static pressure

Cp �=�p− p�� / �
U�
2 �� along the upper half of the cylinder is

shown in Fig. 5 for �=0.9 and several permeability Da val-

ues. Here p� is the reference, free stream, static pressure, 
,

the density, and U�, the free stream velocity of the fluid.

The upper half consists of three sides, namely, the upstream

side �x /H=10,10�y /H�10.5�, the top surface �10�x /H

�11,y /H=10.5�, and the downstream side �x /H=11,10.5

�y /H10�. In this plot, the abscissa is the nondimensional

distance along the surface starting from the front stagnation

point. In the plot, the pressure variation on the upstream and

downstream sides of the cylinder is shown in dark curves

while that of the top surface is shown in gray since this does
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FIG. 7. Streamlines for time averaged mean flow in porous block at at

Re=200, Da=10−4, �a� �=0.25, �b� =0.50, �c� =0.75, and �d� =0.90.
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FIG. 8. Variation of dimensionless static pressure Cp along the upper half of
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not contribute to the pressure drag. The pressure drop in-

curred by the solid cylinder is expectedly the highest. As Da

increases, a sharp drop in the momentum change across the

porous cylinder is observed. For Da=0.1, the pressure drop

is almost negligible suggesting through-flow in the porous

cylinder.

Strouhal number provides the measure for the intrinsic

oscillatory flow instability occurring with steady state bound-

ary conditions. Figure 6 shows the amplitude and frequency

spectra of St values at Re=100 for flow around each of the

physically realizable porous blocks from Table I. For refer-

ence, the St spectra for flow around a solid cylinder are also

shown at the top left corner. The single sharp spectral peak at

the predominant frequency indicates the onset of strong vor-

tex shedding in the wake and has been well documented in

reported literature. The bottommost row of St spectra is for

the porous block case at the lowest block nondimensional

permeability Da=0.0001 and for several porosities. Since the

Da=0.0001 is very low, the distinct peak at a predominant

frequency nearly matches that of the solid cylinder case.

Moreover, the predominant frequency value is also nearly the

same as that of the solid cylinder case, reiterating the negli-

gible effect of porosity. This observation corroborates the

nearly identical pressure drop incurred by such porous

blocks in Fig. 5, when compared with the solid block case.

From this lowest Da bottom row, as one proceeds in Fig.

6 to the top with progressive increase in Da values, it is

evident that the sharp peak at the predominant frequency

reduces in amplitude. This suggests a reduction in vortex

shedding in the wake of the corresponding high permeable

porous blocks. The reduction in pressure drop across these

porous blocks of higher permeability in Fig. 5 also indicates

the same. As observed from the streamlines presented earlier,

since there is flow through the porous blocks at the down-

stream face, the strength of the local shear flow near the

trailing edges of the square face is reduced. Consequently the

onset of vortex shedding for Re=100 is expected to subside

with increased porous block permeability. Supporting this

reasoning, in Fig. 6, the topmost row for Da=0.1 �and

�=0.9� registers no significant peak at any predominant St

frequency.

Clarifying a point raised by one reviewer, it is worth

recalling at this stage that the limiting process Da→0 and

�→0 of Eqs. �4� and �5� does not recover the solid cylinder

limit. This is an inherent limitation of the porous media for-

mulation using LBM. The solid cylinder results reported are

obtained by solving the clear fluid LBM equation. This is

one possible explanation for the solid cylinder case not to

have the highest peak/amplitude in Fig. 6.

In addition, a recent work
17

discussed the discrepancy in

the effective viscosity predicted by LBM and the Chapman–

Enskog expansion. The LBM and porous medium parameters

must be chosen properly to avoid any discrepancy in the

effective viscosity predicted by these two formulations. As-

suaging concerns regarding this, the parameters in our pre-

sented formulation have indeed been chosen properly so that

the ratio of effective viscosity to kinematic viscosity is unity,

which does not result in any discrepancy. Further, the value
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FIG. 9. Frequency spectra at Re=200 for all physically realizable porous media from Table I.
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of N used in the present study is shown to be adequate for the

range of Reynolds number considered, in Ref. 9. A grid in-

dependence study has been carried out for the porous me-

dium formulation and the differences in the predictions for

small K values have been found to be small.

At Re=200, similar trend of flows, wake structure, and

Strouhal number behavior are observed. For instance, in Fig.

7, for Da=10−4, the effect of porosity on the streamlines

resembles that at Re=100 in Fig. 4. The Cp plot in Fig. 8 also

resembles that for Re=100 in Fig. 5, with the expected in-

crease in the Cp magnitudes. Interestingly, for Da=0.01 and

Da=0.1, the pressure drop magnitudes for both Re=100 and

Re=200 are almost identical. Figure 9 depicts the amplitude

and frequency spectra of St values at Re=200 for the entire

physically realizable porous blocks from Table I. Only for

the lowest Da=10−4 value, unique amplitude peaks are ob-

servable. As Da increases, irrespective of the porosity value,

the amplitude peaks are observed to scatter and spread out

and disappear.

As indicated earlier, for the solid cylinder, Da=0 and,

hence, both Da and � disappear completely. To obtain solid

cylinder results, the LBE corresponding to the clear fluid

alone is solved. Although the case of Da=0.0001 is close to

that of the solid cylinder case �Da=0�, only the LBE with

nonzero porous media terms is solved for obtaining the St

results. Hence, combinations wherein the porosity is high but

the permeability is low �as in Fig. 8� result in slightly differ-

ent predictions on the surface of the cylinder than that of the

solid cylinder. These differences can be ignored without los-

ing generality while interpreting the results.

V. CONCLUSIONS

The phenomenon of vortex shedding from a two-

dimensional porous square cylinder placed in an infinite in-

compressible flow stream is simulated in detail using the

d2q9i model of the LBM. Satisfying the Carmen–Kozeny

relation, suitable combination of permeability 10−4�Da

�10−1 and porosity 0.25���0.9 values are chosen for the

realistic porous media of the square cylinder.

For Re=100 and 200, the effect of Da and � on the

vortex shedding is characterized using the Strouhal number

St of the configuration. At Re=100, as the permeability Da is

increased from the solid cylinder limit, streamlines indicate

progressively more flow through the porous cylinder. As a

result, the strength of the vortex shedding from the trailing

edge of the porous square cylinder is observed to reduce. The

progressive reduction and absence of dominant frequency for

increasing porous medium nondimensional permeability Da

the DFT analysis also corroborate the reduction in the vortex

shedding. Corresponding St values also indicate the same.

A similar trend of wake structure, reduction in dominant

frequency, and vortex shedding for progressive increase in

Da and � is observed for Re=200. Further analysis at higher

Re is required to delineate the three-dimensional un-

steady effects to shape the proposed concept as a possible

technique for suppression of vortex shedding in engineering

applications.
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