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The present study investigates the complex vortex interactions in two-dimensional flow-field behind

a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low

Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic

route as the plunge amplitude is gradually increased. This study unravels the role of the complex

interactions that take place among the main vortex structures in making the unsteady flow-field

transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very

first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision

of vortices in the near-field that propagate and sustain the disturbance have also been followed and

presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation

of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in

the flow-field. The interactions have been studied for each dynamical state to understand the course

of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation

of changes in the underlying dynamical system. The overall dynamics are established in the present

study by means of robust quantitative measures derived from classical and non-classical tools from the

dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-

classical dynamical tools such as recurrence-based time series methods are seen to be very efficient.

Moreover, their application is novel in the context of pitch-plunge flapping flight. Published by AIP

Publishing. https://doi.org/10.1063/1.5019442

I. INTRODUCTION

The study of unsteady aerodynamics of flapping wings

has attracted a considerable amount of research attention in

the recent past in relation to the design of flapping wing

Micro-Aerial Vehicles (MAVs) as their small size and maneu-

verability is ideally suited to provide a futuristic device for

advance surveillance and reconnaissance missions.1–4 The

associated small length-scales and low speed regime result

in a low Reynolds number flow, in which the unsteady vortical

patterns need to be resolved. Consequently, a large number

of studies have examined the unsteady flow-field focusing on

fundamental flapping kinematics like pure plunging5–8 or pure

pitching.9,10

A variety of wake patterns have been observed behind

a flapping airfoil for an increasing Strouhal number

(StA = fA/U∞, where f and A are the frequency and ampli-

tude of the oscillation, respectively, and U∞ is the free-stream

velocity). Note that most studies in this genre consider a

pure plunging (and occasionally pure pitching) case, whereas

studies with combined pitch-plunge kinematics are relatively

rare. The reported wake patterns are commonly categorized

as “drag-producing,” “neutral,” and “propulsive” wakes. The

“drag producing wake” gives a momentum deficit streamwise

velocity profile and the “propulsive” wake gives a jet-like

a)Author to whom correspondence should be addressed: sunetra@iitm.ac.in
and sunetra.sarkar@gmail.com

velocity profile, which are characterized by Kármán and

reverse Kármán vortex streets, respectively.5,9 When StA is

further increased, the spatial symmetry of the wake pattern is

lost resulting in a deflected vortex street which also indicates

a nonzero average lift.6,11–13 However, the periodicity of the

wake is still retained in this regime. Eventually, with a further

increase in StA, the flow-field loses its periodic structure.

In flow-field past periodically flapped airfoils, observa-

tion of aperiodicity as has been reported in a number of

studies7,14–18 is very interesting. Some of them establish ape-

riodicity in the dynamics using qualitative pictures of the

flow-field that show no repeatability or correlation in the vor-

tex structures in the consecutive cycles;14,19 in these studies,

the authors have presented (for a combination of pitch-plunge

flapping) phase averaged vorticity snap shots, obtained from

soap-film experiments that show irregular and blurry patterns.

Other studies focus on isolating some output measures of inter-

est, like instantaneous velocity fields or aerodynamic loads to

monitor the transition of the flow-field to aperiodicity (and

chaos).7,15,20 Aperiodicity was demonstrated through the time

histories of such quantities; however, no rigorous quantitative

tests based on dynamical systems theory were undertaken to

establish the dynamics. Among them, Lewin and Haj-Hariri7

and Ashraf, Young, and Lai15 reported a quasi-periodic (QP)

route to chaos for a plunging airfoil, whereas Blondeaux,

Guglielmini, and Triantafyllou20 observed the same for hov-

ering kinematics. The latter study further observed a phase-

locking scenario and commented on the airfoil behavior by
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analyzing the Fourier spectra of the loads. In another recent

study, Badrinath, Bose, and Sarkar21 have discovered an inter-

mittency route to chaos in a plunging airfoil and provided

conclusive quantitative proofs to establish the presence of

intermittency in the dynamics. The onset of aperiodicity in the

amplitude-frequency parameter plane (for both pure plunging

and pure pitching airfoils) has been reported by Kozłowski and

Kudela16 and Deng et al.18 Martı́n-Alcántara et al.17 and Deng

et al.18 had presented the varying pattern of the propulsive effi-

ciency as the flow-field transitions to chaos and connected the

optimum efficiency regime to the onset of chaos.

Please note that all the prior studies discussed above are for

two-dimensional flow-fields and the same will be considered

in the present analysis as well. Also, it is worth emphasiz-

ing that earlier analyses do not examine the underlying vortex

interactions in their full complexity that are responsible to

make the flow-field aperiodic when the flapping body itself

is driven periodically nor did they follow the behavior from a

dynamical perspective. These are the main focal points of the

present research. It is of considerable interest to identify the

role of the fundamental vortex interaction mechanisms behind

the chaotic transition, as this can help understand the physics

behind the qualitative changes observed in the flow-field. The

key contribution of the present study is two-fold: (i) to iden-

tify the transition route to chaos by establishing the dynamics

using robust quantitative measures derived from the flow field

and (ii) to systematically unravel the underlying vortex inter-

actions that trigger the unsteady flow-field to transition from

periodicity to chaos.

For the first part of the objective, an array of flow-field

quantities such as the streamwise velocity profile, vorticity,

correlation of the vorticity field, phase averaged vorticity con-

tours, and the aerodynamic loads is used to derive robust

quantitative dynamical measures. Along the transition route,

three distinct flow dynamics (periodic, quasi-periodic, and

chaotic) are observed in the near-field wake. We rigorously

substantiate the observed flow-field behavior into different

dynamical states using tools from the dynamical systems the-

ory. Once their existence is established through the said mea-

sures, the detailed vortex interactions that trigger these distinct

dynamical states are investigated subsequently.

In the second part, the role of the leading edge vortices

(LEVs) behind the flow-field transition has been found to be

crucial. It is well known that natural fliers exploit the genera-

tion of the LEVs to augment their aerodynamic loads through

the dynamic stall phenomenon.22 The contribution of leading

edge separation in the wake formation was investigated numer-

ically by Lewin and Haj-Hariri7 and later experimentally by

Lua et al.23 The topology of the leading-edge separation pri-

marily depends on the reduced frequency (κ) as well as on the

dynamic plunge velocity (κh). Lewin and Haj-Hariri7 observed

that for low values of κ, the primary LEV separates and advects

downstream which is often followed by an interaction with the

main trailing edge vortex (TEV). The LEV can either interact

constructively with the TEV by reinforcing it or destructively

by attenuating it.24,25

Lewin and Haj-Hariri7 further observed that for high val-

ues of κ, often the LEV is not shed or advected downstream

but gets stretched and dissipated by the nascent LEV of the

following stroke, especially in the aperiodic transition regime.

The LEVs are also seen to circumnavigate the leading edge to

reach the other side of the airfoil at high κ and κh values. How-

ever, for low κ and high κh cases, the leading-edge behavior

in the aperiodic transition regime is still not well understood.

This parametric regime is the subject of consideration in the

present study. The near-field behavior is analyzed at a low value

of κ = 2 as amplitude h is varied to a high κh regime. In order

to distinguish between the periodic and the aperiodic regimes

and to isolate the trigger for aperiodicity, the flow-field vortex

interactions are analyzed in the light of fundamental 2D inter-

action mechanisms formerly recognized in the literature.26,27

The contribution of LEVs is found to be crucial in the devel-

opment of aperiodicity; in fact, the leading edge separation

acts as the first trigger for aperiodicity. Its formation and sep-

aration happen in an irregular (aperiodic) manner that affects

any subsequent regular formation of vortex structures. This

includes LEV-TEV interactions as well as interactions with

other existing vortices. The vortex patterns are presented in

terms of the Lagrangian Coherent Structures (LCSs)28 along

with the vorticity contours. The LCSs are identified by com-

puting Finite Time Lyapunov Exponent (FTLE) ridges29 that

explain the vortex interactions more clearly.

The remainder of the present paper consists of the follow-

ing sections: Sec. II discusses the computational methodology.

In Sec. III, the flow structures have been categorized to three

distinct dynamics: periodic, quasi-periodic, and chaotic with

the help of robust dynamical tools using direct flow measures.

The fundamental vortex mechanisms have been studied in the

near-field wake to understand their effect in the far-field and

their contribution to the transition in the flow periodicity in

Sec. IV. Finally, the paper ends with concluding remarks in

Sec. V.

II. COMPUTATIONAL METHODOLOGY

A. Flapping kinematics

A sinusoidally pitching-plunging NACA 0012 airfoil in an

incompressible flow has been considered for the present inves-

tigation. The flow past an NACA 0012 airfoil has been studied

extensively in the existing literature and the flapping wake

dynamics have been reported for both numerical15,30–32 and

experimental investigations.5,9,33,34 Moreover, this symmetric

profile falls in the optimal range of thickness to generate maxi-

mum time averaged thrust coefficient and propulsive efficiency

in the concerned parametric regime of the present study.35

Specifically, in NACA 0012, the thickness provides the desired

frontal area for combined pitching-plunging motion against

which the low pressure leading edge vortex can generate an

increased thrust.36

The kinematic equations are given by

y(t) = A sin(2πft), ẏ(t) = 2πfA cos(2πft),

ᾱ(t) = α sin(2πft), ˙̄α(t) = 2πf α cos(2πft).
(1)

The non-dimensional parameters are defined as follows:

reduced frequency κ = 2πfc/U∞, non-dimensional amplitude

h = A/c, and Re = U∞c/ν, where f is the oscillation frequency,

c is the chord length, A is the plunge amplitude, α is the pitch
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amplitude, U∞ is the free-stream velocity, and ν is the kine-

matic viscosity. A parametric analysis is performed here by

varying h from moderate to high value (0.5 ≤ h ≤ 1.25) at

κ = 2, α = 15◦, and Re = 1000. The choice of the present

parameter values is inspired from the fact that natural fly-

ers frequently operate at high amplitude and low frequency

regimes to produce large leading edge vortices that augment

the lift generation.

B. Governing equations and solver details

In the present study, the low Reynolds number flow is

modeled by an incompressible Navier-Stokes (N-S) equation.

The arbitrary Lagrangian Eulerian (ALE) method37 is adopted

for the solution of the N-S equation in a time varying compu-

tational domain where the radial basis function (RBF) interpo-

lation method38 caters the need of a moving mesh mechanism.

The N-S equation is cast into ALE form as

∇.~u = 0, (2)

∂~u

∂t
+ [(~u − ~um).∇]~u = −∇p/ρ + ν∇2

~u. (3)

Here,~u is the velocity of the flow,~um is the grid point velocity,

p is the pressure, ρ is the fluid density, and ν is the kinematic

viscosity.

The spatial and temporal discretizations, used in the

present solver, are second order accurate. An implicit back-

ward differencing scheme is used for the temporal discretiza-

tion along with a maximum Courant number-based variable

time stepping method. The PISO (pressure implicit with split-

ting of operator) algorithm37 with a predictor step and three

pressure correction loops has been used to couple the pressure

and velocity equations. A preconditioned conjugate gradient

(PCG) iterative solver is used to solve the pressure equation

where a diagonal incomplete-Cholesky (DIC) method is used

for pre-conditioning. A preconditioned bi-stab conjugate gra-

dient (PBiCG) solver is used to solve the pressure-velocity cou-

pling equation and a diagonal incomplete-LU (lower-upper)

factorization method is used for preconditioning. The absolute

error tolerance criteria for pressure and velocity are set to 10☞6.

The simulations are performed using a finite-volume-based

computational fluid dynamics (CFD) solver OpenFOAM➤.39

One can find an extensive validation of the solver in Bos’s

Ph.D. thesis.40 Additionally, the flow solver is also validated

in the present study both qualitatively and quantitatively with

the existing results from the literature (see Sec. II D).

C. Computational domain and boundary conditions

A schematic of the circular computational domain with a

radius of 25c, used in the simulations, is shown in Fig. 1(a). The

size of the computational domain has been chosen such that

it is large enough to make the boundary effects redundant.40

Therefore, the present results are insensitive to increase in the

domain size. A zero pressure gradient and a constant free-

stream are considered at the inlet, whereas a zero velocity

gradient and atmospheric pressure condition are imposed at

the outlet. Besides, no slip and zero normal pressure gradient

conditions are considered on the horizontal walls and the air-

foil surface and the latter is considered to be a moving wall.

The computational domain is discretized using unstructured

grids. Figure 1(b) shows a close-up view of the mesh around

the airfoil. For a better visualization of the boundary layer dis-

cretization, the zoomed view of the mesh around the leading

and trailing edges has been presented in Figs. 1(c) and 1(d),

respectively. A grid independence test was performed by com-

paring the aerodynamic lift and thrust coefficients (Cl and Ct)

using grids of different resolutions to finalize the mesh. The

results of the grid convergence study are presented in Figs. 1(e)

and 1(f) for Cl and Ct , respectively. It can be seen that the

results with 400 grid points agree very well with that of 600

grid points on the airfoil for both Cl and Ct . Hence, the mesh

with 400 grid points on the airfoil (containing 0.36 × 106 grid

points in total) is chosen for further analysis.

D. Validation of the unsteady flow solver

The unsteady flow solver has been validated both quali-

tatively and quantitatively by comparing the results of present

computations with earlier experimental studies available in

the literature. The validation has been carried out for both

pure plunging and pure pitching kinematics. The trailing edge

wake patterns of a plunging airfoil obtained from the present

computation have been compared with that of the dye flow

visualization results of Jones et al.6 Figures 2(a) and 2(b) show

the comparison of wake vorticity contours for κ = 3 and h = 0.2

(κh = 0.6). The present computational results corroborate the

experimental results. A similar comparison is presented for a

higher non-dimensional plunge velocity case using κ = 12.5

and h = 0.12 (κh = 1.5) in Figs. 2(c) and 2(d). A deflected vor-

tex street is observed for such high non-dimensional plunge

velocities (κh > 1). A close agreement between the compu-

tational and experimental flow patterns is seen in this case

also.

Similarly for pure pitching cases, the numerically

obtained vortex contours have been compared with the Laser

Doppler Velocimetry (LDV) measurements performed by

Koochesfahani.9 The comparative study has been carried out

for three different set of parameter values as follows: for

κ = 0.84 and α = 4◦ [Figs. 3(a) and 3(b)] where an undu-

lating Kármán vortex street is observed, for κ = 3.1 and α = 4◦

[Figs. 3(c) and 3(d)] where a 2P wake pattern is observed with

double-wake structure, and for κ = 6.7 and α = 2◦ [Figs. 3(e)

and 3(f)] where a neutral vortex street is observed. Thus the

present results closely match the earlier experimental results

for the pure pitching cases as well.

Quantitative validation of the solver has been obtained for

both pure plunging and pure pitching kinematics by comparing

the aerodynamic loads obtained from the present computations

with the earlier experimental results of Cleaver, Wang, and

Gursul41 and Mackowski and Williamson,42 for pure plunging

and pure pitching, respectively. Cleaver, Wang, and Gursul41

have performed force measurements for a NACA 0012 airfoil

plunging with sinusoidal kinematics with various amplitudes

and frequencies in a water tunnel at Re = 10 000. Please note

that a solver validated at a higher Reynolds number would

be valid in the lower range as well since a higher Re case

requires a better grid resolution to capture the larger gradients.

Figure 4(a) shows the comparison of the time-averaged drag

coefficients for different reduced frequencies (κ) for plunging

amplitude, h = 0.20. The present computational results show
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FIG. 1. (a) Computational domain for the analysis (not to scale), (b) a close-up view of the computational grid around the airfoil. Zoomed view of the mesh

around (c) the leading edge (region “A”) and (d) the trailing edge (region “B”). Grid independence results for (e) Cl and (f) Ct ; legend indicates the number of

points on the airfoil surface.

FIG. 2. A comparison of the vorticity

contours from the present computation

(left) with the dye flow visualization

results obtained by Jones et al.6 (right)

for a plunging airfoil with kinematic

parameters: κh = 0.6, h = 0.2 (top) and

κh = 1.5, h = 0.12 (bottom). [Experi-

mental frames has been reproduced with

permission from Jones et al., “Experi-

mental and computational investigation

of the Knoller-Betz effect,” AIAA J.

36(7), 1240 (1998).]
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FIG. 3. A comparison of the vorticity

contours from the present computation

(left) with the flow visualization results

obtained by Koochesfahani9 using LDV

(right) for a pitching airfoil with kine-

matic parameters: κ = 0.84,α = 4◦ (top),

κ = 3.1, α = 4◦ (middle), and κ = 6.7,

α = 2◦ (bottom). [Experimental frames

has been reproduced with permission

from M. M. Koochesfahani, “Vortical

patterns in the wake of an oscillating air-

foil,” AIAA J. 27, 1200–1205 (1989).

Copyright 1989 American Institute of

Aeronautics and Astronautics, Inc.]

a good agreement with the experimental results. Figure 4(b)

compares the computed thrust coefficients for pure pitching

cases with pitch amplitude 2◦ and 0 ≤ κ ≤ 7 with the experi-

mental results of Mackowski and Williamson.42 It is seen that

the computed coefficients reasonably conform with the exper-

imental results in this case as well. However, small deviation

is noticed at higher κ values for both pitching and plunging

kinematics which could possibly be attributed to the higher

Re (O(104)) used for the above experiments. It should be noted

that in the present study κ is chosen as 2, at which the results

from the present solver match the experimental results well.

After the validation of the unsteady flow solver, the same is

used to explore the flow physics in the concerned parametric

range.

E. Flow-field representation in terms of the Lagrangian
coherent structures

The near-field flow structures become quite complicated

at high flapping amplitudes as the flow-field loses periodicity.

Hence, Lagrangian Coherent Structures (LCSs) are tracked

along with the vorticity contours to capture the intricate vor-

tex interactions in detail. Haller et al.28,43 were the first to

introduce the framework of LCSs into the realm of fluid

dynamics to detect coherent structures which are an essen-

tial part of the unsteady flows. LCSs are defined as finite-time

attracting and repelling material surfaces in the Lagrangian

fluid motion governing the flow or mass transport. They are

also considered as one kind of invariant manifold represent-

ing dynamic transport barriers in the flow. It was proposed

by Haller29 that ridges of the finite-time Lyapunov exponent

(FTLE) can be considered as heuristic indicators of hyper-

bolic (i.e., repelling and attracting types) LCSs. The attracting

material lines are named as unstable manifolds which contain

the information of the past, and the repelling material lines

are termed as stable manifolds which contain the future infor-

mation. Very recently, it has also been used for investigating

the flow past flapping airfoils.44–49 In this paper, the attract-

ing LCSs are computed as the backward FTLE ridges based on

the Cauchy-Green tensor in the vector field using the algorithm

FIG. 4. (a) Validation for plunging: comparison of drag coefficients with the experimental measurements of Cleaver et al.41 for a plunging airfoil with h = 0.2,

Re = 10 000; (b) validation for pitching: comparison of thrust coefficients with the experimental measurements of Mackowski and Williamson42 for a pitching

airfoil with α = 2◦, Re = 12 000.
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developed by Onu et al.50 Using the LCSs, the exact vortex

boundaries as well as the time-dependent separation and reat-

tachment of the leading-edge vortices are studied with high

resolution.

III. DYNAMICAL SIGNATURE OF THE
NEAR-FIELD WAKE

The dynamical signature of various flow-field variables

are investigated in this section. The variables chosen here

include flow-field quantities like instantaneous vorticity and

velocity as well as derived quantities like aerodynamic loads.

We emphasize that the use of classical tools such as Lya-

punov exponent and fractal dimension for the present large

order system could be tedious. They require long time histories

of the concerned field variables (generating long time histo-

ries from a high fidelity N-S-based solver is computationally

expensive) and often work better for low order or analytical

models.51,52 On the other hand, dynamical time series tools

such as those based on the property of recurrence53 are much

more efficient for time data analysis. They do not need very

long time histories unlike the classical tools54,55 and provide

FIG. 5. Comparison of velocity (ux) and vorticity (Ωz) profiles for h = 0.5 (periodic regime). (a) t/T = 11. (b) t/T = 12. (c) t/T = 13. (d) t/T = 14. (e) t/T = 15.

(f) Streamwise velocity profile. (g) Vorticity profile about the Z direction.
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robust quantitative measures to pinpoint the onset of changes

in the respective dynamical states. These tools are employed

in the present study. Note that the use of nonlinear time series

tools is novel in the context of flapping flow-field and provides

a fresh perspective to the investigation.

A. Vorticity contours and instantaneous
flow-field measures

As already mentioned, with increase in the plunge ampli-

tude, qualitatively different wake patterns are observed in the

near-field. Three qualitatively different patterns have been

observed in the present study as the control parameter (h)

changes. The first one is a periodic wake for which the vorticity

contours replicate each other exactly from cycle to cycle. The

second is a quasi-periodic flow in which the wake pattern takes

a marginal detour in consecutive periods giving rise to a large

change after a few cycles which eventually returns to the neigh-

borhood of the initial topology again but never exactly to the

same position. The third is completely aperiodic or chaotic

flow where there is no correlation in the flow topology between

any two consecutive cycles. The flow-field behavior during

periodic, quasi-periodic, and chaotic dynamics has been pre-

sented for 5 typical consecutive cycles (t/T = 11–t/T = 15) in

order to observe the changes from one cycle to another with-

out loss of generality. This is to monitor if the changes are

minute or significant from one cycle to the next over a finite

number of cycles. Though presented for 5 cycles only, it is

FIG. 6. Comparison of velocity (ux) and vorticity (Ωz) profiles for h = 0.85 (quasi-periodic regime). (a) t/T = 11. (b) t/T = 12. (c) t/T = 13. (d) t/T = 14. (e)

t/T = 15. (f) Streamwise velocity profile. (g) Vorticity profile about the Z direction.
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to be noted that the simulations were carried out for about 75

periodic cycles for every parameter value, in order to confirm

if the transient state has passed and the flow-field reflects the

actual system dynamics. Even after a sufficiently long period

of time, no change in the vortex interaction mechanisms in

the near-field for periodic as well as quasi-periodic regimes

is observed. In the quasi-periodic regime, the vortex cores are

seen to be shifted slowly from one cycle to other until they

occupy a very different space far from their initial position and

thereafter again coming back to the proximity of their previous

position in the subsequent cycles. In the chaotic regime, the

flow-field is seen to be completely unpredictable from cycle to

cycle; hence, no similarity was found in the vortex interactions

in the entire simulation period.

The periodic flow-field is presented in Figs. 5(a)–5(e) for

h = 0.5 in terms of the vorticity contours for five consec-

utive cycles and they are seen to be identical. The interac-

tions between LEVs and TEVs are periodic and are mirror

images in two consecutive half cycles; a reverse von Kármán

wake pattern (periodic) is observed in the trailing wake. The

vortex interaction mechanisms behind the periodic behavior

will be discussed in detail later in the paper. The stream-

wise velocity (ux) and the vorticity (Ωz) profiles (at a fixed

vertical plane intersecting the core of the primary anti-clock-

wise vortex in the near-field) are shown for 11th–15th cycles

in Figs. 5(f) and 5(g), respectively. As expected, the ux and

the Ωz profiles remain identical for different cycles con-

forming to the periodic signature of the flow. The flow-field

remains periodic up to h ≤ 0.8; however, the wake under-

goes a deflection beyond h ≥ 0.7, thus loosing its spatial

symmetry.

For h > 0.8, the flow-field looses its periodicity and

changes qualitatively. The wake patterns for h = 0.85 are pre-

sented in Figs. 6(a)–6(e) in terms of the vorticity contours for

five consecutive cycles (11th–15th cycles). The periodicity

of the flow-field is lost due to a gradual time delay (phase-

shifting) in the behavior of the main leading-edge structures

that affect the LEV-TEV interactions. Comparing the flow-

fields at the same phase of five consecutive cycles, it is seen

that the position of the vortex cores shifts a little from cycle

to cycle but it stays in the neighborhood. The ux and Ωz pro-

files have been plotted for the 11th–15th cycles in Figs. 6(f)

and 6(g), respectively. Unlike the periodic case, they do not

coincide with each other but deviate in small margins from

one cycle to another being in the neighborhood, which is a

signature of quasi-periodicity. To appreciate this better, the

near-field vortex structures of the 12th–15th cycles are com-

pared one by one with that of the 11th cycle in Figs. 7(a)–7(d).

This also suggests by what measure the flow-field in the con-

secutive cycles deviates from the starting cycle (11th) and if

the flow-field shows any tendency to come back to it. It is evi-

dent from these comparative frames that the vortex structures

remain in the neighborhood in consecutive time-cycles but

they do not come back exactly to the earlier position. This con-

firms a deviation from periodicity and marks the quasi-periodic

state.

FIG. 7. Comparison of near-field vor-

tex structures in the quasi-periodic

regime at h = 0.85. (a) 11th VS 12th

cycle. (b) 11th VS 13th cycle. (c) 11th

VS 14th cycle. (d) 11th VS 15th cycle.
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FIG. 8. Comparison of velocity (ux) and vorticity (Ωz) profiles for h = 1.25 (chaotic regime). (a) t/T = 11. (b) t/T = 12. (c) t/T = 13. (d) t/T = 14. (e) t/T = 15.

(f) Stream-wise velocity profile. (g) Vorticity profile about the Z direction.

As the amplitude is increased further to h = 1.25, the

flow-field becomes chaotic. The flow patterns, presented in

Figs. 8(a)–8(e) for five consecutive cycles, show that there is

no similarity in the vortex structures between any two cycles

(consecutive or otherwise). Very complex vortex interactions

are seen in the flow-field and it is completely unpredictable.

There is no correlation between the vortex structures in dif-

ferent cycles which is confirmed by the streamwise velocity

and the vorticity profiles presented in Figs. 8(f) and 8(g),

respectively.

So far, the categorization of the near-field flow dynamics

into three distinct flow patterns (periodic, quasi-periodic, and

chaotic) has been done based on the qualitative flow patterns

and the instantaneous flow-field measures such as velocity and

vorticity profiles. In the rest of this section, the phase averaged

vorticity contours and the correlation of the vorticity fields

are used; and subsequently, in Sec. III D, robust time series

tools from dynamical systems theory are used to establish the

changes in the flow-field conclusively.

B. Phase averaged vorticity contours

Averaging of the vorticity snapshots over the same time

interval results in a crisp image in the periodic regime since

the wake pattern repeats itself exactly in every cycle. On the

contrary, it produces a blurry pattern when there is no cor-

relation in the flow-field during chaos.14 The phase averaged

vorticity contours are presented for different h values in Fig. 9.

Figure 9(a) shows a crisp pattern indicating a periodic flow-

field at h = 0.5, while a blurred pattern is seen in Fig. 9(c)

indicating a chaotic flow-field at h = 1.25. The phase averaged

vorticity contour for h = 0.85, as seen in Fig. 9(b), is neither
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FIG. 9. Comparison of phase averaged

vorticity contours. (a) h = 0.5. (b) h =

0.85. (c) h = 1.25.

as crisp as the periodic case nor as blurred as the chaotic case.

It corresponds to the transition phase. This can be attributed

to the quasi-periodic dynamics as the flow structures neither

recur in every cycle nor deviate as drastically as the chaotic

regime, but they remain in the neighborhood.

C. Correlation of vorticity field

A quantitative measure of periodicity can be obtained by

computing the correlation of the vorticity field. This is defined

below in Eq. (4) for different time instants (t) with respect

to a reference time (tref). We compute this over the near-field

wake region containing all the primary vortex structures over

a rectangular region of size (9.8c × 14c) behind the airfoil

(symmetrically placed at a distance of 0.2c from the trailing

edge). The region is discretized into n evenly spaced grid points

and the vorticity field is then interpolated on to them. The

correlation coefficient (ρ) of the vorticity field is defined as

follows:

ρ(t) =

∑n
i=1

(

Ωi(t) −Ω(t)
) (

Ωi(tref ) −Ω(tref )
)

√

∑n
i=1

(

Ωi(t) −Ω(t)
)2
√

∑n
i=1

(

Ωi(tref ) −Ω(tref )
)2

.

(4)

In Eq. (4), Ω(t) is the vector containing the vorticity values

at the n grid points at a time instant t and Ω(t) is the spa-

tial average of the vorticity field (Ω(t)) calculated over the

n grid points and thus is a function of time. The correlation

coefficient ρ(t) takes values from ☞1 to 1. When the vortic-

ity field at any t is exactly identical to that of tref, ρ(t) would

become “1.” Similarly, ρ(t) would become “☞1” when the vor-

ticity field is of the same magnitude but of opposite sign; it

would encounter values around “0” when the vorticity field

is strongly dissimilar to that of tref, which indicates no corre-

lation. For quasi-periodic dynamics, the loss of correlation is

manifested through small values but not around “0.” This is in

accordance with the standard meaning of correlation which is

a measure of linear dependence between two quantities. The

time history of ρ(t) for a periodic wake pattern would also

be periodic. Since the vorticity field repeats periodically, the

maximum amplitude of ρ(t) would be close to unity. On the

other hand, it would be close to zero for a chaotic flow-field.

The correlation time history plots for different h are presented

in Fig. 10 considering tref = 20T. Based on the earlier defini-

tion of ρ(t), the periodic, quasi-periodic, and chaotic patterns

are easily recognizable at h = 0.5, h = 0.85, and h = 1.25,

respectively.

D. Dynamical analysis with nonlinear time
series tools

The flow transition can be efficiently analyzed using chaos

theory56 by deriving a finite set of modes or basis to separate

the spatio-temporal description of the flow-field. However, the

use of classical chaos theory to establish the chaotic transition

in the flow-field in an infinite order system or in a large order

system like the one in the present study poses a number of chal-

lenges.52 Besides, an accurate estimate of classical topological

measures like largest Lyapunov exponent or fractal dimension

demands a long time history of the concerned field variable.

Therefore, they are more applicable to the lower order systems.

In the present study, these challenges are bypassed and the

overall dynamics are resolved using the relatively unconven-

tional nonlinear time series tools (in addition to the classical

tools like frequency spectra, phase-space, Poincaré section,

etc.) which are efficient even for short time histories and

robust.

The dynamical evolution of the aerodynamic lift coeffi-

cient (Cl) is used to investigate different attractors present in

the system at different h values. Additionally, the time history

of the streamwise velocity (Ux) is analyzed to establish the

chaotic flow dynamics. Cl and Ux have been chosen to carry

out the time series analyses as they are direct measures from

the flow-field. The time histories of Cl for h = 0.5, 0.85, and

1.25 are presented in Figs. 11(a), 11(d), and 11(g), respectively.

Figure 11(a) shows the constant amplitude regular oscillations

characterizing the periodic dynamics, whereas a modulat-

ing oscillation can be seen in the quasi-periodic dynamics at
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FIG. 10. Comparison of correlation

coefficients of the vorticity fields. (a)

h = 0.5. (b) h = 0.85. (c) h = 1.25.

h = 0.85 [Fig. 11(d)]. Contrastingly, the Cl time history is com-

pletely aperiodic at h = 1.25 [Fig. 11(g)]. It is to be noted that

the high values of Cl generated in the chaotic regime can be

attributed to the high amplitude of oscillations which manifest

stronger dynamic stall vortices.

A phase-space behavior is more informative as attrac-

tors can be better visualized in the phase-space. Since Cl is a

derived quantity from the flow-field, the derivative of Cl can-

not be calculated directly, to use to construct the phase-space.

Hence, time delay reconstruction of pseudo-phase space, based

on Taken’s embedding theorem,57 is carried out from the scalar

time series of Cl to reveal the system attractors. The method

of time delay involves obtaining a series of independent time-

delayed vectors representing the system dynamics from a sin-

gle time series data based on the optimum time delay and the

minimum embedding dimension of the system. The recon-

struction matrix (Y ) can be expressed as Y = [Cl(t) Cl(t + τ)

Cl(t + 2τ) · · · Cl(t + (d ☞ 1)τ)], where τ and d are the optimum

time delay and minimum embedding dimension, respectively.

The optimum time delay is determined using the method of

mutual information58 by calculating the average mutual infor-

mation between the original and the time delayed vectors.

The minimum embedding dimension is computed using the

method of false neighborhood59 by checking whether the dis-

tance between two points in the phase space is invariant with

increasing dimension. The reconstructed phase portraits for

Cl at h = 0.5, 0.85, and 1.25 are presented in Figs. 11(b),

11(e), and 11(h), respectively. It is to be noted that an embed-

ding dimension of 5 was required for an accurate reconstruc-

tion of the phase space. However, it is projected on to a

three-dimensional space for the sake of visualization. The

phase portrait at h = 0.5 represents a closed attractor character-

izing the periodic nature of the flapping motion. However, it

takes the shape of a dense toroidal structure at h = 0.85, which

is characteristic of quasi-periodic dynamics. Finally, a chaotic

attractor is observed at h = 1.25 where the phase space is com-

pletely filled by the trajectories. To support this argument, the

Cl ☞Cd phase portraits are also presented for h = 0.5, 0.85, and

1.25 in Figs. 11(c), 11(f), and 11(i), respectively, reflecting the

same dynamics. The frequency spectra of the Cl time history

are presented in Fig. 11( j). One can see that only one domi-

nant frequency is present along with its super harmonics in the

periodic regime at h = 0.5. Whereas, multiple non-harmonic

peaks are seen at h = 0.85 depicting the quasi-periodic nature

of the oscillation. Finally at h = 1.25, the frequency spectra

becomes completely broad banded with a wide range of fre-

quencies along with the forcing frequency which is indicative

of a chaotic dynamics. Ux shows the same transition route. The

existence of the chaotic attractor is also confirmed through the

time series analysis of Ux in Figs. 12(a)–12(d). Note that the

phase space [Fig. 12(c)] and the stroboscopic Poincaré section

[Fig. 12(d)] do not represent a well-developed strange attrac-

tor; however, the short time history as well as the projected

visualization of the phase-space onto a lower dimensional

space might be the underlying reason.

These three qualitatively distinct regimes can be further

distinguished conclusively through the visual representation

of recurrence plots (RPs).53,60 RPs can reveal the dynamical

changes of any system even for a relatively short time series

data which makes it useful for studies where large time signals
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FIG. 11. Nonlinear time series analysis of lift co-efficient (Cl). (a) Time history of Cl at h = 0.5. (b) Phase space of Cl at h = 0.5. (c) Cl ☞ Cd phase plot at

h = 0.5. (d) Time history of Cl at h = 0.85. (e) Phase space of Cl at h = 0.85. (f) Cl ☞ Cd phase plot at h = 0.85. (g) Time history of Cl at h = 1.25. (h) Phase

space of Cl at h = 1.25. (i) Cl ☞ Cd phase plot at h = 1.25. (j) Frequency spectra of Cl .

are expensive to generate like the present one. Furthermore,

any slight modulations in frequency and phase can be easily

detected visually in contrast to conventional spectral analy-

sis.61 Recurrence plots (RPs) are constructed from a binary

recurrence matrix, Ri ,j = Θ(ǫ ☞ | |xi ☞ xj | |), i, j = 1, 2, 3, . . ., N,

for a phase space with N points. Here, xi is a point in the “d”

dimensional phase space, Θ is the Heaviside step function, ǫ

is a predefined threshold, and | |·| | indicates the L2 norm. The
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FIG. 12. Nonlinear time series analy-

sis of streamwise velocity (ux). (a) Time

history of ux . (b) Frequency spectra of

ux . (c) Reconstructed phase space of ux .

(d) Poincaré section of ux .

graphical representation of RPs is sensible to the threshold

ǫ ; an optimal value of ǫ needs to be chosen to represent the

accurate dynamics. In our calculation, ǫ is chosen to be at 10%

of the diameter of the reconstructed phase space. The diam-

eter refers to the distance between the two farthest points in

the phase space. Ri ,j is considered to be zero if the distance

between the two points xi and xj in the phase space is greater

than ǫ , else it is equal to unity. The recurrence plot contains

black and white points corresponding to ones and zeros of the

recurrence matrix, respectively. The recurrence plots for the

time histories of Cl corresponding to h = 0.5, 0.85, and 1.25

are plotted in Figs. 13(a)–13(c), respectively. Equally spaced

diagonal lines parallel to the main diagonal in the RP reflect the

periodic dynamics at h = 0.5; see Fig. 13(a). On the other hand,

the unequally spaced discontinuous diagonal lines parallel to

the main diagonal in RP clearly distinguish the quasi-periodic

dynamics from the periodic one at h = 0.085; see Fig. 13(b).

The chaotic dynamics at h = 1.25 are characterized by very

short broken lines and isolated dots in RP as can be seen in

Fig. 13(c).

We have established the dynamical states through conclu-

sive quantitative tests using the time series information of a

flow-field quantity, Ux, as well as the aerodynamic load which

is derived from the flow-field. Thus, a quasi-periodic route to

chaos is identified and established in the unsteady flow-field

using tools from the dynamical systems theory. In Sec. IV, we

FIG. 13. Comparison of recurrence plots of Cl . (a) h = 0.5. (b) h = 0.85. (c) h = 1.25.
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focus on the details of the unsteady flow-field and investigate

the underlying vortex interaction mechanisms that lead to the

dynamical transition.

IV. UNDERLYING VORTICITY DYNAMICS BEHIND
THE TRANSITION

The qualitative changes in the dynamics of the wake are an

outcome of diverse interactions among the main vortex struc-

tures. To the best of our knowledge, a detailed investigation of

these interactions and their role behind the transition to ape-

riodicity in a flapping flow-field has not been reported in the

existing literature.

In 2D, the interactions between two isolated vortices could

be quite varied depending on whether they are of the same

or opposite signs.27 Their comparative strengths also play a

crucial role. Here, two isolated vortices of opposite sense of

rotation are called a couple and of same sense are called a

pair. As any couple moves under its self-induced velocity

field, a rectilinear translation motion is followed if both the

counterparts are equally strong, and a rotational motion is

observed if the counterparts have unequal strengths. In the

latter case, the rotation takes place in the direction of the

stronger vortex. On the other hand, two co-rotating vortices

interact irreversibly through vortex pairing process and merge

into a unique larger vortex structure. When their strengths are

unequal, the weaker one gets merged partially with the stronger

one. A detailed discussion on the behavior of counter-rotating

and co-rotating vortices has been given by Leweke et al.26

There exist a number of fundamental vortex interaction mech-

anisms in 2D which are relevant to the present case. They are

outlined in the following and will be identified in the flap-

ping flow-field as it transits through the different dynamical

states.

• Partial and complete merging

Two co-rotating vortices of unequal strengths may

undergo a partial merging upon collision. In this process,

the weaker vortex is deformed and strained by the stronger

one and partially merge with it. On the contrary, when two

co-rotating vortices of equal or near-equal strengths collide,

complete merging may happen to form a single stronger

structure.26

• Vortex splitting and shredding

Additionally, splitting, shredding, or fission of vortices

are also commonly observed. A single vortex can be split into

multiple small vortices by the influence of nearby opposite

sense vortices. This is known as vortex splitting.62 In vortex

shredding, systematic deformation and eventual shredding of

a vortex takes place by which it can disappear in the presence

of a stronger opposite sense vortex.63

• Collisions of vortex couples and exchange

of partners

Collisions between two vortex couples may take place

elastically or inelastically. In elastic collisions, the cou-

ples either undergo a head-on collision or collide symmet-

rically with respect to the bisector of the angle at which the

trajectories of the two couples’ axes intersect.27 Elastic col-

lision results in partner exchange and two different couples

result from this process. On the contrary, inelastic collisions

are the non-symmetrical collisions and are often associated

with a vortex merging or splitting phenomena. Inelastic col-

lision of two couples having non-uniform strengths gives a

vortex couple and two isolated vortices. Two couples may also

collide over an isolated vortex in which the isolated vortex gets

trapped between the couples and becomes part of one of them.

Subsequently, an inelastic collision process may take place

between the couples.

We identify these interactions in the context of periodic,

quasi-periodic, and chaotic states in Subsections IV A–IV C

and investigate on their role in making the flow-field periodic to

aperiodic. Snapshots of the 2D unsteady field are presented in

terms of the backward finite time Lyapunov exponent (FTLE)

ridges28,43 along with the corresponding vorticity contours.

A. Periodic regime

In the periodic regime (h = 0.5), two isolated vortices

having opposite sense of rotation appear in the wake peri-

odically after each cycle in an organized manner and form a

reverse Kármán vortex street. The near-field vorticity contours

and the corresponding backward FTLE contours are presented

sequentially in Figs. 14(a)–14(n) during the upstroke of a

typical periodic cycle chosen for investigation (11th cycle)

for h = 0.5.

At the start of the up-stroke [Fig. 14(a)], two clock-

wise vortices “2” and “3” along with a comparatively weaker

counter clock-wise vortex “1” (generated as a secondary vor-

tex structure from the upper surface) are seen in the near-field.

They were formed during the previous half-cycle (down-

stroke) of the flapping motion. As the airfoil proceeds in

its upstroke, vortices “1” and “2” form a couple of unequal

strengths which traverses into a clock-wise circular arc due

to its self-induced velocity dominated by the stronger “2”

[Figs. 14(b) and 14(c)]. As the couple comes near “3,” partial

merging takes place between “2” and “3” resulting in a merged

vortex “5” [Fig. 14(m)]. During the merging process, vortex

shredding happens to “1” under the influence of the stronger

counterpart “2.” “5” would eventually advect towards down-

stream in the next half cycle. A LEV “4” [Fig. 14(b)] forms

and grows [Figs. 14(c)–14(g)] during the up-stroke. At the end

of the up-stroke, it gets shed at the trailing edge along with

a secondary structure “6” and a trailing edge structure “7”

[Fig. 14(m)]. The vortices “6,” “4,” and “7” undergo exactly

similar interactions as that of “1,” “2,” and “3,” respectively,

in the next half-cycle and an isolated vortex similar but with

a sense opposite to “5” is formed. This chain of vortex inter-

actions is repeated periodically with the up- and down-stroke

patterns being mirror images of each other. Overall, one iso-

lated vortex is shed at the end of each stroke (half-cycle), and

at the end of one full cycle, two vortices of opposite senses

emerge. These two form the fundamental building block of an

array of vortices with a counter clock-wise vortex above and a

clock-wise vortex below the mean line, respectively, resulting

in a periodic reverse Kármán street [Fig. 14(o)].

As the plunge amplitude is increased to h = 0.7, the spa-

tial symmetry of the wake is broken although the temporal
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FIG. 14. Periodic regime: [(a)–(n)] The near-field vorticity dynamics (up-stroke of 11th cycle) and (o) symmetric reverse Kármán vortex street in the periodic

regime at h = 0.5. (a) Vorticity contour at t/T = 10.00. (b) Vorticity contour at t/T = 10.10. (c) Vorticity contour at t/T = 10.20. (d) Backward FTLE at t/T = 10.00.

(e) Backward FTLE at t/T = 10.10. (f) Backward FTLE at t/T = 10.20. (g) Vorticity contour at t/T = 10.25. (h) Vorticity contour at t/T = 10.33. (i) Vorticity

contour at t/T = 10.40. (j) Backward FTLE at t/T = 10.25. (k) Backward FTLE at t/T = 10.33. (l) Backward FTLE at t/T = 10.40. (m) Vorticity contour at

t/T = 10.50. (n) Backward FTLE at t/T = 10.50. (o) Far-field wake at t/T = 60.

periodic behavior is retained. The chain of events of vortex

interactions are similar to the h = 0.5 case; for the chosen

starting condition here, a downward deflected mode is

observed which remains unchanged with time. With further

increase in the plunge amplitude, at h = 0.8, the downward

deflected vortex street becomes unstable at around t/T = 15

and a mode-switching in the vortex street is observed in the

far-field after which the wake stabilizes in an upward deflected
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FIG. 15. Quasi-periodic regime: The near-field vorticity dynamics at h = 0.85 (up-stroke of 11th cycle). (a) Vorticity contour at t/T = 10.00. (b) Backward FTLE

contour at t/T = 10.00. (c) Vorticity contour at t/T = 10.10. (d) Vorticity contour at t/T = 10.20. (e) Vorticity contour at t/T = 10.25. (f) Backward FTLE contour

at t/T = 10.10. (g) Backward FTLE contour at t/T = 10.20. (h) Backward FTLE contour at t/T = 10.25. (i) Vorticity contour at t/T = 10.33. (j) Vorticity contour

at t/T = 10.40. (k) Vorticity contour at t/T = 10.50. (l) Backward FTLE contour at t/T = 10.33. (m) Backward FTLE contour at t/T = 10.40. (n) Backward FTLE

contour at t/T = 10.50.
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mode. The near-field vortex interactions at h = 0.7 and h = 0.8

remain almost similar to that of h = 0.5 and the periodicity is

still retained.

B. Quasi-periodic regime

As the plunge amplitude is further increased to h = 0.85,

the periodicity of the near-field wake is seen to be lost. The

fundamental vortex mechanisms in this regime are presented

for both the up-stroke and the down-stroke of a typical cycle

(11th cycle) in Figs. 15 and 16, respectively. It is impor-

tant to discuss both the strokes as unlike the periodic regime

(h = 0.5) the vortex interactions during the up- and down-

strokes are not mirror images of each other. In the periodic

regime (h = 0.5), a single isolated vortex emerged in the

trailing-edge wake in every half-cycle (their signs were oppo-

site in the consecutive half-cycles) constructing a periodic

reverse Kármán vortex street. In this second case, one vor-

tex couple having equal strength partners, with downward

or upward self-induced translational velocity (depending on

the starting condition), is seen to emerge after every cycle.

However, there are slight deviations in their strengths as well

as in their time of emergence from one cycle to another. This

FIG. 16. Quasi-periodic regime: The near-field vorticity dynamics at h = 0.85 (down-stroke of 11th cycle). (a) Vorticity contour at t/T = 10.58. (b) Vorticity

contour at t/T = 10.67. (c) Vorticity contour at t/T = 10.75. (d) Backward FTLE contour at t/T = 10.58. (e) Backward FTLE contour at t/T = 10.67. (f) Backward

FTLE contour at t/T = 10.75. (g) Vorticity contour at t/T = 10.83. (h) Vorticity contour at t/T = 10.90. (i) Vorticity contour at t/T = 11.00. (j) Backward FTLE

contour at t/T = 10.83. (k) Backward FTLE contour at t/T = 10.90. (l) Backward FTLE contour at t/T = 11.00.
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FIG. 17. Quasi-periodic regime: Comparison of leading-edge separation

between 11th and 13th cycles.

structure can be considered to be the main building block of

the quasi-periodic wake. The slight difference in the time (in

other words, a phase difference) could be primarily attributed

to a phase lag in the leading edge separation from one cycle to

another. This is one of the main architects behind the loss

of periodicity in the near-field and in turn for making the

wake quasi-periodic. This is discussed in more detail in the

following.

At the beginning of the up-stroke (of the 11th cycle), two

vortex couples “C1” and “C2” along with a growing LEV

“1” are observed in the frame as the primary vortex structures

[Fig. 15(a)]. As the airfoil moves upward, the vortex cou-

ples “C1” and “C2,” formed during the previous cycle, come

closer and interact while convecting downstream. The counter

clock-wise component of “C1” and the clock-wise compo-

nent of “C2” integrate to form a couple “C3” which would

advect with a downward self-induced velocity during the next

half-cycle [Fig. 16(i)]. The weaker counterpart of “C1,”

that was left behind, gets deformed and partially merged

to the clock-wise component of “C3.” Whereas, the weaker

FIG. 18. Quasi-periodic regime: Comparison of LEV-TEV interactions for last quarter of (a) 11th cycle, (b) 12th cycle, (c) 13th cycle, and (d) 14th cycle.
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counterpart of “C2” remains as a small isolated vortex in

the field. At the same time, a counter clock-wise LEV “1”

grows and sheds from the leading edge [Figs. 15(c) and 15(d)].

However, it is seen to reattach itself later at the trailing edge

[Fig. 15( j)]. In the mean time, a weak clock-wise vortex (“2”)

is also formed that convects towards the trailing edge and forms

couple “C4” with reattached “1” having unequal counterparts

[Fig. 15(k)]. Hence by the end of the upstroke, formation of

a strong couple “C3” is initiated which would get completed

in the next half-cycle (down-stroke). Also, couple “C4” gets

formed that would play an active role in the following upstroke

and behave like couple “C1” of the present cycle. TEV “3” is

formed which would also take part in vortex interactions in the

next half-cycle.

The down-stroke looks different from the up-stroke unlike

the periodic case (see Fig. 16). The couple “C4” traverses

a circular path in a counter clock-wise trajectory due to the

influence of its stronger component and eventually comes near

the TEV “3” [Fig. 16(c)]. Subsequently, partial merging takes

place between the counter clock-wise component of “C4” and

“3” [Figs. 16(g)–16(i)]. Formation of “C4” that depends on

LEV “1” and “2” suffers a time delay from one cycle to

another due to a small time delay in the onset of separation

of “1.” This also affects the interactions of “C4” and “3” from

one cycle to another (will be discussed in more detail later in

this subsection). Meanwhile, LEV “4” grows and travels over

the upper surface towards the trailing edge [Fig. 16(g)] and

subsequently forms a couple “C5” with the secondary vortex

structure “5” [Fig. 16(h)]. In the next cycle, “C5” would act

like “C2” (upstroke) and “C4” and “C5” will subsequently

form a couple, the way “C1” and “C2” formed “C3” in the

present cycle. However, the strengths and the trajectories of

“C4” and “C5” are not exactly the same as “C1” and “C2” due

to the mentioned time delay effect. By the end of the present

down-stroke, the formation of “C3” is complete which was

initiated in the upstroke (the fundamental vortex structure of

the quasi-periodic wake). Because of the earlier phase differ-

ences, the fundamental vortex structure would also show slight

deviation from one cycle to another, both in its location and

strength.

While probing further into the small discrepancies

observed between the consecutive cycles, the formation of

“C4” and partial merging of “C4” and “3” are both found to be

delayed from one cycle to another. The delay in this interaction

hinders the formation of the strong couple as discussed above,

which is the fundamental structure of the quasi-periodic wake.

Figure 17 presents the direct comparison of the vortex contours

at same phases during 11th and 13th cycles. The small differ-

ence in the growth and separation of LEV “1” and its partial

merging with “2” is clearly visible that brings in the delay

in the formation of “C4” and its subsequent dynamics in the

flow-field. To see the dynamics of “C4” and “3,” the vorticity

contours of 11th–14th cycles are examined for the last half

of the down-strokes (last quarter of the corresponding cycles)

at the same phases in Fig. 18. Four snapshots at these phase

locations in time have been referred to as frames (1)–(4) in the

figure. The nomenclature of the vortices is consistent with the

previous discussion. In frames (1), “C4” and “3” are seen as

separate entities before the partial merging is initiated. Their

relative positions can be compared between the frames (1) for

four consecutive cycles. Their distance is seen to gradually

increase from the 11th to the 13th cycle that marks the time

lag even before the partial merging starts. In the rest of the

stroke, as the different stages of the merging take place, the

FIG. 19. Chaotic regime: Comparison of leading edge separation in the up-stroke of 11th–13th cycles.
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time delay is evident. During the 11th cycle, “C4” and “3”

come in contact with each other [see Fig. 18(a–2)], and “3”

gets merged partially with the counter clock-wise component

of “C4” [Fig. 18(a–3)] that gets completed at the end of the

down-stroke [Fig. 18(a–4)]. The same chain of events takes

place with a marked time delay at the 12th cycle. A further

time delay or phase lag is observed in the 13th cycle. The

contact location of “C4” and “3” is seen to be visibly altered

in frames (3) [Fig. 18(c–3)] and partial merging between “3”

and “C4” is hindered resulting in a distorted “C4” in frames (4)

[Fig. 18(c–4)]. The scenario is seen to change in the 14th cycle.

This phase lag upsets the periodic nature of the partial

merging phenomenon between “C4” and “3” in the consecu-

tive cycles. The resulting couple cannot occupy the exact same

location as their other cycle counterparts but stays in the neigh-

borhood. They also attain slightly different trajectories having

FIG. 20. Chaotic regime: The near-field vorticity dynamics at h = 1.25 (up-stroke of 11th cycle). (a) Vorticity contour at t/T = 10.10. (b) Vorticity contour at

t/T = 10.20. (c) Vorticity contour at t/T = 10.25. (d) Backward FTLE contour at t/T = 10.10. (e) Backward FTLE contour at t/T = 10.20. (f) Backward FTLE

contour at t/T = 10.25. (g) Vorticity contour at t/T = 10.33. (h) Vorticity contour at t/T = 10.40. (i) Vorticity contour at t/T = 10.50. (j) Backward FTLE contour

at t/T = 10.33. (k) Backward FTLE contour at t/T = 10.40. (l) Backward FTLE contour at t/T = 10.50.
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partners of slightly different strengths. As a result of these, the

formation of the fundamental vortex couple that should happen

due to the collision of “C4” and “C5” is also deviated in the

consecutive cycles, marking a quasi-periodic (QP) behavior of

the wake.

C. Chaotic regime

In the chaotic regime (h = 1.25), the reverse Kármán pat-

tern is completely lost and no regular vortex pattern can be

identified. There is clearly no correlation between the flow

topology in the consecutive cycles and the flow-field is com-

pletely unpredictable in this regime. It is not easy to identify

the exact trigger for chaos; however, the LEV behavior is seen

to be the starting point. Unlike the QP case, its development

and shedding patterns differ significantly from one cycle to

another and the unpredictable leading edge separation plays a

pivotal role in making the wake aperiodic. In order to exam-

ine this closely, the chronology of the LEV formation and

FIG. 21. Chaotic regime: The near-field vorticity dynamics at h = 1.25 (down-stroke of 11th cycle). (a) Vorticity contour at t/T = 10.58. (b) Vorticity contour at

t/T = 10.67. (c) Vorticity contour at t/T = 10.75. (d) Backward FTLE contour at t/T = 10.58. (e) Backward FTLE contour at t/T = 10.67. (f) Backward FTLE

contour at t/T = 10.75. (g) Vorticity contour at t/T = 10.83. (h) Vorticity contour at t/T = 10.90. (i) Vorticity contour at t/T = 11.00. (j) Backward FTLE contour

at t/T = 10.83. (k) Backward FTLE contour at t/T = 10.90. (l) Backward FTLE contour at t/T = 11.00.
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shedding for three consecutive cycles (11th–13th) are pre-

sented in Fig. 19 (during upstrokes). The implication of

leading-edge separation on subsequent vortex interaction

behavior in the near-field is examined next and is presented

for two representative cycles (11th and 12th) in terms of the

vorticity contours and the corresponding Lagrangian coherent

structures in Figs. 20–23. The nomenclature of the vortices is

kept the same in Figs. 19–23.

At the beginning of the upstroke of the 11th cycle, a

counter clock-wise LEV “1” grows and gets shed from the

leading edge. It reattaches at the trailing edge and forms

a couple “C4” with the smaller clock-wise secondary vor-

tex structure “7” [see Figs. 19(1–a)–19(1–e)]. This changes

drastically in the immediate next cycle. In the 12th cycle, the

primary LEV (marked as “12”) sheds from the leading edge

and interacts differently with the already shed clock-wise sec-

ondary structure. As a result, part of the LEV is seen to get

separated and the remaining part reattaches at the trailing edge

with a significant time delay [Figs. 19(2–b) and 19(2–c)].

In addition, a second structure “15” roles up in the leading

edge [frame (d)]. The shedding of “12” takes place from the

trailing edge but as a much distorted structure [frame (e)],

FIG. 22. Chaotic regime: The near-field vorticity dynamics at h = 1.25 (up-stroke of 12th cycle). (a) Vorticity contour at t/T = 11.10. (b) Vorticity contour at

t/T = 11.20. (c) Vorticity contour at t/T = 11.25. (d) Backward FTLE contour at t/T = 11.10. (e) Backward FTLE contour at t/T = 11.20. (f) Backward FTLE

contour at t/T = 11.25. (g) Vorticity contour at t/T = 11.33. (h) Vorticity contour at t/T = 11.40. (i) Vorticity contour at t/T = 11.50. (j) Backward FTLE contour

at t/T = 11.33. (k) Backward FTLE contour at t/T = 11.40. (l) Backward FTLE contour at t/T = 11.50.
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FIG. 23. Chaotic regime: The near-field vorticity dynamics at h = 1.25 (down-stroke of 12th cycle). (a) Vorticity contour at t/T = 11.58. (b) Vorticity contour at

t/T = 11.67. (c) Vorticity contour at t/T = 11.75. (d) Backward FTLE contour at t/T = 11.58. (e) Backward FTLE contour at t/T = 11.67. (f) Backward FTLE

contour at t/T = 11.75. (g) Vorticity contour at t/T = 11.83. (h) Vorticity contour at t/T = 11.90. (i) Vorticity contour at t/T = 12.00. (j) Backward FTLE contour

at t/T = 11.83. (k) Backward FTLE contour at t/T = 11.90. (l) Backward FTLE contour at t/T = 12.00.

compared to Fig. 19(1–e). At the same time, “15” forms a

weak couple “C9” with a small part of the shed LEV at the

trailing edge [Fig. 19(2–e)]. Overall, in this 12th cycle, the

formation of the vortex couple is notably disrupted and a

pattern completely different from the 11th cycle is observed

in the near-field. In the subsequent cycles, the leading edge

separation process becomes even more complicated as is evi-

dent from the rest of the frames of Fig. 19. This cycle-wise

strong difference provides the first trigger to bring chaos in the

wake.

The above discussed discrepancy is propagated in the

down-stream from one cycle to another strongly altering the

subsequent near-field interactions compared to the previous

cycles. It is also characterized by multiple vortex interactions

which do not repeat themselves in consecutive cycles. Unlike

the earlier regimes, in this case the vortex structures translate,

merge, and undergo collisions giving birth to rapidly moving

vortex couples spontaneously. They collide with each other

inelastically forming new couples at any arbitrary location

while freely moving in the wake, and all these activities help
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sustain the aperiodicity. As a result, the near-field lacks any

fundamental structure unlike the periodic and quasi-periodic

regimes.

The effect of aperiodic leading edge separation gradually

propagates to the entire wake. The first step in this process

is the LEV-TEV interactions. As can be seen in Fig. 21,

after getting shed from the trailing edge, “C4” traverses in

a counter clock-wise trajectory during the down-stroke of the

11th cycle. It is seen to come close to another couple “C6” and

collide inelastically with it resulting in a new strong couple

“C7” [Fig. 22(g)]. Contrastingly in the 12th cycle, formation

of the “C4-like” vortex couple at the end of the up-stroke

itself is disrupted. Instead, only a weak couple “C9” is seen

to shed from the trailing edge and large part of LEV “1” is

shed as a separate counter clock-wise entity “14” [Fig. 23(a)],

which eventually undergoes an inelastic collision with “C9”

[Figs. 23(b) and 23(c)]. Finally, “C9” remains as an isolated

vortex “19”; see Fig. 23(g). Hence, any possibility of a subse-

quent formation of “C7-like” strong couple (as was seen in the

11th cycle) is lost. With this, the discrepancy in the LEV sepa-

ration pattern has now propagated to the LEV-TEV interaction

behavior.

Thus initiated, aperiodicity sustains through a series of

rapid irregular interactions that take place among the near-field

vortices one after another in a quick succession. These events

prevent the formation of an organized wake. These interactions

are spontaneous and are completely unpredictable without any

regularity in their sequence of occurrence.

For the sake of illustration, cycle 11 and 12 are chosen

(please refer to Figs. 20–23). At the start of the up-stroke of

FIG. 24. Typical vortex interaction mechanisms observed in the chaotic flow-field. (a) Collision of vortex couples and change of partner. (b) Vortex merging

phenomenon of two co-rotating vortices with equal strengths.
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the 11th cycle, two couples “C1” and “C2” are seen to closely

interact with each other as seen in Fig. 20(a) (recall that for

the quasi-periodic case only a single strong couple was active),

which were formed due to LEV-TEV interactions in the previ-

ous cycle (not shown here). The couple “C1” moves faster and

collides with “C2” due to its higher self-advection velocity.

This is an inelastic collision, in which they are separated into

isolated vortices (“3,” “4” and “5,” “6”) [Fig. 20(c)]. Counter

clock-wise vortices “4” and “6” undergo a complete merging

and form “8” [Figs. 20(g)–20(i)]; “8” is seen to form a couple

“C5” with existing vortex “2” [Fig. 21(a)]. Clockwise “3” and

“5” also undergo a complete merging and eventually form a

single vortex “13” having uniform contribution from each [see

Figs. 21(a)–22(i)]. Note that this process starts in cycle 11 and

extends into cycle 12. Such random interactions and forma-

tions continue to happen in the flow-field; couple “C5” comes

close to existing couple “C3” and together undergo an inelastic

collision with an isolated vortex “10” [Fig. 22(b)] and forms

a new couple “C8” through the partner exchange process.

During this process, the isolated vortex 10 gets deformed and

gets added to the clock-wise component of “C8” [Figs. 22(g)

and 22(h)]. To illustrate further, two important interaction pro-

cesses, the partner exchange between “C3” and “C5” and the

complete merging process between “3” and “5,” are shown in a

step by step manner in Figs. 24(a) and 24(b), respectively. This

gives a glimpse of the myriad fundamental interaction mecha-

nisms that take place in the flow-field during a typical chaotic

cycle which happen in an irregular fashion, thus sustaining

the aperiodic behavior. It is also evident from a comparison of

Figs. 22 and 23 with Figs. 20 and 21 that the vortex interaction

behavior of cycle 12 has no resemblance to the chain of events

of cycle 11.

Thus, the aperiodic trigger that was provided by the

leading-edge separation (and followed by the LEV-TEV inter-

actions) has now propagated downstream and the entire flow-

field has become aperiodic through various vortex interactions.

Chaos is sustained by the generation of fast moving free cou-

ples that undergo inelastic collisions with others which in turn

increases the width of the wake significantly. The exact same

chain of events is never seen to repeat in other cycles, which

makes the flow patterns irregular and unrepeatable. The fun-

damental vortex interactions (defined at the beginning of the

subsection) do remain present in consecutive cycles, but in

different sequences and locations. Although some of the funda-

mental mechanisms, such as vortex merging, vortex shredding,

etc., were also seen to occur in the periodic and quasi-periodic

regimes, they took place either strictly in a periodic manner

or with a slight delay from one cycle to the other. On the

contrary, these interactions become completely erratic in the

chaotic regime.

It should be noted that the results presented here are spe-

cific to the chosen kinematics and profile. However, small

change in the shape of the profile (e.g., small alteration in the

thickness) cannot hinder chaos (based on preliminary numeri-

cal investigations not presented here); the LEV trigger for ape-

riodicity and the fundamental vortex interaction mechanisms

like merging, splitting, shredding, spontaneous generation of

vortex couples, their mutual collisions, etc., that sustain chaos

in the flow-field also remains intact. However, the chaotic

flow-field may look qualitatively different as the fundamental

vortex interactions in the far-field occur in different sequences

and locations. The same is true for slight changes in the kine-

matic parameters, like small phase difference between pitch

and plunge motions.

V. CONCLUSIONS

In the present paper, the flow past a sinusoidally pitching-

plunging airfoil has been investigated. A transition in the flow

pattern from periodic to chaotic has been observed with an

increase in the plunge amplitude (h) or equivalently the ampli-

tude based Strouhal number (StA). The flow topology is seen to

become chaotic through a quasi-periodic route at higher plunge

amplitudes. Three distinct dynamical states, namely, periodic,

quasi-periodic, and chaotic have been conclusively established

qualitatively as well as quantitatively using robust tools from

dynamical systems theory. Thereafter, the underlying vortex

interactions, that take place in the unsteady flow-field that pro-

vide the onset of a quasi-periodic transition and trigger and

sustain chaos in the wake, are investigated. Discrepancy in the

leading-edge separation pattern from one cycle to another is

found to be the main trigger behind the aperiodic transition in

the flow-field. To the best of our knowledge, investigation of

the transitional dynamics in the flapping flow-field by probing

the role of the fundamental vortex interactions has not been

reported earlier in the literature.

The scope of the present analysis is limited to 2D and

it aims to establish the role of fundamental vortex interac-

tions behind the chaotic transition in the high Strouhal number

regime for a 2D flow-field. It can be expected that the present

results for chaos could also be valid in the corresponding

3D field in a broad sense, as the literature15 suggests that

the 3D flow dynamics are able to retain chaos for the high

amplitude and low frequency flapping cases as in the present

study.

Moreover, existence of chaos is not affected by small

changes in the airfoil profile (e.g., slight alteration in thick-

ness) or kinematic parameters (e.g., introduction of small

phase gaps between plunge and pitch). The LEV trigger for

aperiodicity and the fundamental vortex interaction mecha-

nisms (merging, splitting, shredding, spontaneous generation

of vortex couples, their mutual collisions, etc.) that sustain

chaos in the flow-field also remain intact. However, these

small changes in the input conditions do provide additional

disturbances which can be termed as difference in initial

conditions, following the terminology of dynamical systems

theory. Different initial conditions during chaos can result in

very different system outcomes (despite all being chaotic).

In other words, they result in very different looking flow-

fields during chaos where all the fundamental vortex inter-

action mechanisms though are present occur at different space

and time (sequence and location of events become differ-

ent). However, this argument cannot be extended for drastic

changes in the said input conditions. LEV behavior itself

can be drastically different during a large change in air-

foil geometry, kinematic phase angle, or Reynolds number

which demands a detailed study in the concerned parametric

range.
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