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ABSTRACT

We study the impact of noise on the rate dependent transitions in a noisy bistable oscillator using a thermoacoustic system as an example.
As the parameter—the heater power—is increased in a quasi-steady manner, beyond a critical value, the thermoacoustic system under-
goes a subcritical Hopf bifurcation and exhibits periodic oscillations. We observe that the transition to this oscillatory state is often delayed
when the control parameter is varied as a function of time. However, the presence of inherent noise in the system introduces high variabil-
ity in the characteristics of this critical transition. As a result, if the value of the system variable—the acoustic pressure—approaches the
noise floor before the system crosses the unstable manifold, the effect of rate on the critical transition becomes irrelevant in determining
the transition characteristics, and the system undergoes a noise-induced tipping to limit-cycle oscillations. The presence of noise-induced
tipping makes it difficult to identify the stability regimes in such systems by using stability maps for the corresponding deterministic
system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5088943

Noise is an inherent part of practical systems. When a system is

nonlinear, noise can have nontrivial effects on its dynamics. We study

the effect of inherent noise on dynamic bifurcations in a nonlin-

ear system as a parameter of the system is varied in time. We show

that noise can have varied effects on the dynamic bifurcation in a

system, depending on the initial conditions of the system and the

rate at which the parameter of the system is varied. We use a Rijke

tube to experimentally demonstrate our findings from the theoretical

analysis.

I. INTRODUCTION

Many physical and engineering systems exhibit a sudden
qualitative change in their dynamics to an infinitesimal change in any
of the systemparameters.1Often, one finds that these transitions, also
known as bifurcations, are detrimental and affect the performance
of the system. The analysis of bifurcations in a system of interest is
performed, either through experiments or numerical simulations, to
characterize the different regimes pertaining to various dynamical
states of the system. In bifurcation analysis, the system is generally
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considered to be autonomous. In other words, the time dependent
nature of the systemparameters are often neglected. Such static bifur-
cation studies are conducted by identifying the asymptotic state of
the system for different values of control parameters. Furthermore,
different initial conditions are used to explore the possibility of
multiple stable states of the system. Many real systems are non-
autonomous in nature,2,3 and the dynamic transitions in such systems
are a function of the rate of change of system’s parameters.4 We
can find numerous studies on rate dependent bifurcations using
canonical models of standard bifurcations.5,6 Apart from numerical
investigations, there is a limited number of studies on rate dependent
bifurcations by performing physical experiments.7–12 One major dif-
ference that can be found in rate dependent transitions as compared
to quasi-static transitions is the rate-induced delay in the transition.
This delay in the transition is attributed to the fact that as a result of
the temporal variation of the control parameter, the system continues
to hover around the unstable dynamical state for a finite amount of
time even after the system loses its stability.4 In this paper, we explore
the effect of inherent fluctuations in a system on the rate-induced
delay observed in the dynamic transitions of the system.

The effect of stochastic fluctuations in the dynamic characteris-
tics of non-autonomous systems is of immense practical interest. The
rate-induced delay observed in rate-dependent transitions is found
to be affected or even destroyed in the presence of fluctuations.13

Here, fluctuations in a system could be the result of the noise present
inside or around the system. Alternatively, it could be the result
of the projection of dynamics of the system in its higher dimen-
sions onto the dimension along which the bifurcation is occurring.
Furthermore, the delay observed in transitions depends upon the
rate of change of the control parameter and the initial condition of
the dynamical system.14 This dependency of delay on fluctuations,
rate of change of the control parameter, and the initial conditions
makes it difficult to adopt the stabilitymap constructed using a quasi-
static analysis to understand the stability margins of a system. In
many practical systems, an infinitesimal change in any of the system
parameters leads to catastrophic transitions and a perfect under-
standing of stability regimes is essential for ensuring their proper
performance.

One such physical system where an infinitesimal change in the
system parameter leads to a catastrophic transition is a combustor
system where heat energy is used for producing mechanical or elec-
trical power. Gas turbine engines and rocket engines are examples of
combustor systems. In these systems, a heat source such as a flame is
located in a confinement. One major impediment observed in the
operation of these systems is the sudden onset of large amplitude
pressure oscillations which affect the performance of the system and
at times even lead to the failure of the system. The main reason for
the onset of large amplitude pressure oscillations is a positive cou-
pling between the inherent acoustic fluctuations and the unsteady
heat release rate fluctuations. As the above phenomenon is the result
of the interaction between the acoustic fluctuations and heat release
rate fluctuations, it is known as thermoacoustic instability and the
associated system as a thermoacoustic system.15

In all industrial thermoacoustic systems, the control param-
eter is varied as a function of time in order to meet the varying
demands of power generation. Hence, it is highly pertinent to inves-
tigate the rate dependent transitions in a thermoacoustic system. A

recent study on the effect of rate dependent transitions in thermoa-
coustic systems was performed by Tony et al.8 They found that a
bistable thermoacoustic system will undergo a rate-induced tipping
(R-tipping) when the rate of change of the control parameter is above
a critical threshold for a specific set of initial conditions. Here, tip-
ping refers to the state point crossing the unstablemanifold. Recently,
Bonciolini et al.16 conducted an experimental study to analyze the
rate dependent transitions in a turbulent combustor. They also per-
formed numerical experiments on a surrogate oscillator model and
reported a rate-induced delay in the thermoacoustic systemdepicting
a subcritical Hopf bifurcation in the presence of noise.

However, these studies8,16 do not consider in detail the effect of
initial conditions of the state variable and the control parameter. The
systems considered in the aforementioned studies are bistable sys-
tems, and it is important to understand the influence of the initial
conditions on characteristics of the dynamic bifurcation in such sys-
tems. Moreover, as most physical systems work in the presence of
fluctuations, it is highly essential to investigate the effect of inherent
fluctuations on the dynamics of rate dependent transitions. In this
study, we explore the effect of inherent fluctuations and also the effect
of initial conditions of the state variable on the rate-dependent tran-
sitions in a thermoacoustic system, both by performing physical and
numerical experiments.

We consider a thermoacoutic system which exhibits a transi-
tion from a non-oscillatory to oscillatory state via a subcritical Hopf
bifurcation as we change the system parameters. Here, we use a ther-
moacoustic system known as a Rijke tube, which behaves as a bistable
oscillator under a range of operating conditions.17 A Rijke tube con-
sists of a duct with a heat source located inside. A flow of air is
established inside the duct either through buoyancy driven convec-
tion (for a vertical Rijke tube) or forced convection (for a horizontal
Rijke tube). For the current study, we use a horizontal Rijke tube. The
positive feedback between the inherent acoustic fluctuations of the
duct and the unsteady heat release rate of the heat source can cause
large amplitude pressure oscillations inside the Rijke tube as a result
of thermoacoustic instability.18–22 However, all these studies consid-
ered Rijke tube as an autonomous system, and the effect of temporal
variation of control parameter was not taken into account. In this
paper, we will explore the non-autonomous behavior of a horizontal
Rijke tube.

Section II details the experimental setup, and Sec. III describes
the model. Results and discussions are given in Sec. IV, and the
conclusions are detailed in Sec. V.

II. EXPERIMENTAL SETUP

The Rijke tube used for the present study consists of a horizon-
tal duct of square cross-section with a heat source—an electrically
heated wire mesh—located within the duct. When air flows through
the duct, an acoustic standing wave is established in the Rijke tube if
the heater power is above a critical value. The electrical power used
to heat the wire mesh is provided using a DC power supply (TDK-
Lambda, GEN 8-400, 0-8V, 0-400A). The air flow rate is maintained
with the help of a mass flow controller (Alicat Scientific, MCR Series,
100 SLPM); uncertainty is ±(0.8% of reading + 0.2% of full scale). A
piezoelectric sensor (PCB103B02 with a sensitivity of 223.4mV/kPa
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FIG. 1. Schematic of the horizontal Rijke tube used for the experimental study.
Air flow is introduced into the Rijke tube via a decoupler which ensures that the
inlet fluctuations do not affect the dynamics of the Rijke tube. The other end of
the Rijke tube is open to the atmosphere. This design ensures that both ends of
the Rijke tube remain acoustically open (i.e., the acoustic pressure fluctuation p′

at the boundary is zero).

and an uncertainty of±0.15 Pa) is used to measure the acoustic pres-
sure within the Rijke tube, and the temperature is measured with the
help of a K-type thermocouple (uncertaininty ±0.1 K). A detailed
schematic of the experimental setup is shown in Fig. 1.

The experiments for quasi-static bifurcation was conducted by
varying the parameter (heater power) in a quasi-steadymanner. That
is, for each small change in the value of the parameter, the systemwas
allowed to evolve for 120 s before recording the asymptotic state of the
system corresponding to that parameter.The rate of change between
each step of the quasi-static bifurcation study is 50W/s. However,
since the change in heater power in each step is small and is≈ 10W,
and a 120 s evolution time is provided for the transients to settle, the
average rate of change of power is ≈ 0.1W/s. The dynamic bifurca-
tion (parameter varying at a specific rate) was studied by varying the
heater power as a linear function of time.

III. THE MODEL

We study the dynamic bifurcations in a Rijke tube by analyzing
the characteristics of dynamic bifurcation in a basic system of differ-
ential equations in polar coordinates [Eqs. (1) and (2)] that exhibit
Hopf bifurcation when the control parameter, µ, is varied in time.
Previously, Subramanian et al.23 andEtikyala and Sujith17 showed that
such a system of equations derived from the Stuart-Landau model
can be used to study the dynamics of a Rijke tube close to bifurca-
tion. We have introduced additive noise, η, in the model to mimic
the inherent fluctuations present in a Rijke tube:

ẋ = µx + ax3 − bx5 + η, (1)

θ̇ = 1. (2)

Here, x is the variable representing the amplitude of oscillations in
the Rijke tube. θ̇ is the frequency of oscillations, which is assumed

to be a constant in this case. µ represents the linear decay rate of the
amplitude. In the present case, a = 1 and b = 0.1 were selected arbi-
trarily, and it does not affect the conclusions drawn from the study.
η is the noise present in the system, which in this case is Gaussian
white noise of zero mean and variance 0.001.

For the analysis, we focus on the effect of noise on the variability
in the characteristics of the dynamic bifurcation during a slow pas-
sage across the Hopf point. For simplicity, we assume that only the
fundamental mode of the Rijke tube gets excited as a result of ther-
moacoustic instability. This is a good approximation for the present
system as we observe that only the fundamental mode is excited in
the experiments.

Note that by definition, x is the amplitude of oscillations and is
always greater than or equal to zero. However, the noise η added in
the system can cause it to become negative at some time instants. In
order to circumvent this issue, first we convert the system of Eqs. (1)
and (2) from cylindrical coordinates (x, θ) to Cartesian coordinates
(p, q) using the transformation p = x cos(θ) and q = x sin(θ). Equa-
tions (3) and (4) represent the new system of equations:

ṗ = p

[

µ + a(p2 + q2) − b(p2 + q2)
2
+

η
√

p2 + q2

]

− q, (3)

q̇ = q

[

µ + a(p2 + q2) − b(p2 + q2)
2
+

η
√

p2 + q2

]

− p. (4)

This stochastic differential equation is then solved using the Euler-
Maruyama method. After obtaining the solution in terms of (p, q),
the temporal evolution of x is calculated by using the transformation,

x =
√

p2 + q2. This ensures that x always remains greater than or
equal to zero. Furthermore, note that the terms that contain noise in
Eqs. (3) and (4) are singular for p = q = 0. However, we observe that
this is not an issue for numerically solving the differential equations.
Due to the presence of noise in the system and the computational
noise, the system almost never reaches the state p = q = 0. Further-
more, we ensure that the initial condition of the system is never p =

q = 0. Throughout this paper, the initial condition in θ is always con-
sidered to be equal to zero and initial condition in x is always greater
than zero. The results from the analysis of dynamic bifurcations in
the numerical model are discussed in Sec. IV.

IV. RESULTS

The behavior of a system undergoing a Hopf bifurcation,
described by Eqs. (1) and (2), is depicted in Fig. 2. Dashed and con-
tinuous black lines represent unstable and stable limit cycle for x > 0.
At x = 0, they represent unstable and stable fixed points. Collectively,
we refer to them as unstable and stable manifolds of the system in
the absence of noise. Forµ < 0, the system has a stable fixed point at
x = 0. For µ > 0, the fixed point becomes unstable. In the forward
transition, i.e., quasi-steady variation of µ from negative to positive
value, the appearance of limit cycle oscillations is abrupt. The param-
eter at which the bifurcation happens,µ = 0, is called the Hopf point
or critical point. In backward transition, i.e., quasi-steady variation of
µ from positive to negative value, the system undergoes a fold bifur-
cation atµ = −2.We can see fromFig. 2(a) that the system can either
remain in the state of a stable fixed point or in the state of stable limit
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cycle oscillations for µ ranging from −2 to 0. Thus, there exists a
bistable region from µ = −2 to µ = 0.

Until, we examined the static bifurcation for the bi-stable oscil-
lator. However, in almost all real systems, the parameters vary as a
function of time which necessitates the study of dynamic bifurca-
tions. In order to perform a dynamic bifurcation analysis, we vary
the control parameter µ as

µ = µ0 + µ̇t. (5)

In this study, we consider only linear variation of parameter in time
and hence µ̇ is constant in time. We perform a dynamic bifurcation
analysis by solving Eqs. (1) and (2) where the control parameter µ

varies as per Eq. (5).
In Fig. 2(a), we look at a case where the initial value x, i.e., x0,

is non zero and is equal to 2. This implies that in the phase space
corresponding to the system, the initial state point is a finite distance
away from the fixed point. The initial value of the parameter, µ0, is
chosen to be −5. As time evolves, the system parameter µ is varied
at a fixed rate. In Fig. 2(a), we show the dynamic bifurcation for three
different values of µ̇ represented by the green, red, and blue trajecto-
ries. In all three cases, initially, the system moves towards the fixed
point at x = 0 when the control parameter is sufficiently far away
from the critical value of the control parameter (i.e., µ = 0). As we
approach the Hopf point, the system crosses the unstable manifold
at a parameter which is found to depend upon the value of µ̇. When
starting from the same µ0, for higher value of µ̇, the system reaches
the unstable manifold in lesser time compared to that for a lower
value of µ̇. This implies that for the higher value of µ̇, the stable
manifold attracts the system for shorter duration compared to the
case where the rate of change of the parameter is low. Hence, for the
same initial conditions in the state point, when µ̇ is higher, the sys-
tem crosses the unstable manifold at a higher value of x compared to
a lower value of µ̇. This further implies that as the system crosses the
unstable manifold, it starts to get attracted by the stable limit cycle
branch at a lower value of µ for a higher value of µ̇.

This rate dependency in the loss of stability of the system
causes the dynamic bifurcation to have the particular trend as seen
in Fig. 2(a). The trajectory starts to approach the limit-cycle at lower
parameter values for higher values of µ̇. However, it should be noted
that the different trajectories intersect as they approach the limit cycle
branch. For a different initial condition, there can be a scenariowhere
the trajectories intersect much before they reach the stable limit cycle
branch (not shown here). The observations from Fig. 2(a) suggest
that the temporal variation of µ introduces an R-tipping in the bi-
stable oscillator. For higher rates, the system tips at a lower parameter
value. However, in this case, the initial condition of the system is at a
finite distance away from the fixed point.

Now, we will consider a case where the initial condition of the
system is at/very close to the fixed point x = 0, and the dynamics of
the system is highly affected by the noise in the system. In Fig. 2(b), we
consider the dynamic bifurcation at the same µ̇ values as in Fig. 2(a).
However, here x0 = 0.0001, i.e., very close to the fixed point. In a sys-
tem without noise, if the initial condition is x0 = 0, whenµ is varied,
the system does not exhibit oscillatory behavior for any value of µ,
since the system continues to remain in the fixed point even though
the stability of the fixed point changes forµ > 0. However, in a noisy
system, even though the initial condition is x0 = 0, the system can

FIG. 2. The effect of rate during slow passage through the critical point in a sys-
tem with noise that undergoes a sub-critical Hopf bifurcation: (a) the passage at
three different rates, initial condition: x0 = 2, µ0 = −5 and (b) the passage at
three different rates, initial condition: x0 = 0.0001, µ0 = −5. The rate depen-
dency is lost when the system crosses the unstable manifold very close to stable
fixed points.

exhibit limit cycle oscillations for µ > 0, since the noise perturbs
the system from the unstable fixed point causing it to drift towards the
stable limit cycle. In Fig. 2(b), we can see that the approach to the limit
cycle for trajectories of different rates does not follow a specific trend.
That is, the order in which trajectories approach the limit cycle does
not depend on their respective µ̇.

In order to understand the reason for this, we zoom-in close to
the Hopf point and see how the different trajectories cross the unsta-
ble manifold. The zoomed-in view is given in the inset of Fig. 2(b).
We find that noise determines the manner in which the system
crosses the unstable manifold. Thus, unlike in the case described
in Fig. 2(a), the order in which the different trajectories cross the
unstable manifold is not dependent on their corresponding µ̇ and
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is rather dependent on the individual noise realization for the trajec-
tories.

Furthermore, one can note that even if one trajectory crosses
the unstable manifold before another, the specific realization of noise
can still trap that trajectory close to the unstable fixed point delay-
ing the growth of oscillations in the system. Note that the trajec-
tory corresponding to µ̇ = 6 (red) crosses the unstable manifold
before the trajectory corresponding to µ̇ = 4 (blue). This can be
inferred by observing that the trajectory corresponding to µ̇ = 6
(red) crosses the unstable manifold at a higher value of x compared
to that for the trajectory corresponding to µ̇ = 4 (blue). Among
the two trajectories, if the noise was not present, the trajectory that
crosses the unstable manifold at a higher value of x is the one that
will move towards the stable manifold at a lower value µ. However,
in the presence of noise, this trend is lost. Here, we observe that the
trajectory corresponding to µ̇ = 4 (blue) starts approaching the sta-
ble limit cycle oscillations at a lower value of µ compared to that of
the trajectory corresponding to µ̇ = 6 (red), even though the red
trajectory crosses the unstable manifold at a slightly higher value
of x.

In order to study the variability of the trajectories due to noise,
we explore the transition characteristics for multiple realizations of
the dynamic bifurcation (Fig. 3).We consider two conditions: µ̇ = 6,
x0 = 2, µ0 = −5 (gray curves) and µ̇ = 6, x0 = 0.0001, µ0 = −5
(blue curves). The difference here is in the initial value of the vari-
able x. For each condition, we plotted 100 realizations of transitions
in the same graph.We can see that for both cases, due to noise, there is
a considerable variability in the trajectories along which each realiza-
tion approaches the limit cycle oscillations. However, it is very clear
that the variability is higher for the case for which x0 = 0.0001. This
is due to the fact that the influence of noise in determining the transi-
tion characteristics is significantwhen the trajectory passes very close

FIG. 3. The transition characteristics for multiple realizations (100) of dynamic
bifurcation at the same rate of change of control parameter. We consider two
conditions: µ̇ = 6, x0 = 2, µ0 = −5 (gray curves) and µ̇ = 6, x0 = 0.0001,
µ0 = −5 (blue curves).

to the x = 0.001 line, where the fluctuations introduced due to noise
are comparable to the value of x.

Furthermore, we investigate effects of the rate in the dynamic
bifurcation using experiments. We initially perform quasi-static
bifurcation analysis to understand the stability regimes associated
with the system. The asymptotic value of the acoustic pressure is
noted for each value of the heater power (K). The bifurcation diagram
shown in Fig. 4 (blue dots—forward bifurcation as K is increased
and pink dots—reverse bifurcation as K is reduced) represents the
variation of the acoustic pressure with heater power. We clearly
observe that the transition points to and from the oscillatory state
differ for the forward and backward bifurcation, respectively, which
leads to the presence of a bistable zone. The sudden increase in the
acoustic pressure amplitude along with the presence of the bistable
zone indicates that the transition observed is a subcritical Hopf
bifurcation.

Furthermore, we proceed to understand the effect of variation
of the control parameter as a function of time on the bifurcation in
the system. For this purpose, we conduct an experiment by varying
the heater power as a linear function of time with different rates. We
observe that there is a delay in the bifurcation (i.e., the system reaches
the limit cycle oscillation at a higher value of K) when the param-
eter is varied in time as opposed to quasi-static manner. However,
similar to the observation from the numerical simulations, for indi-
vidual realizations, there is no clear trend observed in this delay vs.
the rate of change of the control parameter, K̇ (Fig. 4) as inferred from
the overlapping of trajectories of different rates each represented by
a different color.

However, interestingly, when we consider an average trajectory
corresponding to each condition, the rate dependent behavior is pre-
served. The average trajectory for a given condition is obtained by
ensemble averagingK for a given value of x across various realizations

FIG. 4. The forward (blue dots) and reverse path (magenta dots) of quasi-static
bifurcation for the Rijke tube is represented in the figure. The different realizations
of dynamic bifurcations when the parameter (K, heater power) is varied as a func-
tion of time are represented by the continuous thin lines. The bold lines represent
the average trajectory for multiple realizations with the same initial condition and

the rate of change of parameter. Red line: K0 = 325W, K̇ = 12.5W/s; black line:

K0 = 325W, K̇ = 5W/s; and green line: K0 = 425W, K̇ = 5W/s. The arrows
of different colors indicate the initial conditions in K (i.e., K0) for trajectories of
corresponding color.

Chaos 29, 031102 (2019); doi: 10.1063/1.5088943 29, 031102-5

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

for the same conditions. The bold colored lines in Fig. 4 represent
average trajectories corresponding to the individual trajectories of
corresponding colors. We find that for the same value ofK0, the aver-
age trajectory corresponding to a lower K̇ approaches the limit cycle
at a lower value of K. Also, for the same value of K̇, the average tra-
jectory corresponding to lower K0 approaches the limit cycle at a
higher value of K. We observe from the numerical study that when
the system is noisy and the initial amplitude of the oscillation is com-
parable with the noise in the system, then the critical transition in the
system as the result of the dynamic bifurcation is mostly dependent
upon the noise in the system but does not show the characteristics
of a rate-dependent tipping. Tony et al.8 discovered preconditioned
rate tipping in a thermoacoustic system. They argued that there will
always be a rate below which the R-tipping will not be present. Our
observation shows that this indeed is true in the case of a noisy bi-
stable oscillator, and we further show that below a critical rate, the
system undergoes a Noise induced tipping (N-tipping) instead of a
R-tipping. N-tipping happens when tipping is controlled by the noise
in the system.We also demonstrate that while individual realizations
undergo a N-tipping, when we consider an average trajectory, the
effect of rate is preserved. We would also like to note that, for every
initial condition, the tipping is influenced by the characteristics of
the noise η and the rate of change of the control parameter (µ̇). For
a given initial condition (x1), for two different values of µ̇ such that
µ̇1 > µ̇2 > µ̇critical, the relative difference in µ at which the trajecto-
ries cross the unstable manifold, δµ, has a probability distribution.
The nature of this distribution is depended on the initial condition
in x, µ, µ̇1 − µ̇2, µ̇1, µ̇critical, and the topology of the unstable mani-
fold. Here, µ̇critical is the critical rate of change of parameter for which
the system approaches the noise floor before crossing the unstable
manifold. A detailed analysis of the tipping characteristics will be
performed in a future study.

Majumdar et al.3 showed that for a transition through a trans-
critical bifurcation point, the delay of exchange of stability is inde-
pendent of the rate of change of control parameter and proportional
to the initial value of the dynamical variable. In contrast, Bonciolini
et al.16 suggested that at a higher rate of the control parameter, there is
an increased delay in the onset of thermoacoustic instability through
subcritical Hopf bifurcation. While this is true when we consider
the average delay in the onset of thermoacoustic instability as shown
by Bonciolini et al.,16 we uncover that the inherent fluctuations in a
physical system can induce high variability in the transition to the
oscillatory state for individual realizations. In such a scenario, we
argue that constructing stability diagrams for such systems is difficult,
as the noise smears the stability boundaries. Thus, for such systems,
there is a need to develop early warning signals to predict transitions
for each realization of a critical transition.

V. CONCLUSION

We have shown that the rate dependency of the onset of oscilla-
tions in a bi-stable oscillator undergoing a sub-critical Hopf bifur-
cation is highly influenced by the initial condition and the noise
in the system. If the system crosses the unstable manifold close
to the stable fixed point such that the noise level is comparable
to the amplitude of the system variable when the system crosses
the unstable manifold, the system undergoes an N-tipping and the

effect of rate in determining the characteristics of the critical tran-
sition is diminished. Using experiments, we show that this indeed
is the case in the dynamic bifurcations observed in a horizontal
Rijke tube. While on the average, systems exhibit a rate depen-
dency as predicted by the models that do not include the inherent
fluctuations in the system, for individual realizations, there is less
predictability of the stability margins. Thus, we argue that in practi-
cal systems that exhibit such dynamic bifurcations, the variability in
dynamic bifurcation as the result of the effect of noise warrants the
need for early warning signals that forewarns the impending critical
transition.
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