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Abstract. We report the growth and low-temperature photoluminescent
characteristics of well-aligned Ni-doped ZnO nanoneedles and V-doped ZnO
nanostructured thin film grown by a modified pulsed laser deposition technique.
Low-temperature photoluminescence spectra of the as-grown films show the
presence of free excitonic as well as bound excitonic transitions, whose relative
intensity changes with increasing temperature. Ni-doped ZnO films show a
characteristic fine structure in the visible range (2.6–2.9 meV) attributed to either
exciton–polariton longitudinal–transverse splitting or the splitting caused by
electron–hole exchange interaction. The excitonic and visible region emission
can be clearly seen as can the phonon replicas produced from longitudinal optical
phonons. Different possible attributions of the various peaks in the emission band
at low temperature have been discussed. The as-grown nanostructures of Ni- and
V-doped ZnO thin films also clearly show the effect of doping on the
microstructure of ZnO.
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1. Introduction

It has recently been shown that ZnO nanowires can be successfully used as active elements in
nanoscale optical devices, such as photodetectors and lasers operating in the low-wavelength
region [1, 2]. Such applications are also called for in the visible wavelength region. However,
despite significant progress in nanowire device development, a detailed understanding of the
effect of nanostructure size and morphology on their optical properties remains limited. The
morphology and average size of nanocrystalline powders or films strongly depend on the
preparation method and synthesis conditions. Photoluminescence (PL) from the as-prepared
ZnO samples depends largely on defect content, stoichiometry, dopant type and concentration,
grain size and powder morphology. Among the important dopants of the ZnO system, transition
metal ions have received great attention because of their contribution toward the growth
of ZnO-based diluted magnetic semiconductors. It is well known that the morphology of
ZnO nanostructures is strongly dependent on experimental conditions [3]. These experimental
conditions also affect the luminescent method, which is very sensitive to defect content,
stoichiometry, impurity type and concentration, grain size and powder morphology. ZnO
nanorods show different emission bands, depending on the doping material [4]. Pb2+-doped
ZnO nanorods exhibited violet and blue emission bands [5]. V and Ni are also among the most
efficient doping elements to improve and tune the optical, electrical and magnetic properties of
ZnO nanomaterials [6]–[8]. Thus, the study of the optical properties of V- and Ni-doped ZnO
is important from both the fundamental and applied points of view. Zhang et al [9] reported
that doping of Ni leads to the increase of ultraviolet emission intensity and a blueshift of the
emission peak. Contrary to this in the present work, we observe a suppression of the UV peak
and an increase in defect emission. There have also been other reports on the room-temperature
PL of Ni-doped ZnO rods [10, 11] as well as of Ni-doped ZnO films annealed at different
temperatures [12, 13].

In the present paper, we report the synthesis, microstructure and room-temperature as well
as low-temperature PL of V- and Ni-doped ZnO nanorods. The objective of this study is to see
the effect of V and Ni doping on the microstructure and emission spectrum of ZnO. On the basis
of theoretical analysis and observed interesting results, the origins of absorptions in the different
wavelength regions at low-temperature emission are discussed in detail.

2. Experimental conditions

Ni-doped ZnO nanoneedles and V-doped ZnO nanostructured films were grown using a
modified pulsed laser deposition (PLD) technique [14]–[16]. The modified PLD system can
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Table 1. Deposition parameters for the growth of Ni- and V-doped ZnO films by
a modified PLD setup.

Target ZnO + V
ZnO + Ni

Ablation time 20 min
Chamber temp. 1000 ◦C
Pressure 260 Torr
Substrate Sapphire(0001)
Distance between target and 1.5 cm

substrate
Laser KrF excimer
Laser repetition rate 20 Hz
Laser fluence 4 J cm−2

Pulse energy 80 mJ

sustain high temperature (as high as 1200 ◦C) and high pressure (∼300 Torr), which assists in
nanostructure formation. In our experiment, sintered ZnO:Ni and ZnO:V targets were used as
source material in synthesizing ZnO nanowires. The sapphire substrate was inserted into a
horizontal quartz tube chamber and the target–substrate distance was set to 15 mm. Then the
chamber temperature was heated from room temperature to 1000 ◦C with a heating rate of
15 ◦C min−1 and the chamber pressure filled with argon or nitrogen background gas was set
to 260 Torr. The Ar or N2 gas flow rate was set at 27.4 sccm. The ZnO target was ablated with a
KrF excimer laser, which operates at a repetition rate of 20 Hz and a fluence of about 4 J cm−2,
in the chamber for 20 min. Ablated species were then deposited on substrates that had been
pre-annealed at 1000 ◦C for 1 h in a programmable box-type electric-resistance furnace in order
to improve the substrate surface condition and favor the aligned growth of ZnO nanowires. The
deposition conditions are mentioned in table 1. Ni- and V-doped ZnO films were deposited
in Ar as well as N2 gas atmospheres. Phase analysis of the thin films was carried out using
x-ray diffraction (XRD) (Rigakudenki MultiFlex). Scanning electron microscopy (model—
Keyence VE-7800) measurements were performed to investigate the microstructure of as-grown
films. For PL measurements, a He–Cd laser (325 nm) was used as the excitation source. A
photomultiplier tube was used as the detector.

3. Results and discussion

3.1. Microstructure of as-grown films

Ni- and V-doped films grown in N2 and Ar atmospheres have hexagonal wurtzite structure (as
determined from XRD—figure 1). Figure 2 shows the scanning electron microscopy (SEM)
images of Ni- and V-doped films grown in different atmospheres. Nanoneedles grown in Ar
atmosphere have diameters of about 300 nm at the base, which taper down to 50 nm at the
tip, and lengths up to 4 µm. Hence the resulting estimated aspect ratio is expected to vary
from 14 at the base to about 80 at the tip. However, nanoneedles grown in N2 atmosphere
have a diameter of 200 nm at the base, 30 nm at the tip and lengths up to 2.5 µm on
average.
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Figure 1. XRD patterns of as-grown Ni-doped ZnO film in (a) Ar, (b) N2 and
V-doped ZnO film in (c) Ar, (d) N2.

Figure 2. SEM images of Ni- and V-doped films grown in Ar and N2.

V-doped thin films did not show any unique microstructure and the morphology was
completely different from that of Ni-doped ZnO film. This clearly shows that different dopants
can give rise to different microstructures of as-grown films. Doping with different TM ions
(Ni or V) can dramatically affect the microstructure and optical properties of ZnO. A similar
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Figure 3. Room temperature PL spectra of Ni:ZnO and V:ZnO thin films grown
in Ar and N2 atmospheres.

effect has also been observed in the literature for Cr, Mo and W doping in bulk ZnO [17], where
the morphology of the parent compound was altered by doping. The morphology of a compound
depends on the ionic fraction of a compound, given by the following expression [18]:

161χ + 3.5(1χ)2,

where 1χ is the difference in electronegativity of the host element and the dopant element.
Similar results have also been reported before for other growth techniques [19]. On obtaining
SEM images at different spots on the film, the density of nanoneedles in the film was found
to be different for different growth atmospheres. This could be attributed to the fact that the
deposition rate for films grown in Ar is lower because of its heavier ionic mass, leading to a
lower density of ZnO needles. This difference could also be due to the smaller mean free path
of ablated species in the Ar atmosphere (due to the higher ionic radius of Ar) caused by a higher
number of collisions of the species and thus larger nanostructure dimensions (as it seems from
the comparison of SEM images) as well as lower density.

3.2. Investigation of low-temperature PL on as-grown thin films

PL spectroscopy is a powerful and nondestructive method to explore the optical characteristics
of doped ZnO systems. Although room-temperature PL is essential for determining the optical
applications of such materials, temperature-dependent PL can especially reveal the dissociation
processes of impurity bound excitons induced by doping, and provide useful information. Hence
the PL spectra of Ni- and V-doped ZnO films have been measured at different temperatures. The
excitonic and visible region emission can be clearly seen as can the phonon replicas produced
from longitudinal optical phonons.

The PL spectra of ZnO:Ni and ZnO:V (figure 3) exhibit UV emission as well as defect
emission in the visible spectral range. From figure 3 it is clear that the ZnO:V sample shows
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Figure 4. Low-temperature PL spectra of Ni:ZnO and V:ZnO thin films grown
in Ar and N2 atmospheres.

strong UV luminescence near 380 nm as compared to Ni-doped samples. The strength of UV
luminescence depends on the relative concentration of the different species involved, their
carrier trapping rates and also the ionization cross-section of the TM ion, which is different
for each TM ion and also the host. The peak of defect level emission for the ZnO:V sample
exists at about 530 nm and for the ZnO:Ni sample at 510 nm. This is attributed to the fact
that the nature of native defects is different in both cases. The impurity levels of dopants in
ZnO are different and are responsible for emission in the visible region. Each TM ion doping
is found to affect the interface traps existing in the depletion regions between the ZnO–ZnO
grain boundaries, giving rise to emission in the visible region. This is the reason for the strong
defect level emission in doped samples as compared with undoped samples at temperatures
of 10 and 80 K (figure 4). It is also clear that the area under deep level emission (in the
visible region) and the range of defect emission increase on doping. This shows that there
is an increase of vacancy and/or impurity concentration by doping. Ni and V doping also
suppresses UV emission at about 380 nm, which indicates that TM ion doping increases the
nonradiative recombination processes. TM ions are expected to act as killer centers to suppress
transitions resulting in radiative recombination. These nonradiative transitions may arise when
free electrons recombine via a TM ion impurity level instead of populating donor acceptor
pairs and can also be attributed to energy transfer processes from donor–acceptor pairs to
neighboring TM ions [20, 21]. Figure 5 shows the temperature dependence of defect level
emission for V-doped ZnO grown in Ar and N2 atmospheres. In general, the total integrated PL
intensity usually decreases gradually with increasing temperature. This is usually due to several
quenching mechanisms, such as thermal activation of some nonradiative centers. However, due
to the presence of transition metal ion dopants (well known as killer centers) in the present
samples, nonradiative centers are dominant at all temperatures. This may explain the absence
of a significant decrease in PL intensity of the band with increase in temperature. We find
that the defect level peak position for V-doped ZnO shifts from 580 to 530 nm with increase
in sample temperature. Such large shifts between the PL energy peaks and the shape of the
PL emission bands are signatures of deep levels with strong electron–phonon coupling [22].
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Figure 5. Temperature dependence of visible emission from V-doped samples.

Figure 6. Temperature dependence of visible spectra of Ni:ZnO films grown in
Ar atmosphere.

Similar results have been observed by Shi et al [23]. Shi et al observed that the peak position of
the emission band remains unchanged when the temperature is not higher than 200 K (similar
to our case). For high temperatures, the peak position tends to blue shift with increasing
temperature. This phenomenon has been explained as being a result of populating the higher
vibronic states at higher temperatures. The nature of the centers responsible for these emission
bands and related recombination mechanisms are not still understood, and call for further
investigations.

Figure 6 shows the plot of the low-temperature PL spectrum at 10–300 K for Ni-doped
ZnO grown in the visible range in Ar atmosphere. The plot shows a characteristic fine structure
in the visible range (2.6–2.9 meV). The fine structure observed in the visible range of the PL
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Figure 7. Logarithmic plot of the low-temperature PL spectrum of V:ZnO films
grown in Ar atmosphere at 10 K.

spectrum at 10 K in the present paper is very similar to the fine structure observed in the visible
range of the low-temperature PL spectra of Cu-doped ZnO films [24]. Indeed, in both cases,
a zero-phonon peak (constituted by two close lines) is observed in the high-energy side of the
defect band, and its phonon replicas are present at lower energies. These features were attributed
to the defect energy levels introduced inside the ZnO energy gap by the Cu dopant. Due to the
high similarity of these features in the two cases (the structure constituted by the two lines
forming the zero-phonon peak can be observed by a slight magnification of the PL spectrum in
the visible range of Ni-doped ZnO in figure 6), it can be thought that the effect of Ni doping is
similar to that caused by Cu doping. The spectrum of annealed Cu-doped ZnO nanowires at low
temperature (10 k) has been seen to exhibit a red shift in UV and blue emission relating to the
different valence states of Cu atoms in ZnO [25, 26].

However, the lack of this fine structure in V-doped ZnO can be due to a possible different
incorporation of V inside ZnO, which does not give rise to the same fine structure. We would
also like to mention that the fine structures fade out gradually with increasing temperature and
are no longer observable when the temperature is 300 K. This may be attributed to the thermal
broadening of each vibronic transition [23].

The wurtzite ZnO conduction band is mainly constructed from the s-like state, whereas the
valence band is a p-like state, which is split into three bands due to the influence of crystal-field
and spin–orbit interactions [27]. The near-band-gap intrinsic absorption and emission spectrum
is therefore dominated by transition from these three valence bands. The related free exciton
transitions from the conduction band to these three valence bands or vice versa are usually
denoted by A (also referred to as the heavy hole), B (also referred to as the light hole) and
C (also referred to as crystal-field split band).

Figure 7 shows the low-temperature PL spectrum of ZnO:V films grown in Ar atmosphere
at 10 K. At such low temperatures the A free exciton transition is observed at FXA = 3.375 eV
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[28, 29]. Bound excitons are extrinsic transitions and are related to dopants or defects, which
usually create discrete electronic states in the band gap, and therefore influence both optical
absorption and emission processes. The electronic states of bound excitons depend strongly on
the semiconductor material, in particular, the band structure. In theory, excitons could be bound
to neutral or charged donors and acceptors. A basic assumption in the description of bound
exciton states for neutral donors and acceptors is a dominant coupling of like particles in the
bound exciton states. These two classes of bound excitons are by far the most important cases for
direct band-gap materials. In high-quality bulk ZnO, the neutral shallow donor bound exciton
(DBE) often dominates because of the presence of donors due to unintentional (or doped)
impurities and/or shallow donor-like defects. In samples containing acceptors, an acceptor
bound exciton is observed. In the low-temperature PL for the V-doped sample, we observe a
prominent line, which is the A exciton bound to a neutral donor, positioned at 3.36 eV (D0XA).
It has a full-width at half-maximum of about 0.7 meV, indicating good quality of the sample.
Based on the energy separation between the FXA and DBE peak, it is concluded that the binding
energy of the DBE related to the donor is 15 meV. The PL spectrum at 10 K is dominated by
neutral donor bound exciton emissions.

Another characteristic of the neutral donor bound exciton transition is the two-electron
satellite (TES) transition in the spectral region of 3.32–3.34 eV. The main peak at 3.32 eV
(D0XA)e is the excited state associated with the most intense neutral donor bound exciton
at 3.36 eV (D0XA). These transitions involve radiative recombination of an exciton bound
to a neutral donor, leaving the donor in the excited state, thereby leading to a transition
energy that is less than the DBE energy by an amount equal to the energy difference between
the first excited and ground states of the donor. In the effective-mass approximation, the
energy difference between the ground-state neutral donor bound excitons and their excited
states (TES) can be used to determine the donor binding energies [30, 31]. The donor
excitation energy from the ground state to the first excited state is equal to 3/4 of the donor
binding energy ED. Hence the donor binding energy turns out to be 53 meV for the donor at
3.36 eV.

The spectral region containing the donor–acceptor pair (DAP) transition and LO-phonon
replicas of the main transitions has not been studied widely for single-crystal ZnO. It should
be noted that LO-phonon replicas occur with a separation of 71–73 meV, the LO-phonon
energy in ZnO [32]. The peak at 3.307 eV is the first phonon replica of the free exciton
peak FXA = 3.375 eV and the peak at 3.235 is its second phonon replica (FXA-2LO). The
peak at 3.29 eV is the first phonon replica (D0XA-1LO) of 3.360 eV (D0XA). Teke et al [33]
observed a radiative recombination peak at 3.217 eV, which is attributed to the donor–acceptor
pair labeled as the DAP transition. The peak at 3.253 eV is the phonon replica of 3.32 eV
(D0XA)e.

Figure 8 shows the low-temperature PL spectrum of Ni:ZnO grown in Ar atmosphere at
10 K. We do not observe any acceptor bound exciton peak, which generally occurs at around
3.356 eV [34]. Figure 9 shows the temperature dependence of excitonic emission in the PL
spectra of Ni:ZnO. From figure 9 it is clear that the relative intensity ratio IF/IB (intensity of
free exciton FXA/intensity of bound exciton (D0XA)) increases with increase in temperature,
showing that with increasing temperature the dominant DBE dissociates into a free exciton
and a neutral donor [35]. We observe a similar effect in the free to bound exciton intensities
for V:ZnO.
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Figure 8. Logarithmic plot of the low-temperature PL spectrum of Ni:ZnO
grown in Ar atmosphere at 10 K.

Figure 9. Temperature dependence of excitonic emission in the PL spectra of
Ni:ZnO.

4. Conclusions

Ni-doped ZnO nanoneedles and V-doped ZnO nanostructures were grown by a modified PLD
setup. Two different dopants gave rise to different microstructures of the as-grown films
attributed to the change in electronegativity of the dopant element with respect to the doped
element. The clear difference in the nature of deep level emission from doped films proved that
the nature of native defects is different in each case. Low-temperature PL spectra of the films
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show the presence of free excitons as well as neutral donor bound excitonic transitions. The
relative intensity ratio IF/IB (intensity of free exciton FXA/intensity of bound exciton (D0XA))
increases with increase in temperature, showing that with increasing temperature the dominant
DBE dissociates into a free exciton and a neutral donor.
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