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A B S T R A C T

This study describes the retrieval of wheat biophysical variables of leaf chlorophyll (Cab),

leaf area index (LAI), canopy chlorophyll (CCC), and leaf wetness (Cw) from broadband

reflectance data corresponding to IRS LISS-3 (Linear Imaging Self Scanner) sensor by inver-

sion of PROSAIL5B canopy radiative transfer model. Reflectance data of wheat crop, grown

under different treatments, were measured by hand-held spectroradiometer and later inte-

grated to LISS-3 reflectance using its band-wise relative spectral response function. Three

inversion techniques were used and their performance was compared using different sta-

tistical parameters and target diagram. The inversion techniques tried were: a look up table

with best solution (LUT-I), a look up table with mean of best 10% solutions (LUT-II) and an

artificial neural network (ANN). All the techniques could estimate the biophysical variables

by capturing variability in their observed values, though accuracy of estimation varied

among the three techniques. Target diagram clearly depicted the superiority of LUT-II over

the other two approaches indicating that a mean of best 10% solutions is a better strategy

while ANN was worst performer showing highest bias for all the parameters. In all the

three inversion techniques, the general order of retrieval accuracy was LAI > Cab > CCC > Cw.

The range of Cw was very narrow and none of the techniques could estimate variations in

it. In most of the cases, the parameters were underestimated by model inversion. The best

identified LUT-II technique was then applied to retrieve wheat LAI from IRS LISS-3 satellite

image of 5-Feb-2012 in Sheopur district. The comparison with ground observations showed

that the RMSE of LAI retrieval was about 0.56, similar to that observed in ground experi-

mentation. The findings of this study may help in refining the protocol for generating oper-

ational crop biophysical products from IRS LISS-3 or similar sensors.

� 2016 China Agricultural University. Production and hosting by Elsevier B.V. All rights

reserved.

1. Introduction

The distribution of vegetation biochemical and biophysical

variables in both spatial and temporal extent are important

inputs into models quantifying the exchange of energy and

matter between the land surface and the atmosphere,
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developing better yield prediction models and detecting abi-

otic stresses at regional scales. Among various vegetation

parameters, leaf chlorophyll content (Cab) and leaf area index

(LAI) are of foremost significance [1]. Leaf area index can be

used to infer about several ecological processes (e.g., photo-

synthesis, transpiration and evapotranspiration), estimate

net primary production (NPP) of terrestrial ecosystems and

is also used in the biosphere–atmosphere interaction models

in some General Circulation Models [2]. At the same time

monitoring spatial patterns in the biochemical composition

of plant foliage is required for understanding the growth

dynamics of plant communities [3] and serve as bio-

indicators of vegetation stress [4]. The stability, repeatedmea-

surement capability, cost effectiveness and global coverage of

remote sensing techniques has led to its widespread use to

obtain these variables in studies of land surface and atmo-

spheric processes [5,6].

Remote Sensing measurement of plant biophysical param-

eters can broadly be classified into empirical and analytical/-

physical approaches [7,3]. Empirical techniques mostly

depends on linear and non-linear combinations of discrete

spectral reflectance bands i.e. vegetation indices (VIs) which

are used to maximize sensitivity to canopy characteristics

while minimizing sensitivity to other, unrelated phenomena

such as background effects and viewing geometry [3]. Both

approaches have their advantages and disadvantages. The

simplicity and computational efficiency of empirical

approach makes it highly amenable for large-scale remote

sensing applications. However, lack of generality of scale of

application remains a fundamental problem with the VIs

approach for estimating vegetation parameters. As canopy

reflectance results from complex interaction of several inter-

nal and external factors [8] which varies significantly in time

and space and from one crop type to another, relationship

between a single canopy variable and a spectral signature

can hardly be expected to be unique [5]. Further, the anisotro-

pic properties of the surface features makes it more complex

and to vary with different view angles. Hence, spectral reflec-

tance relationships are site, time and crop specific, making

the use of a single relationship for an entire region unfeasible

[9].

On the other hand, the analytical/physically-based models

describe the transfer and interaction of radiation inside the

canopy based on physical laws and thus providing explicit

relation between the biophysical variables and the canopy

reflectance [5]. Therefore, retrieving canopy characteristics

from the inversion of these models is theoretically preferable

to fully exploit the information contained in the reflectance

signal recorded by remote sensing sensors [10]. Knowledge

of the relationship between canopy biophysical characteris-

tics to surface reflectance anisotropy [11,12] provides a strong

scientific basis for the application of these models [13]. How-

ever, this approach is limited by several aspects not only from

the complexity of canopy radiation interaction processes but

also from the inversion techniques [14,15]. Selection of appro-

priate model is often a trade-off between model complexity,

invertibility and computational efficiency [14]. The advance-

ment in modeling through detailed radiation interaction

descriptions offer great potential for improvement but

requires an extensive description of canopy architecture and

high computational efficiency [10]. On the other hand from

the application side, because of the lack of prior information

on the statistical distribution of most land surface attributes,

simple low-dimensional radiative transfer models are often

preferred for operational purposes [10].

Inversion of physics-based radiative transfer models has

grown rapidly in the field of remote sensing of both aquatic

and terrestrial environments [16,17]. Different inversion tech-

niques have been proposed for these models, including

numerical optimization methods [18–20], look-up table (LUT)

approaches [21–23,1,24], artificial neural networks (ANN)

[25,14,26,27], genetic algorithm (GA) [28], Principal Compo-

nent Inversion (PCA) technique [29] and, very recently, sup-

port vector machines (SVM) regression [30–32]. The iterative

optimization approach can directly retrieve biophysical

parameters from observed reflectance without any sort of

prior use of calibration or training data. But this method lags

behind for its expensive computational requirement [19]

making the retrieval of variables unfeasible for large areas.

The LUTand ANNmethods are computationally efficient than

the traditional optimization approach and can be applied on a

per pixel basis of satellite images. Moreover, they can be

applied to the most sophisticated models without any simpli-

fications. Though look up table technique may provide an effi-

cient alternative, the definition of the cost function to be

minimized still remains an open question when the uncer-

tainties and their structure are not very well known [10].

These limitations are sorted out by neural networks which

have been increasingly used for reflectance model inversion

[33,26]. They are very efficient computationally since the

inversion process is not iterative in the application mode.

All of the physically based models share the common limita-

tion of the ill-posed nature of model inversion [34,22];

which is observed with different combinations of canopy

parameters corresponding to almost similar spectra [5].

Lookup table and neural network approaches require a train-

ing database consisting of canopy reflectance spectra

together with the corresponding biophysical variables, and

their performances rely on the training database and the

training process itself.

There is still dearth of ample information on rigorous

comparison of the various inversion methods in terms of

accuracy and stability, computational time and number of

variables obtainable [35,36]. Keeping in mind the problems

of these inversion strategies, a field study followed by a

regional scale study were undertaken to compare of PRO-

SAIL5B model inversion by look up table (LUT) and neural

network approaches to simultaneously derive wheat biophys-

ical parameters of leaf chlorophyll content (Cab), leaf moisture

content (Cw), leaf area index (LAI) and canopy chlorophyll

content (CCC). Inversion approaches were implemented

corresponding to broadband reflectances of IRS LISS-3 (Indian

Remote Sensing Satellite Linear Imaging Self Scanning-3) sen-

sor. Two variants of LUT approach were tried as described

later and performance of all three inversion approaches

was evaluated using ground measured wheat canopy param-

eters at different growth stages. The best method was applied

for the regional scale study. The performance of inversions

was evaluated using statistical measures and target

diagram.
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2. Material and methods

2.1. Study sites and biophysical parameter measurements

A field experiment was conducted in the experimental farm

of Indian Agricultural Research Institute, New Delhi. The cul-

tivar PBW-502 of spring wheat (Triticum aestivum L.) was raised

during the rabi (Nov–Mar) season of 2010–2011 with three

nitrogen treatments viz. 0 (N0), 60 (N60) and 120 (N120) kg ha�1,

each with two replications. The treatments were applied to

achieve a wide range of crop growth and hence crop biophys-

ical parameters on a given date for use in the validation of

PROSAIL-5B model.

Various plant parameter inputs for PROSAIL model were

measured synchronizing with the spectral observations taken

at different growth stages of wheat crop. Leaf area index (LAI)

was measured by taking five observations in each plot using

Plant Canopy Analyser (LI-2000) [37]. Leaf chlorophyll (Cab)

was measured by extracting with DiMethyl SulfOxide (DMSO)

and keeping it in an oven at 65 �C for about 3 h [38] followed

by reading the absorbance at 645 and 663 nm wavelengths

using Spectrophotometer. Plant samples were cut just above

the soil surface followed by separation of leaves andmeasure-

ment of the area of fresh leaves by passing them through leaf

area meter (LI-3100). These leaves were dried at 70 �C to

achieve constant weight and then their dry weight was mea-

sured. Equivalent leaf moisture thickness (Cw), an index of

leaf water content which represents volume of leaf water

per unit leaf area, was calculated as the ratio of difference

in the fresh and dry leaf weights to the leaf area.

This study was further extended to the regional scale for

the wheat growing areas of Sheopur district of Madhya Pra-

desh by using IRS-P6 LISS-3 satellite image of 5th February,

2012 (path:96, row:53). Extensive ground truth of the area

was undertaken synchronous to satellite pass. The LAI mea-

surements were recorded in different wheat fields using

canopy analyser (LI-2000) along with their locations using a

high-sensitivity GPS receiver (Garmin 76CSx). Multiple LAI

were recorded in each of the selected fields to account for

with-in field variability.

2.2. Field bi-directional reflectance measurements

The bi-directional reflectance measurements at different rel-

ative azimuth and view zenith angles were taken using ASDI

(Analytical Spectral Devices Incorporation) FieldSpec-3 hand

held spectroradiometer installed on a portable field goniome-

ter at different growth stages of wheat. The default 25� Field

of View (FOV) of the spectroradiometer was reduced to 10�

using fore-optics provided with the instrument. The reflec-

tance were measured in the spectral range of 350–2500 nm

at eight relative azimuthal angle (relative to the azimuth

angle of sun) i.e. 0�, 45�, 90�, 135�, 180�, 225�/�135�,

270�/�90� and 315�/�45� and at six zenith angles (20�, 30�,

40�, 50� and 60� plus nadir). In principal plane (which is

aligned to sun azimuth), the 0� relative azimuth referred to

the backward scattering direction of light while 180� relative

azimuth referred to the forward scattering direction of light.

The spectroradiometric reflectance measurements at 1 nm

interval were integrated to broadband reflectance

corresponding to the four optical bands of IRS-P6 LISS-3 sen-

sor (B1: 450–650, B2: 550–750, B3: 700–918 and B4: 1500–

1750 nm) by using their respective band-wise relative spectral

response (RSR) curves. These four broadband reflectances

were used as input to the inversion approaches to retrieve

corresponding wheat biophysical parameters.

2.3. The radiative transfer model-PROSAIL

This study employed one of the widely used canopy radiative

transfer model PROSAIL [39] which is a combination of two

models, i.e., the PROSPECTmodel [40] that describes leaf opti-

cal properties and the SAIL model [41] that computes canopy

reflectance. The PROSAIL model considers detailed informa-

tion on leaf optical properties and also accounts for hotspot

effect. The PROSAIL-5B version of model written in IDLTM lan-

guage [42] was used which incorporates PROSPECT-5 and

4SAIL models. The input parameters of PROSAIL-5B and their

units are given in Table 1 [43].

2.4. Validation of PROSAIL

In order to validate the model for a given treatment on a par-

ticular day, required input parameters of leaf, canopy, soil,

view and solar zenith and relative azimuth angles were pro-

vided. The model simulated canopy bi-directional reflectance

between 400 and 2500 nm at 1 nm interval. The model simu-

lated values were validated by comparing themwith observed

values at specific wavelengths (568, 660, 790 and 1634 nm) cor-

responding to the central wavelength of IRS LISS-3 sensor

bands. The validation was done in the principal plane at dif-

ferent view zenith angles (�60�, �50�, �40�, �30�, �20�, 0�, 20�,

30�, 40�, 50�, 60�). The negative view zenith corresponded to

backward scattering direction (i.e. sun behind sensor) and

the positive corresponded to forward scattering direction

(i.e. sensor opposite to sun). The performance of the model

was evaluated by calculating Root Mean Square Error (RMSE)

using the following formula:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðRobs � RsimÞ2

n

s

ð1Þ

where Robs = observed reflectance, Rsim = simulated reflec-

tance, n = number of observations.

In order to compare RMSE across wavelength regions at

various growth stages of crop, it was normalized by the aver-

age of observed reflectance values and thus normalized RMSE

(nRMSE) was calculated as given below:

nRMSE ¼
RMSE

l
ð2Þ

where l = average of observed reflectance values over a wave

band.

2.5. Inversion approaches

In this study, mainly two inversion approaches of look-up-

table (LUT) and artificial neural network (ANN) were used

which are popular among the researchers for biophysical

parameter retrieval.
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2.5.1. The look-up table (LUT) inversion approach

The simplest method of solving of a radiative transfer model

is by the use of a LUT. A LUT potentially overcomes the limi-

tations of the iterative optimization techniques associated

with longer computation time and the risk of converging to

local minima instead of global minima [35,22]. LUT shows less

unexpected behavior when the spectral characteristics of the

targets are not well represented by the modeled spectra [26].

A LUT was built in advance of the actual inversion through

forward running of model PROSAIL-5B from a priori knowl-

edge of the variation in crop biophysical parameters. For the

inversion, only search operations are needed to identify the

parameter combinations that yield the best fit between mea-

sured and LUT spectra. However, to achieve high accuracy for

the estimated parameters, the dimension of the LUT must be

sufficiently large [22,44,21]. The ranges of free variables were

defined by a priori knowledge from the field observations

recorded during the experiment and as reported in literature.

A program in IDLTM language was written to generate the LUT

corresponding to fixed and range of free PROSAIL input

parameters (Table 1). For generation of LUT, only three free

variables of chlorophyll content (Cab), leaf area index (LAI)

and equivalent leaf moisture thickness (Cw) were varied.

Chlorophyll was varied from 20 to 80 lg cm�2 at an interval

of 1 lg cm�2, LAI from 0.1 to 6.0 at an interval of 0.2 and Cw

from 0.01 to 0.04 cm at an interval of 0.001 cm. Their combi-

nation resulted in a total of 54,000 cases. For each of these

54,000 cases, PROSAIL-5B simulated spectra was generated

and integrated to four band reflectance corresponding to IRS

LISS-3. The observed canopy reflectance spectra by spectrora-

diometer were also integrated into corresponding four IRS

LISS-3 broad band reflectance. Thus, the LUT contained

54,000 parameter combinations and corresponding four band

reflectance.

For getting the solution to the inverse problem for mea-

sured canopy reflectance, a cost/merit function was mini-

mized for each simulated broadband reflectance of the LUT.

In this study, relative mean square error (rMSE) was used as

a cost function which was calculated as:

rMSE ¼
X

n

i¼1

ðRobs � RlutÞ
2

Robs
ð3Þ

where Robs = observed reflectance at specific wavelength band

i, Rlut = simulated reflectance in the LUT at that wavelength

band, n = number of wavelength bands.

Here two types of methods (i.e. variants of LUT) were

selected for getting the solution of the inversion problem.

First one was what is generally practiced; here the solution

is regarded as the set of input parameters corresponding to

the observed reflectance in the LUT that provides the mini-

mum rMSE and it is referred here as LUT-I inversion

approach. But this solution is not always unique because dif-

ferent set of input parameters can many times yields similar

reflectance which is called ill-posed problem [25,34]. To solve

this difficulty and increase the consistency of the retrieved

biophysical variables, final solution was chosen as the mean

value of parameters corresponding to the best 100, 500, 1000

and 10% (i.e. 5400) solutions (i.e. having smallest sorted rMSE)

and here it is referred as LUT-II inversion approach.

2.5.2. Artificial neural network (ANN) inversion approach

In this study a feed-forward back propagation neural network

with three layers (input, hidden and output layer) was used.

LISS-3 band reflectances were used as input layer and output

layer corresponded to crop biophysical parameters of Cab, Cw

and LAI. The LUT of simulated values generated earlier with

54,000 cases was used for ANN training and validation. About

70% of the LUT entries were used for training i.e. adjusting of

weights and rest 30% were used for validation. After completion

of the training process, the sought biophysical parameters were

calculated with the validation datasets. The validation was

characterized on the basis of correlation coefficient (r) and

MSE (Mean Square Error value) to evaluate the performance of

training. Neural Network toolbox available inMATLABTM (version

7.10) software was used to implement this inversion approach.

2.6. Comparison of inversion techniques

The biophysical parameters retrieved simultaneously were

Cab, Cw, LAI and CCC. The CCC was calculated as a product

of Cab and LAI. These retrieved parameters were compared

with the measured values to check the performance of the

inversion methods. Statistics of correlation coefficient

Table 1 – Input parameters of PROSAIL-5B model used to generate LUT for wheat at three different days after sowing (DAS).

Parameter Abbreviation Unit Range of values Fixed values

Leaf chlorophyll content Cab lg cm�2 20–80
Carotenoid content Car lg cm�2 – 1.0
Brown pigment content Cbrown Arbitrary units – 0.05
Equivalent water thickness Cw cm 0.01–0.04
Dry matter content Cm g cm�2 – 0.0046
Leaf structure coefficient N No dimension – 1.0
Leaf area index LAI m2 m�2 0.1–6.0
Average leaf angle angl Degree 70, 57, 45
Soil coefficient psoil No dimension – 0.1
Fraction of diffuse incoming solar radiation skyl No dimension – 0.1
Hot-spot size parameter hspot m m�1 0.78, 0.40, 0.32
Hot-spot flag Ihot No dimension – 1 (use hot spot)
Solar zenith angle tts Degree 51, 45, 33
Sensor/view zenith angle tto Degree – 0
Relative azimuth psi Degree – 0
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(Pearson’s r), Root Mean Square Error (RMSE) and normalized

RMSE (nRMSE) between measured and inverted values were

employed for comparison. Besides, Target diagram [45] was

also used to evaluate the performance of the three inversion

techniques. Target diagram gives information about pattern

statistics (that is linear correlation coefficient and variance

comparisons) and the bias of the reference and the simulated

field.

2.7. Analysis of satellite data

The IRS-P6 LISS-3 image was pre-processed for geometric cor-

rections using ground control points collected from Survey of

India maps. The image digital numbers were converted to

radiance values using band-wise gain and offset values pro-

vided in the image header and then converted to reflectance

by employing FLAASH (Fast Line-of-sight Atmospheric Analy-

sis of Spectral Hypercubes) atmospheric correction model.

Using ground truth, the study area was classified by maxi-

mum likelihood classifier and pixels other than wheat crop

were masked out. The best performing inversion technique

was applied to each wheat pixel using its reflectance in four

bands. The retrieved LAI of wheat pixels were compared with

the ground observed values.

3. Results and discussion

3.1. Validation of PROSAIL model

The performance of the model was judged in the principal

plane across all the view zenith angles because here surface

reflectance anisotropy is more sensitive to canopy biophysical

characteristics [11]. Fig. 1 shows the comparison of model

simulated reflectance with observed values at four wave-

lengths (568, 660, 790, and 1634 nm) in the principal plane

(for �60� to +60� view zenith) for N0 and N120 on 68 days after

sowing (DAS). In terms of reflectance magnitude, the perfor-

mance of the model showed reasonably good match in both

the treatments. In both N0 and N120 treatments, the model

underestimated reflectance in backward scattering especially

close to hotspot. The magnitude of underestimation was

more in the backward scattering direction particularly at

568 nm. In case of N0, close match was observed at 790 and

1634 nm in comparison to 568 and 660 nm. Andrieu et al.

[46] also observed that the relative difference between mea-

sured and simulated reflectances were lower in NIR than in

the VIS region for sugar beet. It may be because in VIS region,

absorption of radiation dominates while in NIR mostly scat-

tering dominates. So, even small inconsistencies at shorter

wavelengths become relatively large while opposite happens

at longer wavelengths [13].

Model simulations were much better in N120 than in N0 at

all four wavelengths of 568, 660, 790 and 1634 nm as indicated

by lower RMSE values. The model performance significantly

improved at 568 and 660 nm in N120 over N0. This is mainly

due to the fact that in sparse canopies due to higher exposure

of soil, the scattering properties of vegetation and soil com-

bine to form a unique reflectance distribution which may

not be captured in PROSAIL. Moreover, in SAIL model soil is

assumed to be Lambertian reflector [47] though soil shows a

strong anisotropic behavior [48]. SAIL showed high soil reflec-

tance sensitivity in RED and NIR bandswhen corn canopy was

low [2]. Verhoef and Bach [49] while using GeoSAIL, a variant

of SAIL, also recommended that for a more realistic modeling

of the BRDF of sparse canopies, it will be necessary to incor-

porate the non-Lambertian reflection characteristics of bare

soils into the GeoSAIL model. Observed reflectance showed

a bowl shape with view zenith angle at all the wavelengths

but this shape was very prominent at 790 nm indicating that

off-nadir angles causes increase in reflectance. A close match

was obtained between observed and model simulated reflec-

tance at 790 nm. As this wavelength region is sensitive to LAI

and LAD [39] it indicates that model’s assumptions of canopy

as horizontally homogeneous, where leaves absorb, reflect,

and transmit radiation [41] hold good.

3.2. Inversion of PROSAIL model

The PROSAIL model was inverted using three inversion tech-

niques, viz. LUT-I, LUT-II and ANN. Three plant parameters of

Cab, LAI and Cw were retrieved from the inversion. Then the

fourth parameter of CCC was calculated as a product of Cab

and LAI. In case of LUT-II, instead of one unique solution mul-

tiple solutions were used in parameter retrieval. Correspond-

ing to each observed spectra, the LUTwas sorted on rMSE in

ascending order i.e. lowest to highest. Then best (smallest

rMSE) 100, 500, 1000 and 10% LUT entries were chosen and

mean of parameter corresponding to this set was the final

solution. The ‘‘Best Fit” solution shown in Table 2 refers to

LUT-I approach whereas ‘‘Best 100” to ‘‘Best 10%” are various

solution sets of LUT-II approach. With the increase in number

of best solutions, the estimation accuracy improved as

shown by successively decreasing RMSE and nRMSE values

for all the parameters. The error was lowest for ‘‘Best 10%”

solutions; therefore we have referred it as LUT-II in further

analysis.

The comparisons of observed versus estimated values of

Cab, LAI, Cw and CCC corresponding to LISS-3 measured reflec-

tances by LUT-I, LUT-II and ANN approaches are graphically

shown in Fig. 2 as scatter plot around 1:1 line. The results

showed different levels of accuracy for different biophysical

parameters. In case of Cab, significant correlation coefficient

of 0.87, 0.78 and 0.71 was obtained for ANN, LUT-I and LUT-

II, respectively (Table 2), indicating that all the approaches

could capture the variations in Cab. But the RMSE values for

ANN, LUT-I and LUT-II were 23.27, 18.3 and 9.06, respectively,

which showed a reverse trend to correlation. Both ANN and

LUT-I showed underestimation in Cab retrieval, whereas

LUT-II showed both under and overestimation, equally spread

above and below 1:1 line. The inversion techniques were able

to capture the variations of LAI in a much better way which is

indicated by the high values of correlation coefficient. Similar

to the Cab, the correlation coefficient for LAI and CCC is in the

order of ANN > LUT-I > LUT-II, whereas the RMSE showed

reverse trend i.e. ANN < LUT-I < LUT-II. Correlation coefficient

and RMSE (Root Mean Square Error) are two separate pattern

statistics which explains specific characteristics of the data.

Now it is a situation where we should decide which of the

indicators should be given more emphasis while deciding
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Fig. 1 – Comparison of the observed andmodel simulated reflectance in the principal plane for N0 at (a) 568 nm, (b) 660 nm, (c)

790 nm and (d) 1634 nm and for N120 at (e) 568 nm, (f) 660 nm, (g) 790 nm and (h) 1634 nm, on 68 DAS.
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the best technique of retrieval. To solve these problems of

explaining the different characteristics of the data, scientists

have discovered a new way of explanation i.e. summary

diagram which uses the relationship between some widely

known statistical quantities to make compact diagrams that

summarize multiple aspects of model performance.

Fig. 2 – Comparison of estimated and observed biophysical parameters of (a) Cab, (b) LAI, (c) Cw and (d) CCC, by three inversion

approaches using LISS-3 broadband reflectance.

Table 2 – Comparison of different model inversion techniques for retrieval of wheat biophysical parameters. The values in
bracket are probability values of correlation coefficient (r).

No. of
solutions

Cab (lg cm�2) LAI (m2 m�2) Cw (cm) CCC (g m�2)

r RMSE nRMSE R RMSE nRMSE r RMSE nRMSE r RMSE nRMSE

Best fit
(LUT-I)

0.78 (0.008) 18.3 0.42 0.90 (0.0003) 0.56 0.31 0.17 (0.639) 0.009 0.37 0.89 (0.0004) 0.49 0.60

Best 100 0.83 (0.039) 18.7 0.43 0.94 (0.005) 0.50 0.29 0.16 (0.752) 0.008 0.30 0.93 (0.006) 0.50 0.62
Best 500 0.84 (0.036) 17.0 0.39 0.94 (0.005) 0.49 0.29 0.16 (0.756) 0.007 0.25 0.93 (0.008) 0.48 0.59
Best 1000 0.85 (0.034) 15.6 0.35 0.95 (0.004) 0.48 0.28 0.19 (0.717) 0.006 0.22 0.92 (0.008) 0.46 0.57
Best 10%
(LUT-II)

0.71 (0.021) 9.06 0.20 0.90 (0.0004) 0.47 0.27 0.3 (0.393) 0.005 0.19 0.89 (0.0006) 0.35 0.42

ANN 0.87 (0.0009) 23.27 0.55 0.94 (0.0004) 0.52 0.29 0.74 (0.0.012) 0.005 0.19 0.92 (0.0001) 0.54 0.66
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Here we have used the Target diagram [45]. It provides

summary information about the pattern statistics as well as

the bias thus yielding a broader overview of their respective

contributions to the total RMSD (root-mean-square differ-

ence). In a Target diagram, the centered RMSD is used as

the X-axis and the bias as the Y-axis over a simple Cartesian

coordinate system. The distance between the origin and the

model versus observation statistics is equal to the total RMSD.

The target diagram (Fig. 3) showed that for Cab, LUT-II gave the

best estimates followed by LUT-I and then ANN. The normal-

ized total RMSD was less than 1 for LUT-II. The LAI also

showed similar accuracy for LUT-II, LUT-I and ANN with nor-

malized total RMSD being less than 1 in all the cases. CCC was

retrieved best by the LUT-II, followed by LUT-I but ANN retrie-

vals showed both large bias and large normalized total RMSD.

In case of Cw also LUT-II gave the best retrieval. In case of ANN

and LUT-I, the Cw retrievals were poor due to higher bias and

higher normalized total RMSD, respectively.

In all the inversion approaches, the general order of esti-

mation accuracy was LAI > Cab > CCC > Cw. LAI estimation

accuracy was comparatively better as indicated by signifi-

cantly high r, lower nRMSE values and visual interpretation

of target diagram. It was followed closely by Cab which was

having similar r values but higher nRMSE than LAI estima-

tion. The accuracy of canopy chlorophyll (CCC) estimation

was still lower than that of leaf Cab. All the three approaches

failed to retrieve Cw as indicated by non-significant r values

though nRMSE was lowest among the three parameters.

These results are in conformity with results of Vohland

et al. [50]. They also reported that LAI and Cab were retrieved

with useful accuracies in comparison to other biophysical

variables. The higher accuracy of LAI estimation by all

approaches may be due to the fact that structural variables

(e.g. LAI, LAD) determine the total canopy reflectance of crops

much more significantly than biochemical variables [6]. The

high sensitivity of RED and NIR bands and moderate sensitiv-

ity of GREEN band to changes in LAI [39] may have resulted in

better simulating the reflectance spectra by PROSAIL leading

to relatively accurate inversion.

The relationships between measured and estimated leaf

chlorophyll Cab were poorer than for LAI in all inversion tech-

niques. This result is in line with results of previous studies

[51,1]. It is argued that there is always poor signal propagation

from leaf to canopy scale resulting in poor estimation of leaf

biochemical parameters by canopy reflectance [52]. Moreover,

it is only the VIS band which is sensitive to leaf chlorophyll

Fig. 3 – Target diagram showing the performance of inversion techniques for all the four biophysical parameters.
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variation and this band reflectance has very low dynamic

range due to dominance of absorption. So, there is more

chance of error in PROSAIL simulation of reflectance in VIS

band, leading to poorer estimate of Cab.

A number of studies showed increased robustness and

accuracy when estimates of biochemical variables were inte-

grated at the canopy level (e.g. canopy chlorophyll, Cab � LAI)

rather than at the leaf level [21,50]. It means that leaf scales

results for chlorophyll are generally inferior to those at

canopy level. We have found contradictory results as accuracy

of CCC was poorer to that of Cab, mainly on account of higher

bias (i.e. nRMSE). The r values of CCC estimation were higher

than that of Cab in this study also. The higher nRMSE of CCC

in our case may be because both Cab and LAI were generally

underestimated.

In the case of leaf water content (Cw), all the three inver-

sion approaches failed as indicated by non-significant r val-

ues. On the other hand, the nRMSE in all three inversion

approaches was comparatively low. The poor values of r and

low nRMSE may be because of narrow range of variation in

Fig. 4 – LAI map generated through inversion of PROSAIL5B model by LUT-II approach for IRS LISS-3 image of 5-Feb-2012. The

inset shows zoomed up LAI image of an area.
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observed Cw value as our experimental treatments varied

only in nitrogen content. As all the three approaches esti-

mated near average value of Cw in all cases, it led to low

nRMSE. The study of Jacquemoud and Baret [51] supports

our results though accurate retrievals are also reported by

others [34].

When comparing performance of inversion approaches,

the LUT-II with best 10% solutions outperformed the other

two i.e. LUT-I and ANN, in estimating all the three parame-

ters. The study clearly show that in case of LUT inversion,

the accuracy of parameter retrieval keep on increasing (lower-

ing of nRMSE) with the inclusion of more number of lowest

sorted rMSE solutions. It was seen that for LAI, Cab, CCC and

Cw there was significant decrease in error which may be due

to the fact that the model was underestimating in some

wavebands but when we took best 10% solutions then there

was improvement in the estimated results as compared to

the observed ones. The inclusion of best 10% of LUT cases

produced themost accurate result in this study. Darvishzadeh

et al. [1] reported marginal improvement in accuracy when

they considered first 100 solutions though statistically non-

significant. Some other studies have also considered best

20% of sorted RMSE values as possible solution [22,50].

The ANN approach under performed as compared to LUT

even though ANN training time was considerably large and

processing computation intensive. The ANN showed severe

underestimation in all the parameters. These results are in

conformity with the results reported by Vohland et al. [50].

They also found that ANN performance was poor as com-

pared to numerical optimization and LUT. Their study also

reported underestimation of all canopy variables by ANN.

This may be due to the specific nature of model inversion.

While LUT is a radiometric driven approach which seeks for

the best reflectance correspondence, the ANN minimizes

MSE over the biophysical parameters [15]. ANN also suffered

from another drawback that for new training set it produces

a different result while LUT is consistent in its result.

As the LAI was retrieved with the highest accuracy and

LUT-II proved to be the best inversion technique, the study

was extended to the regional scale retrieval of LAI by LUT-II

method from IRS-P6 LISS-3 satellite data. The Fig. 4 shows

the retrieved LAI map of wheat pixels in Sheopur district of

Madhya Pradesh on 5-Feb-2012. The LAI ranged between

0.55 and 4.5 with majority of the pixels having value around

2.0. The Fig. 5 shows the comparison of the retrieved LAI with

observed values for selected fields. The results show that the

retrieved LAI was underestimated in all the caseswith a RMSE

of 0.56 which is similar to that obtained in field scale retrie-

vals. The regression line fitted between retrieved and

observed LAI was nearly parallel to 1:1 line with highly signif-

icant R2 of 0.87 (p = 0.01). These results indicate highly suc-

cessful retrieval LAI by LUT-II approach from LISS-3

braodband reflectances and the errors were mainly due to

the model simulation.

4. Conclusions

This study evaluated the performance of PROSAIL5B model

with field observations for wheat and followed it up with

model inversion to estimate wheat biophysical parameters

at field scale and regional scale. Among the three inversion

approaches, LUT-II outperformed other two approaches indi-

cating that a set of best solutions is a better strategy than

using only one best solution. On the other hand, change in

results of ANN inversion with each new training set is a major

lacuna of this approach and may be avoided.

All the inversion approaches were consistent in the order

of accuracy of estimation of biophysical parameters, with

order being LAI > Cab > CCC > Cw. So, the deficiencies in the

PROSAIL5B model in simulating the crop reflectance have

greater influence than the uncertainty in the inversion

approaches. There is a strong case for improving the structure

of PROSAIL5B model for better simulation of VIS region reflec-

tance for improving the accuracy of Cab retrievals. Further,

background soil may be treated as an anisotropic reflector

in the model instead of Lambertian reflector to overcome

the underestimations in the retrievals, especially for sparse

canopy. Though in our study, the Cw was retrieved with lowest

accuracy due its narrow range of variation in the dataset, it is

expected that its retrieval accuracies may be better for cano-

pies where a larger range of variations occurs.

The retrieval of LAI from satellite data also showed similar

errors as that of field data inversion. The study shows that

absolute errors in retrievals may be low to moderate though

the relative error in the biophysical parameters may be high.

But it should be considered in the light of the fact that only

four broadband reflectance corresponding to IRS LISS-3 were

used for inversion. So, inversion of PROSAIL5B by LUT-II using

broadband reflectance is a plausible approach for retrieval of

biophysical parameters for a range of applications. The appli-

cability of retrievals may still be high for applications which

rely on relative change in parameters, either across space or

time. The results of this study shall also help fill the knowl-

edge gaps in generating operational biophysical products

using IRS LISS-3 images by space agencies provided complex-

ities arising due to atmospheric noise could be taken care.

Fig. 5 – Comparison of observed and retrieved LAI of wheat

for few sites in Sheopur district.
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