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ABSTRACT

An established analytical technique for modeling internal tide generation by barotropic flow over bottom

topography in the ocean is the Green function–based approach. To date, however, for realistic ocean studies

this method has relied on the WKB approximation. In this paper, the complete Green function method,

without the WKB approximation, is developed and tested, and in the process, the accuracy of the WKB

approximation for realistic ridge geometries and ocean stratifications is considered. For isolated Gaussian

topography, the complete Green function approach is shown to be accurate via close agreement with the

results of numerical simulations for a wide range of height ratios and criticality; in contrast, the WKB ap-

proach is found to be inaccurate for small height ratios in the subcritical regime and all tall topography that

impinges on the pycnocline. Two ocean systems are studied, the Kaena and Wyville Thomson Ridges, for

which there is again excellent agreement between the complete Green function approach and numerical

simulations, and the WKB approximate solutions have substantial errors. This study concludes that the

complete Green function approach, which is typically only modestly more computationally expensive than

the WKB approach, should be the go-to analytical method to model internal tide generation for realistic

ocean ridge scenarios.

1. Introduction

The generation of baroclinic (internal) tides via baro-

tropic tidal flow over topography is a principal source

of mechanical energy that ultimately drives ocean in-

teriormixing (Munk andWunsch 1998). As such, several

different analytical and numerical models have been

developed to investigate this process (e.g., Bell 1975;

Baines 1982; Holloway and Merrifield 1999; Balmforth

et al. 2002; Zarroug et al. 2010). These models have

contributed significantly to the current understanding of

internal tide generation, and practically they provide

reasonable quantitative estimates of the rate of barotropic-

to-baroclinic tidal conversion for many important

ocean settings.

A popular analytical model of internal tide genera-

tion is a Green function–based approach that was ini-

tially developed to study internal tide scattering by

two-dimensional, knife-edge topography in a uniformly

stratified fluid (Robinson 1969). Llewellyn-Smith and

Young (2002) employedGreen functions to estimate the

barotropic-to-baroclinic conversion rate at weak, three-

dimensional topography in a nonuniformly stratified,

finite-depth ocean in the limit of hydrostatic waves and

subcritical topography, invoking the WKB approxima-

tion, which assumes a vertically varying, local vertical

wavenumber for the internal wave field and requires
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variations in the stratification to occur on significantly

larger scales than the local vertical wavelength. It was

Llewellyn-Smith and Young (2003), however, who di-

rectly extended the approach of Robinson (1969) to

analytically calculate conversion rates for barotropic

tidal flow past a finite-height, two-dimensional, knife-

edge barrier in a finite-depth ocean, again in the limit of

the WKB approximation. Thereafter, Pétrélis et al.

(2006) adapted the approach for finite-height, two-

dimensional topographies of any symmetric shape in a

uniformly stratified, finite-depth ocean. Balmforth and

Peacock (2009) modified the approach for studies of

periodic supercritical topography in a uniformly strat-

ified ocean of infinite depth, and Echeverri and Peacock

(2010) advanced the Green function approach to handle

two-dimensional topographies of arbitrary shape in a

finite-depth ocean of arbitrary stratification, albeit as-

suming the WKB approximation. Most recently, Falahat

et al. (2014) performed global linear computations of

tidal energy conversion by small-amplitude, subcritical

topography without the WKB approximation, com-

paring how the accuracy depends on the topographic

length scale.

In this paper, we further advance the Green function

method to enable the study of internal tide generation

by arbitrary, two-dimensional topography in arbitrary

nonuniform stratifications without the restriction of the

WKB approximation. The analytical method and cor-

responding WKB approximations are presented in

section 2, followed by a brief description of our sup-

porting numerical model in section 3. In section 4, we

consider isolated Gaussian topographies in a non-

uniform stratification and investigate the shortcomings

of WKB-based predictions. We then apply the method

to two realistic scenarios in section 5, considering

transects from two very different ocean ridge systems

with very different background stratifications, again

comparing the results to those of WKB-based predic-

tions. In all cases, our results are validated by com-

parisons with the results of the numerical model

described in section 3. Finally, in section 6, we present

our conclusions.

2. Theory

We define a streamfunction c(x, z, t) so that the as-

sociated velocity field is (u, w)5 (2cz, cx), with x and z

as the horizontal and vertical coordinates, respectively.

The streamfunction of the total wave field is c(x, z, t)5
cb(x, z, t) 1 c0(x, z, t), where cb 5 Re(2Uze2ivt) rep-

resents the background barotropic forcing of velocity

amplitude U, and c0 is the internal wave field generated

by the barotropic forcing. It is assumed that the response

is at the same frequency v as the barotropic tide, that is,

cb5Re[fb(x, z)e
2ivt] and c0(x, z, t)5Re[f0(x, z)e2ivt],

where t is time, fb and f0 are complex amplitudes, and

Re denotes the real part.

The perturbation streamfunction f0(x, z) satisfies the
inviscid linear internal wave equation under the Bous-

sinesq approximation (Balmforth et al. 2002):"
N(z)2 2v2

v2 2 f 2

#
f0
xx 2f0

zz 5 0, (1)

where N(z) is the background stratification, and f is the

constant Coriolis frequency. No normal flow at the

ocean floor topography h(x) and the sea surface (ap-

proximated as a rigid lid) require

f0[x, h(x)]5Uh(x) and f0(x,H)5 0, (2)

where H is the far-field ocean depth. The bottom to-

pography z5 h(x)$ 0 is any continuous function going

smoothly to zero at x52a and x5 b, and z5 0 for x;
[2a, b], corresponding to a flat ocean bottom.

Following the approaches of Robinson (1969), Pétrélis
et al. (2006), Balmforth and Peacock (2009), and Echeverri

and Peacock (2010), we write the solution to (1)–(2) as a

summation over a distribution of sources of strength

g(x0) distributed over the topography, that is,

f0(x, z)5
ðb
2a

g(x0)G[x, x0; z, h(x0)] dx0, (3)

where G(x, x0; z, z0) is the Green function that satisfies

the equation"
N(z)2 2v2

v2 2 f 2

#
G

xx
2G

zz
5 id(x2 x0)d(z2 z0) , (4)

subject to the homogeneous boundary conditions

G(x, x0; 0, z0) 5 G(x, x0; H, z0) 5 0, where d(x) is

the delta function. Based on a standard procedure

(Robinson 1969; Pétrélis et al. 2006; Echeverri and

Peacock 2010), one can show that the Green function

that satisfies the aforementioned boundary conditions

[plus the radiation condition that requires distur-

bances to propagate away from a source at (x0, z0)] is
given by

G(x, x0; z, z0)5 �
n5‘

n51

F
n
(z0)

2k
n
G
n

eiknjx2x0 jF
n
(z) , (5)

where Fn is the nth vertical mode, satisfying

F
n,zz

1
N(z)2 2v2

v2 2 f 2
k2
nFn

5 0, (6)
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with homogeneous boundary conditions Fn(0) 5
Fn(H) 5 0, and the positive eigenvalue kn is the corre-

sponding horizontal wavenumber. The factor Gn is given by

G
n
5

ðH
0

N(z)2 2v2

v2 2 f 2
F2

n dz . (7)

Prior to the present study, all internal tide generation

studies using this theoretical formulation for nonuniform

stratifications have computed the Green function either

for a uniform stratification or under the WKB approxi-

mation for a nonuniform stratification, and the complete

formulation involving (5) and (6) has not been utilized.

We also note that the hydrostatic approximation is not

invoked in (4) or any of the subsequent expressions.

Equation (6), with the homogeneous boundary con-

ditions, constitutes a Sturm–Liouville system that must

be solved numerically to obtain Fn for an arbitrary

stratification N(z). For convenience, and without any loss

of generality, we define Fn such that
Ð H
0 [Fn(z)]

2 dz5 1.

Using the complete Green function (CGF) approach,

that is, the numerical solutions of (6), the expression for

the perturbation streamfunction in an arbitrary strati-

fication is

f0(x, z)5 �
n5‘

n51

1

2k
n
G
n

F
n
(z)

ðb
2a

g(x0)F
n
[h(x0)]eiknjx2x0 j dx0 ,

(8)

where g(x0), being the distribution of point sources, is

the quantity to be solved for by imposing the boundary

condition at the bottom topography in (2).

The first boundary condition in (2) now results in the

integral equation

Uh(x)5f0[x,h(x)]

5 �
n5‘

n51

1

2k
n
G
n

F
n
[h(x)]

ðb
2a

g(x0)F
n
[h(x0)]eiknjx2x0 j dx0 ,

(9)

which is solved numerically for g(x0) using the procedure
detailed in Echeverri and Peacock (2010). In solving this

numerically, onemust use a sufficiently fine resolution to

represent the topography and a sufficiently large number

of modes in the summation so that the solution converges.

In section 4, for example, the Gaussian topographies were

discretized using 1081 points (22.7sG # x # 2.7sG, sG

being the (1/e)-width of the topography), and a maximum

of 600modes were used in the summation, with the shorter

topographies requiring a larger number of modes than

their taller counterparts. The results presented in section 5

for realistic topography were obtained using 200 modes,

with a horizontal grid size of 50 and 30m to represent the

topography at the Kaena Ridge and Wyville Thomson

Ridge, respectively.

In the far field, where the ocean depth is constant, one

can define

a6n 5
1

2k
n
G
n

ðb
2a

g(x0)F
n
[h(x0)]e7iknx

0
dx0 , (10)

where a1n corresponds to x . b and a2n to x , 2a. The

far-field perturbation streamfunction can thus be writ-

ten explicitly and concisely as a sum over the vertical

modes:

f0(x, z)5 �
n5‘

n51

a6n Fn
(z)e6iknx . (11)

The total wave field is given by f(x, z) 5 fb 1 f0, in
which case the cumulative right-propagating (1) and

left-propagating (2) time-averaged and depth-integrated

energy fluxes in mode p through mode q are

E6
p2q 5 �

n5q

n5p

E6
n 5 �

n5q

n5p

r
0
v

2

v2 2 f 2

v2

ja6
n j2
k
n

ðH
0

�
dF

n

dz

�2

dz ,

(12)

where r0 is a reference background density. The to-

tal right- and left-propagating energy fluxes are de-

noted by E1 and E2, respectively, where E6 5�n5‘
n51E

6
n

with dimensions of power per unit distance in the y

direction.

In the WKB approximation, the mode shapes Fn(z)

and the horizontal wavenumbers kn in (8)–(11) are re-

placed by the WKB mode shapes Fn,wkb(z) and their

corresponding horizontal wavenumbers (Llewellyn-

Smith and Young 2003; Echeverri and Peacock 2010).

The WKB eigenfunctions are

F
n,wkb

(z)5
1

M
n

sin[nZ(z)]ffiffiffiffiffiNp , (13)

where

Z(z)5
p

HN
m

ðz
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(z

1
)2 2v2

q
dz

1
, (14)

N
m
5

1

H

ðH
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(z)2 2v2

q
dz , (15)

N (z)5
1

N
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N(z)2 2v2

q
, and (16)

M
n
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðH
0

sin2[nZ(z)]

N dz

s
. (17)
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The corresponding eigenvalues are kn 5 np/mH, where

m5Nm/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 2 f 2

p
. If the WKB mode strengths are de-

noted by a6n,wkb, the energy fluxes are given by

E6
p2q,wkb 5 �

n5q

n5p

E6
n,wkb 5

pr
0
N2

m

4mv
�
n5q

n5p

n
ja6

n,wkbj2
M2

n

. (18)

3. Numerics

To validate the solutions obtained using the complete

Green function approach and further confirm the errors

associated with the WKB approach, we ran several

corresponding numerical simulations based on the

nonlinear, hydrostatic, terrain-following (s coordinate)

Princeton Ocean Model (Blumberg and Mellor 1987).

Simulations were conducted in a narrow channel with

the topography of interest in the center of the domain

and periodic boundary conditions in the across-channel

direction, which is equivalent to a 2D x–z domain (re-

sults are constant with y). The Princeton Ocean Model

uses a Mellor–Yamada turbulence closure scheme

(Mellor and Yamada 1982; Blumberg and Mellor 1987)

in the vertical. Although it is possible to add a back-

ground diffusivity level, this was not applied here. In the

horizontal, the model uses a Smagorinsky diffusivity

(Smagorinsky 1963; Blumberg and Mellor 1987), which

is set to zero in our simulations (and hence no explicit

horizontal diffusivity is applied). However, as with all

numerical models, there is numerical diffusion.

Modal decomposition was performed over the flat

bottom sections upstream and downstream of the to-

pographic feature. The boundary forcing at the ends of

the channel was through the Flather condition (Flather

1976; Carter and Merrifield 2007) with the surface ele-

vation chosen to correspond to an along-channel ve-

locity of U 5 2.5 3 1024m s21. At the ends of the

channel the relaxation boundary condition of Carter and

Merrifield (2007) prevented the reflection of baroclinic

energy in all modes. The low forcing velocities ensured

the velocity remained sinusoidal and linear. The simu-

lations had a horizontal resolution of 200m and had 300

layers in the vertical. The resulting wave field was then

linearly scaled to obtain the modal distribution of the

energy fluxes at other forcing amplitudes. Each numer-

ical simulation took about 9 h on amachine with 23Intel

Xeon E5-2670, 2.6GHz (32 CPUs effectively), and

128GBRAM. As a comparison, the computation of 400

modes for a given stratification, forcing, and Coriolis

frequencies took around 12h on a laptop with an Intel

(R) Core(TM) i7, 2.8-GHz CPU, and 4GB RAM; once

the mode shapes are computed, the Green function

code takes around 20min (on the same laptop) for each

of the topographic transects.

4. Gaussian topography

To begin our investigations, we consider tidal gener-

ation by isolated Gaussian topography in the oceano-

graphically reasonable stratification (Fig. 1a):

N(z)5N
0
1(N

max
2N

0
) exp

�
2
�z2 z

c

s

�2
�
, 0# z#H .

(19)

We choose an ocean depth H 5 3800m, a deep-ocean

stratification N0 5 6 3 1024 rad s21, a maximum strati-

fication Nmax 5 5.48 3 1023 rad s21, and a pycnocline

centered around zc 5 3400m with a characteristic width

s5 250m. For thesemodel studies, we choose f5 0, and

nonzero values of f are used for our case studies in

section 5; our choice of f 5 0 has little to no impact on

the overall results as its primary role is in setting the

criticality of the system. The true andWKB semidiurnal

(i.e., v5 1.40533 1024 rad s21) mode shapes for modes

1 and 4 are presented in Figs. 1b and 1c, respectively. It is

FIG. 1. (a) The stratification profile N(z) considered in section 4. The streamfunction F(z) for (b) mode 1 and

(c) mode 4 for the stratification in (a), as determined by solving (6) numerically (solid line) and by using the WKB

approximation (dashed line). The streamfunctions are normalized so that
Ð H
0
F2 dz5 1.
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evident that for this stratification the truemode 1 (with a

horizontal wavelength of 7.95 3 104m) differs notice-

ably from its WKB counterpart (with a horizontal

wavelength of 6.21 3 104m); the difference is relatively

small, but still noticeable, for mode 4.

For an isolated Gaussian ridge,

h
G
(x)5h

0
exp

�
2

x2

s2
G

�
, (20)

we define the criticality to be « 5 max[(dhG/dx)/tanu],

that is, the maximum ratio of the topographic slope

to the local internal wave ray slope fcotu(z)5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[N(z)2 2v2]/(v2 2 f 2)

q
g, and we define the height ratio

to be h*5h0/H. Since internal tide generation for the

topography described by (20) is symmetric about x 5 0,

the superscripts 1 and 2 are ignored, and we con-

sider radiated energy flux in either direction. Figure 2a

presents the variation of the radiated energy flux E as a

function of « and h*, obtained using the complete

Green function method. For any value of h*, E con-

verges to a near-constant value for «* 3, corresponding

to knife-edge topography. And for all values of «, there

is a monotonic increase in the conversion rate with h*,

with a clear enhancement as the height ratio exceeds

0.8 and the topography impinges on the pycnocline.

For comparison, theWKB-predicted energy fluxes are

presented in Fig. 2b, with the overall qualitative form of

the results being similar to those of the complete Green

function approach, presented in Fig. 2a. The WKB-

predicted energy fluxes are notably different, however,

and the differences between the two sets of results are

highlighted in Fig. 2c, which presents the absolute value

of the difference in energy flux between the two

methods, and Fig. 2d, which presents the relative dif-

ference. The standout features are that the WKB

method predicts energy fluxes that are O(10) kWm21

higher for tall topography, and for subcritical

FIG. 2. The total energy fluxE (kWm21) associated with the baroclinic internal tide generated (in the right or left

direction) by barotropic forcing of amplitudeU5 0.02m s21 as a function of the criticality « and the height ratio h*

of the Gaussian topography defined in section 4, predicted by (a) the CGF approach and (b) the WKB approach.

(c) The absolute difference betweenECGF andEWKB and (d) the relative difference betweenECGF and EWKB. The

white dashed horizontal lines in (a) indicate the two height ratios corresponding to the data presented in Fig. 5. The

white and magenta solid lines in (d) correspond to contours of FWKB
1 5 0:1 and FWKB

1 1FWKB
2 5 0:1, respectively.

The white andmagenta dashed lines in (d) correspond to contours of the ratio of the horizontal topographic scale to

the horizontal mode-1 wavelength: sGk1 5 0.57 and 0.16, respectively. The white dots on the right and left sides

of the figure in (d) represent topographies for which wave fields are plotted in Figs. 3 and 4, respectively.
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topography and topography with h** 0:8, the WKB

predictions can be wrong by as much as 100%. For

subcritical topography with large horizontal scale,

Zarroug et al. (2010) have also shown that the WKB

approximation in an analytical model similar to that of

Bell (1975) can be unreliable in its prediction of the in-

ternal tide energy fluxes, particularly for the lower

modes.

Insight into why the WKB approach is inaccurate for

certain topographies is obtained by plotting the hori-

zontal velocity fields for two different cases, namely,

(i) the supercritical topography with «5 2 and h*5 0:4,

for which the WKB approach is accurate (Fig. 3), and

(ii) the subcritical topography with « 5 0.45 and

h*5 0:4, for which the WKB approach is inaccurate

(Fig. 4). For the supercritical topography, the CGF and

WKB wave fields have strong qualitative similarities,

whereas there are notable differences (especially in the

pycnocline region) for the subcritical topography case

shown in Fig. 4. Upon closer inspection, we find that the

wave beams emerging from the two sides of the sub-

critical topography are incident on the pycnocline region

(and scattered back to the deeper ocean) within the

horizontal extent of the topography; for the supercritical

topography, however, the topography is so narrow that

the waves that emerge upon reflection from the upper

ocean are only incident on the floor of the constant

depth ocean away from the topography. Given that the

WKB approach is known to wrongly model the propa-

gation of internal waves through nonuniform strati-

fications (it predicts complete transmission of waves

through regions of varying stratification, which is accu-

rate only for small enough vertical length scales in the

waves) and the modal representation of the generated

wave field formally applies in regions beyond the to-

pography, these results suggest that the topographic

width relative to the horizontal scale of the generated

internal waves is a significant parameter that affects the

accuracy of the WKB approach. This is furthermore

consistent with the results of Zarroug et al. (2010) for

subcritical topography that the WKB approach is sus-

ceptible to larger errors for wider topographies.

To validate our findings, Fig. 5a presents comparisons

between the two analytical approaches and the results of

numerical simulations for E1 and E4 for h*5 0:73 and

varying criticality. There is excellent agreement be-

tween the numerical results and the theoretical pre-

dictions using the complete Green function approach.

The WKB approach underpredicts E1 for subcritical

regimes and overpredicts it for supercritical regimes and

furthermore somewhat underpredicts E4 for supercriti-

cal regimes. As shown in Fig. 5b, for h*5 0:025, the

complete Green function prediction for E1 is in close

agreement with the numerical simulations for all criti-

calities. In the subcritical regime, the WKB method

overpredicts E1 by more than a 100%, which is some-

what in contrast to the results of Zarroug et al. (2010)

where the WKB approach underpredicted energy fluxes

for small-amplitude, subcritical topography. Upon fur-

ther analysis of our results, we find that for a fixed h*, the

WKB method underpredicts E1 for 0, «, «* and then

overpredicts E1 for «. «*. The threshold criticality «* is

larger for larger h*; while the studies of Zarroug et al.

(2010) were in the «, «* regime, the plot in Fig. 5b

shows only the «. «* range. For E4, the results from all

three approaches are quantitatively very similar for all

criticalities except « 5 0.1, for which the results from

numerical simulations contain significant spatial variations

FIG. 3. The instantaneous horizontal velocity field predicted by

the (a) CGF and (b) WKB approaches for the supercritical to-

pography (« 5 2 and h*5 0:4) indicated by the white dot on the

right in Fig. 2d.

FIG. 4. As in Fig. 3, but for the subcritical topography («5 0.45 and

h*5 0:4) indicated by the white dot on the left in Fig. 2d.

2162 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46

D
ow

nloaded from
 http://journals.am

etsoc.org/doi/pdf/10.1175/JPO
-D

-15-0145.1 by guest on 12 June 2020



in the mode-4 energy flux, suggesting that they may not be

in the linear regime. Moreover, for small-amplitude, small

criticality topography, it may be required to use a larger

total number of modes for the complete Green function

solution to converge.

Having established the validity of the complete Green

function approach in Fig. 5, we proceed to identify regions

in the «–h* plane where the WKB may be considered

accurate. Since the characteristic vertical wavelength of

a mode decreases as the mode number increases, the

discrepancy between a true mode shape and its corre-

sponding WKB mode shape monotonically decreases

with the increasing mode number. One therefore ex-

pects theWKB approach to be accurate in scenarios for

which the generated internal tide energy is pre-

dominantly put into the higher modes. To test this hy-

pothesis, we plot the contour (shown as white solid

line) corresponding to FWKB
1 5EWKB

1 /EWKB 5 0:1 in

Fig. 2d, and indeed it is evident that the FWKB
1 5 0:1

contour delineates regions of large and small relative

errors in EWKB. We furthermore plot the contour

(shown as a magenta solid line) corresponding to

(FWKB
1 1FWKB

2 )5 (EWKB
1 1EWKB

2 )/EWKB 5 0:1 in Fig. 2d,

which further reveals that when there are small frac-

tional energy fluxes in both modes 1 and 2 then the

relative errors in EWKB become even smaller. Insight

into the form of these error plots is provided by the

results of Zarroug et al. (2010), who find that in regards

to the WKB approximation the crucial aspect of to-

pography is its horizontal length scale relative to the

horizontal length scale of the internal waves since that

determines the depth region over which the stratifica-

tion is sampled. We therefore plot lines of constant sG

(the white and magenta dashed lines in Fig. 2d corre-

spond to sGk1 5 0.57 and 0.16, respectively) and ob-

serve that lines of constant ridge width indeed seem to

follow the orientation of the error features in Fig. 2d for

subcritical topography. The slope of the white dashed

line abruptly changes at around «’ 1.6 as the criticality

is defined as the maximum ratio of the local topo-

graphic slope to the local internal wave ray slope. As

the topography impinges on the pycnocline, the value

of this maximum ratio changes significantly with the

height ratio for a fixed value of sGk1 due to the much

shallower internal wave ray slopes in the pycnocline.

An overall summary of the important fundamental

scenario of Gaussian topography in an oceanographi-

cally reasonable, nonuniform stratification is that while

the complete Green function approach consistently

agrees with the results of the full numerical simulations,

thus validating the method, WKB predictions for the

overall energy flux are really only accurate for strongly

supercritical topographies of modest-to-small height

ratio. Significantly, the WKB approach is inaccurate for

very subcritical topography with even small height ra-

tios. An alternate but equivalent summary is that WKB

predictions for the overall energy flux are accurate only

if the topographic length scale is less than half of the

horizontal scale of the first mode, and the height ratio is

modest to small.

5. Realistic topography

The capability of the Green function method to de-

termine internal tide generation for realistic oceanic

scenarios was investigated by Echeverri and Peacock

FIG. 5. The terms E1 and E4 as a function of « for (a) h*5 0:73 and (b) h*5 0:025. Both the plots correspond to

a barotropic forcing amplitude ofU5 0.02m s21. Thick and thin lines correspond to the CGF andWKB solutions,

respectively. Solid and dashed lines correspond toE1 andE4, respectively. Circles (E1) and squares (E4) correspond

to results from numerical simulations. The data in (b) are replotted in its inset with a log scale on the y axis to bring

out the variations more clearly.
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(2010) in the limit of the WKB approximation. In this

section, we similarly use the complete Green function

method to investigate internal tide generation along 2D

transects across the Kaena Ridge near the Hawaiian

Islands and theWyville ThomsonRidge near the Faroe–

Shetland Channel; these two scenarios were chosen

because they present quite different configurations in

terms of the background stratification profile and the

topographic shapes. The predictions are compared with

those of WKB theory and the results of our numerical

model.

a. Kaena Ridge

The topography and stratification considered in this

section are those used in section 4.1 in Echeverri and

Peacock (2010). Specifically, as shown in Fig. 6a, we

consider 10 evenly spaced 140-km-long transects across

the Kaena Ridge. The stratification profile N(z), as

shown in Fig. 6b, comprises a pycnocline, where N

attains a maximum value of 0.0191 rad s21 at 55m below

the sea surface in an ocean of total depth of around

4800m (the specific value depending weakly on the

transect number) and a deep-ocean stratification of

7.63 3 1024 rad s21. We consider semidiurnal forcing

(v 5 1.4053 3 1024 rad s21), and the local Coriolis pa-

rameter is f 5 5 3 1025 rad s21. Figure 6c shows a

discernable difference between the mode-1 shapes

computed with and without the WKB approximation.

Figure 7a presents the complete Green function

model prediction for a snapshot of the total horizontal

velocity field for 1 of the 10 transects’ sections we con-

sider at the Kaena Ridge. The corresponding wave field

determined by numerical simulations is presented in

Fig. 7b. There is a remarkable similarity between the

results of theory and numerics, with wave beams ema-

nating from the same locations on the topography in

both the plots. In the numerical model, the wavebeams

become diffuse as they radiate away from the topogra-

phy because of the numerical dissipation, whereas the

inviscid wavebeams in the analytic solution remain

FIG. 6. (a) A contour plot of the depth of the topography (measured from the sea surface) at the Kaena Ridge.

Investigations are performed for the 10 transects shown using double-headed arrows; the size of the arrows is

directly proportional to the total, generated, internal tide energy flux calculated using the WKB approximation

(Echeverri and Peacock 2010). (b) A typical stratification for the region shown in (a). (c) Mode-1 streamfunction

F1(z), as obtained by solving (6) numerically (thick line) and the WKB approach (thin line), for the stratification

presented in (b), with v5 1.40533 1024 rad s21 (M2) and f5 53 1025 rad s21. The term F1 is normalized so thatÐ H
0
F2

1 dz5 1. Image in (a) reproduced from Echeverri and Peacock (2010).

FIG. 7. A snapshot of the total horizontal velocity field u at 1 of

the 10 topographic sections of theKaenaRidge predicted by (a) the

complete Green function method and (b) numerical simulations.

Both the wave fields correspond to a (linear) barotropic forcing

amplitude of 2.5 3 1024 m s21 for the horizontal velocity; x is the

distance measured along the transect under consideration. The

northeast and southwest directions correspond to x . 0 and x, 0,

respectively.
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indefinitely sharp. A similar level of agreement was

obtained for the other nine cross sections as well.

As a more quantitative comparison between the re-

sults of the theory without and with the WKB approxi-

mation, and with the predictions of the numerical

model, Figs. 8a–c present the variation of the internal

tide energy flux in the first three modes in the southwest

direction across the 10 topographic transects. We ob-

serve large differences between the theoretical model

without and with the WKB approximation, and there is

generally excellent quantitative agreement between the

results of the complete Green function method and the

numerical simulations. The mean, standard deviation,

and maximum of the relative error (with respect to the

complete Green function method) of the WKB pre-

dictions across all 10 transects for E2
1 are 20.7%, 17.6%,

and 54.4%, respectively; for E2
2 and E2

3 , they are 23.6%,

18.6%, and 51.8% and 94.7%, 103.6%, and 385.7%,

respectively. In contrast, across the 10 transects, the

mean relative differences between the complete Green

function approach and the numerical model are 2%,

4.6%, and 13.7% for E2
1 , E

2
2 , and E2

3 , respectively. It is

interesting to note that although WKB is considered to

be most accurate for higher modes, it is for the higher

modes that there is the greatest fractional error. This is

because the modal amplitudes are not calculated in-

dependently but are coupled through the bottom

boundary condition, and so an error in mode 1 can sig-

nificantly impact the determination of higher modes.

b. Wyville Thomson Ridge

The Wyville Thomson Ridge is an ;140-km-long to-

pographic feature located at the southwestern end of the

Faroe–Shetland Channel. A contour plot of a roughly 28
latitude by 2.58 longitude section of this ridge system,

centered near 608N and 7.58W, is presented in Fig. 9a.

Field observations reveal strong internal tides and sub-

sequent mixing in the region, with corresponding nu-

merical modeling attributing a part of the source of these

internal tides to generation at the Wyville Thomson

FIG. 8. Energy fluxes in the southwestward-propagating internal tides generated by barotropic forcing of am-

plitude U 5 0.02m s21 at the Kaena Ridge. Plotted in the various figures are the energy fluxes in the first three

modes: (a)E2
1 , (b)E

2
2 , and (c)E2

3 . Thick and thin solid lines correspond to the complete Green function andWKB

methods, respectively, and circles denote results from the numerical simulations.

FIG. 9. (a) A contour plot of the topography at the Wyville Thomson Ridge (D is the depth of the topography

measured from the sea surface). Investigations are performed for the 25 equispaced transects shown in black. (b) A

typical stratification for the region shown in (a). (c) Mode-1 streamfunction F1(z), as obtained by solving (6)

numerically (thick line) and theWKB approach (thin line), for the stratification presented in (b), withv5 1.40533
1024 rad s21 (M2) and f 5 1.26 3 1024 rad s21 (608N). The term F1 is normalized so that

Ð H
0
F2

1 dz5 1.
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Ridge (Hall et al. 2011). Figure 9b presents a typical

stratification, comprising two pycnoclines: a relatively

strong one at 100-m depth and a relatively weak one at

600-m depth, beneath a nearly constant stratification

of N 5 4.59 3 1024 rad s21. For this stratification, and

using v 5 1.4053 3 1024 rad s21 (M2) and f 5 1.26 3
1024 rad s21 (corresponding to a latitude of 608N), plots

of the vertical structure of mode 1 (F1) based on (6) and

the WKB approach are presented in Fig. 9c. The WKB

mode 1, which contains small-scale noise similar to those

inN(z), is notably different fromF1. We choose to work

with the noisyN(z) profile (instead of smoothening it to

retain only the large-scale features) so as to demonstrate

the robustness and accuracy of the complete Green

function approach even in the presence of small-scale

features in N(z). We note that stratification profiles with

a double pycnocline structure are found in other parts

of the ocean too, the Arctic Circle (Pinkel 2005) and the

Bay of Bengal (Sengupta et al. 2006), for example.

We consider 25 different two-dimensional topographic

cross sections, indicated in Fig. 9a, and the barotropic

tidal forcing is assumed to be in the northeast/southwest

direction with a magnitude of 0.104ms21, corresponding

to an amplitude of 104m2 s21 for the volume flow per

unit width of the barotropic tide in a 1000-m deep

ocean (Sherwin 1991). Topography reaches within 300–

500m of the ocean surface in some locations, and out-

side this domain topography is assumed to smoothly

descend to a constant ocean depth of 900–1200m, the

specific value depending on the cross section. The start

and the end points for every cross section are chosen

such that z . 0 throughout, as the analysis requires z 5
0 on either side of the topography and z $ 0 everywhere

in the topographic domain.

Figure 10a presents a snapshot of the theoretical

prediction (based on the complete Green function ap-

proach) of the horizontal velocity field for one of the 25

topographic sections; the corresponding wave field

determined by the numerical model is presented in

Fig. 10b. The resulting wave field is highly complex,

resulting from multiple reflections that occur where the

stratification changes significantly, but there is never-

theless striking qualitative agreement between the two

wave fields. As a more quantitative comparison, the

variations of the northeastward-propagating energy flux

for the first three modes are plotted for the 25 transects

in Figs. 11a–c. There are very large differences between

the complete Green function and WKB approaches,

especially for modes 2 and 3, and again there is excellent

quantitative agreement in E1
1 and E1

2 between the

complete Green function model and numerical simula-

tions. The mean, standard deviation, and maximum of

the WKB errors in E1
1 , E

1
2 , and E1

3 are 38.1%, 115.7%,

and 9639.1%, 17.9%, 149.8%, and 40036.8%, and 83.8%,

546.2%, and 201615.5%, respectively. As a reality check,

FIG. 10. As in Fig. 7, but at one of the 25 topographic transects of

the Wyville Thomson Ridge.

FIG. 11. Energy fluxes in the northeastward-propagating internal tides generated at theWyville Thomson Ridge.

Plotted in the various figures are the energy fluxes in the first threemodes: (a)E1
1 , (b)E

1
2 , and (c)E

1
3 . Thick and thin

solid lines correspond to the complete Green function andWKBmethods, respectively, whereas the circles denote

results from the numerical simulations. The numerical simulations were not run for a long enough duration for the

energy flux in mode 3 to achieve steady state; it is noteworthy that the mode-3 energy flux at the Faroe–Shetland

Channel travels around 6 times slower horizontally than at the Kaena Ridge discussed in section 5a.
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the mean, standard deviation, and maximum of the en-

ergy flux E1 in the complete Green function–based pre-

dictions (considering all 25 transects) are 3.27, 1.02, and

5.28kWm21, respectively. This is consistent with the 3D

estimates of Hall et al. (2011), who determined fluxes

to be .5kWm21 on the northern flank of the Wyville

Thomson Ridge.

6. Conclusions

The Green function method, which to date has been

used to study internal tide generation by barotropic

flow over topography in constant stratifications and

nonuniform stratifications in the limit of the WKB ap-

proximation, has been advanced to account for fully

nonuniform stratifications. To validate the method and

to test the inaccuracies of WKB approximate solutions,

tidal generation was first studied for idealized isolated

Gaussian topography in a realistic ocean stratification.

Consistently excellent agreement was obtained between

the complete Green function solution and the results of

numerical simulations. The WKB approach, however,

was found to give substantial errors in the subcritical

regime even for small height ratios, and as the height

ratio becomes larger and the topography starts to im-

pinge on the pycnocline, there are furthermore large

errors for both subcritical and supercritical scenarios.

Studies were then performed for realistic ocean sce-

narios using cross-sectional profiles of the Kaena and

Wyville Thomson Ridges. Again, in all cases, the solu-

tions of the complete Green function approach and

numerical simulations were in excellent agreement. The

relative errors of the WKB approach for the Kaena

Ridge, however, were on average around 25% for the

energy fluxes in the first two modes, although with much

larger errors for some specific cross sections. For the

Wyville Thomson Ridge, which has a more complex

double pycnocline stratification, theWKB approach was

highly inaccurate; the mean total generated energy flux

based on the WKB approach is 10.77 kWm21, whereas

the value based on the complete Green function ap-

proach is 5.37 kWm21, thus resulting in a 100% error for

the WKB approach. As with the Kaena Ridge scenario,

the WKB errors in the energy fluxes in the individual

modes are much larger.

We conclude that in order to reasonably estimate the

energy flux in individual modes of the internal tide

generated by barotropic tidal flow over ocean ridges it is

necessary to use the complete Green function approach

developed in this paper and not to resort to the WKB

approximate solution. We have thoroughly investigated

whether there are conditions under which one can re-

liably use the WKB approximation for idealized

Gaussian topography and for realistic topography. Our

conclusion is that WKB predictions can be quite sensi-

tive to errors in the mode shapes, and given that the

computational demands of the complete Green function

method are significantly less than those of the numerical

simulations (see section 3 for a quantitative compari-

son), the former should be used at all times, safe in the

knowledge that this approach has now been thoroughly

validated by direct comparison with numerical simula-

tions. As a follow-up study, it would be intriguing to

perform global estimates of internal tide generation

along the lines of Falahat et al. (2014) using the

complete Green function approach, albeit in the two-

dimensional limit but with the capability to model

supercritical topographies also.

Finally, we note that a variation of the approach that

we present can be used to study topographic scattering

of low-mode internal tides, a mechanism believed to be

important to identify and quantify the processes by

which internal waves dissipate in the ocean. The results

of such a study appear in Mathur et al. (2014). With that

study and the present study in hand, linear, two-

dimensional, internal tide generation and scattering by

deep-ocean topography are now quite well considered,

although scenarios such as the impact of steady flow and

nonlinearities (Lamb 2004) still need to be fully ad-

dressed. Moving forward, attention also needs to be di-

rected toward developing reliable analytical methods to

study internal tide generation and scattering by three-

dimensional topography (e.g., Munroe and Lamb 2005;

King et al. 2010).
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