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In this work we analyze the behavior of a chemical front in a vertical porous medium. A

homogeneous autocatalytic reaction occurs in the liquid phase. The column is filled with a chemical

species and the reaction is initiated at one end of the vertical column by instantaneously adding the

product. The reaction occurs at the interface of the products and the reactants. This causes the

reaction front to move down �up� when the product is added to the top �bottom�. The front or

interface demarcates the domain into two regions: one rich in the reactants and the other rich in

products. In this work chemohydrodynamic instabilities are studied, when the density and viscosity

of the reactants and products are different and concentration dependent. The dependency of these

properties on concentration is explicitly considered. We assume the process to be isothermal and

other properties such as diffusivity and permeability to be constant. A traveling wave of chemical

concentration is generated in the upward direction �when the products are introduced at the bottom�
as the product reacts at the interface. The stability of the interface is determined by the viscosity and

density of the two fluids. A shooting method in combination with a Runge–Kutta fourth-order

scheme is used for generating the base state of the traveling front. Here, the conditions at which an

interfacial instability induced by the density gradients is stabilized due to the viscosity dependence

on concentration are determined. Linear stability predictions are determined by inducing

perturbations on the traveling wave base state and analyzing their evolution. The effect of various

parameters on the stability of the flow was calculated and compared with the nonlinear simulations.

The nonlinear problem is modeled using the stream-function, vorticity equations. These equations

are solved using a second-order finite difference scheme in space and first-order forward difference

scheme in time. The instability predicted from the linear stability analysis is validated with nonlinear

simulations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2829081�

I. INTRODUCTION

Hydrodynamic fingering instabilities in porous media

have been investigated extensively in the past few decades.

The interaction between reaction and diffusion can result in a

chemical reaction front moving as a traveling wave with no

bulk motion of the liquid phase. The wave velocity is deter-

mined by the interaction of autocatalytic chemical kinetics

and diffusion. In this state, the interface between the reactant

rich region and the product rich region remains sharp and

flat. In the presence of density gradients, the interface can

become unstable. In this unstable state there is bulk motion

in the liquid phase and the interface exhibits fingerlike struc-

tures. The system now exhibits spatial patterns. Numerous

experimental as well as theoretical investigations have been

carried out to analyze this phenomenon. The spatiotemporal

dynamics results from the interplay between the autocatalytic

chemical reaction and hydrodynamics. Consider a case when

there are density changes moving across the reaction-

diffusion front in the direction of gravity. This can induce a

Rayleigh–Taylor instability if the heavier fluid is placed on

top of the lighter fluid. Miscible systems with chemical re-

actions are prone to density driven instabilities in such a

buoyantly unstable situation.

The experimental observation of channeling in a sugar

sweetening process triggered significant research in the area

of hydrodynamic instabilities in a porous media.
1

The initial

stages of research focused on horizontal flows where the

density effect was not significant. The instability here is gen-

erated by the viscosity changes. Nonlinear simulations of

these systems were carried out using a finite difference

technique
2,3

to understand the long term dynamics. Tan and

Homsy
4

used efficient algorithms based on spectral methods

for these simulations. Further, they simulated the system us-

ing a � -� formulation instead of the pressure-velocity for-

mulation, as was used by the earlier researchers. The predic-

tions were compared with the linear stability analysis of Tan

and Homsy
5

at the initial stages. The basics of the fingering

phenomena and a detailed review of the contrasts and the

similarities of miscible and immiscible flows is described by

Homsy.
6

Reactive instabilities have been studied in a hori-

zontal domain with a bistable �cubic� kinetics by De Wit and

Homsy,
7,8

where they observe drop formation. These insta-

bilities stem from the viscosity differences as the fluid

moves; they arise in horizontal flows and are called viscous

fingering. The viscous fingering is triggered only in the pres-

ence of a definite injection velocity.

In contrast to this, several studies have been carried out

in density fingering which we now discuss. Here, the chemi-a�
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cal front propagates in the vertical direction with no bulk

motion of the fluid. Several experimental investigations have

been carried out on the density fingering in an iodate-

arsenous acid �IAA� system.
9

Deceleration of some fingers

resulting in the acceleration of their neighbors has been ob-

served while doing a temporal evolution study.
10

Experimen-

tal predictions of spatial modes of instability was done and

was compared with two-dimensional �2-D� Stokes

simulations.
11

Upward propagating fronts were studied and

the experimental results were compared with the linear sta-

bility analysis predictions.
12

Theoretical studies in density fingering include isother-

mal as well as nonisothermal reactions. The effect of kinetic

parameters on the onset of convection has been analyzed

theoretically.
13

Linear stability analysis has been carried out

using the full three-dimensional �3-D� Stokes equations
14

as

well as using Darcy’s law.
15,16

The front propagation was

compared for both convective and convectionless fronts.

Convective fronts were found to move faster with respect to

a convectionless front.
17

Two-dimensional linear stability

analysis was carried out and the results were compared with

3-D lattice Bhatnagar–Gross–Krook simulations.
18

Tracking

the interface and its characteristics have been carried out

using a free boundary problem formulation. The tangent

angle and the perimeter of the front have been used as the

analysis variables.
19

Nonisothermal effects along with the

concentration effects on density have been studied in a later-

ally unbounded system. Linear stability analysis was carried

out for this system.
20

The IAA system admits two steady

states. In the absence of convection we have traveling front

from the unstable steady state to the stable steady state.
21

The

reaction term is represented using a compact kinetic expres-

sion that allows chemical fronts between two steady states. A

one variable model representing the evolution of iodide con-

centration was found to be sufficient to describe the reaction

an capable of producing fingering instabilities.
22

This work

also discusses the generation of the sharp front which travels

at a speed governed by diffusion if the hydrodynamic effects

are absent. This cubic one variable kinetics representative of

iodate-arsenous acid reaction is valid only for the case when

arsenous acid is in excess. Some other reactions such as

chlorite-tetrathionate �CT� 23
and polymerization have been

studied theoretically
24

and experimentally.
25

Experimental

studies were carried out to study the factors affecting front

shape, velocity, conversion, etc.
25

They observed different

spin modes by varying the heat loss, initiator concentration,

etc. In Ref. 24, they discuss the polymerization propagation

fronts. The main focus of that work is on the experimental

and theoretical study of the effect of convection on both

upward and downward moving polymerization fronts. The

viscosity variations were significant for the reactions they

had considered. In polymerization reactions researchers have

observed reactions propagating due to the thermal effects.
26

A theoretical study of thermal wave propagation in which

chemical conversion occurs has been studied.
27

They in turn

determined analytically the structure of the wave, propaga-

tion velocity, amount of conversion, etc. Heat effects due to

the reaction have been incorporated in some recent papers

for IAA and CT reactions also.
28–30

Analysis using nonlinear

simulations in a vertical flow was done by De Wit
31

for the

IAA kinetics with the viscosity of the solution assumed to be

a constant. Drop formation was observed in the vertical ge-

ometry also by De Wit et al.
32

This was attributed to the form

of kinetics which admitted two stable steady states. The

Boussinesq approximation has been used in all the literature

cited where the effect of density variation is considered only

in the gravitational term. Pure density fingering was also

discussed experimentally
33

and theoretically.
34

The simula-

tions were carried out in Ref. 34 using the Stokes regime and

here the dispersion curves varied as a function of time. In all

the above studies viscosity was always assumed to be a con-

stant in the vertical alignment. In this work we incorporate

the viscosity dependency on concentration and seek the con-

ditions under which it can stabilize a density unstable con-

figuration. Such systems are important in the area of poly-

merization where viscosity changes significantly as the

reaction occurs. The motivation for this study is to determine

the conditions when viscosity changes can stabilize or am-

plify the instability in an unstable interface. There is no in-

jection velocity in the density driven situation. Hence, vis-

cous fingering is absent as the driving force required to

generate the phenomenon will not come into the picture.

In Sec. II, we formulate the model of the system and

recast the governing equations into their nondimensional

counterparts. The viscosity and density are assumed to be

functions of concentration. Diffusivity and permeability are

assumed constant. In Sec. III, we generate the base state of

the solution in the form of a traveling front. This shows a

sharp change in concentration across the front. The effect of

Da on the traveling front is analyzed. The next section dis-

cusses the linear stability of the wave. An infinitesimal dis-

turbance is incorporated and the evolution of the disturbance

is studied. The results are depicted as dispersion curves. Sec-

tion V discusses the results obtained from nonlinear simula-

tions. The predictions of the linear stability are validated

with the nonlinear simulations. These simulations confirm

that the linearly unstable system exhibit a fingered interface.

II. MODEL

We consider a 2-D porous media filled with a reactant as

shown in Fig. 1. The gravity field is aligned along the posi-

tive x direction as shown in the figure. The product species

of concentration c1
* is introduced at the bottom and thus in-

vades the reactants lying in the upper portion of the porous

medium. The reaction occurs only at the interface separating

the two fluids since it is autocatalytic in nature and requires

both reactants and products to progress. The interface of the

system starts moving upwards as a traveling front with a

constant velocity as time progresses. The stability of this

interface separating the two fluids depends on the density of

the two fluids. If the reactants are lighter than the products

then we have a planar front. If the reactants are heavier than

the products the system is unstable and the interface gets

deformed in the presence of the slightest perturbation. The

latter condition leads to the formation of fingered structures

in the medium. These arise due to the classical Rayleigh–

Taylor instability. This study focusses on theoretically ana-
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lyzing the system behavior when both fluid density and vis-

cosity vary with concentration. The system is governed by

the continuity equation and the momentum equation in the

form of Darcy’s law. The transport of chemical species is

represented by the convective-diffusion equation. We use the

Boussinesq approximation where we include the effect of

density dependence on concentration only in the gravity term

of the momentum equation.

The equations which govern the fluid flow and the ones

which represent the interactions between hydrodynamics and

chemical reactions are now described.

The equation of continuity is

�
* · u�* = 0. �1�

For laminar flow, Darcy’s law, which determines the pressure

drop in a porous medium or a Hele-Shaw cell, can be written

as

�
*P* = −

�*

K
u�* + �*gix

� . �2�

A convective-diffusion equation is used to describe the spe-

cies transport and is given by

�c*

�t*
+ u�

* · �
*c* = D�

*2c* − krc
*�c* − c1

*��c* + d*� . �3�

Here, c* represents concentration of the product species.

Similarly, �
* represents gradient x*, y* as independent vari-

ables. In this work the density and viscosity are both as-

sumed to be dependent on concentration �*=��c*� and

�*=��c*�. The other physical parameters such as permeabil-

ity �K� and diffusion coefficient �D� are, however, assumed

to be constant. The density is assumed to vary linearly with

product concentration and the viscosity variation with the

product concentration is taken to be exponential. The func-

tional forms of these relationships are given below:

�*�c*� = �1
* + ��0

* − �1
*��1 −

c*

c1
*� ,

�4�

�* = �0
*e−Rc*

.

A characteristic velocity U is defined such that it balances

the viscous and buoyancy forces. This yields

U=��*gK /��, where ��=��
/�0

* and ��*= ��0
*−�1

*� /�o
*.

The characteristic length and time scales are chosen as

Lch=D /U and �H=D /U2, respectively.

The aspect ratio represented by A is defined as

A=Lx /Ly. The dimensionless parameter Ra is defined as

��*Ly
*Kg /�*D. This represents a measure of the dimension-

less width of the domain. The governing variables are non-

dimensionalized using these scales. The corresponding di-

mensionless variables are

x =
x*

Lch

, y =
y*

Lch

, u =
u*

U
, t =

t*

�H

,

P =
P1

*K

�0
*D

, � =
�*

�0
* , c =

c*

c1
* , d =

d*

c1
* .

This scaling is implemented whenever �0��1. The domain

in the x direction varies from 0 to A Ra and in the y direction

from 0 to Ra in the nondimensional representation. The gov-

erning equations after converting to their nondimensional

form are recast as

� · u� = 0. �5�

The momentum balance is of the form

�P = −
�

K
u� + �1 − c�ix

� , �6�

where �=�*
/�0.

The species transport is given by

�c

�t
+ u� · �c = �

2c − Da c�c − 1��c + d� , �7�

where Da=Dkrc1
*2

/U2 represents the ratio of dispersive time

scale to the reactive time scale. Da is called the Damköhler

number. The equations are converted to streamfunction-

vorticity or � -� form using u=�� /�y and w=−�� /�x. The

dimensionless equations in the streamfunction-vorticity for-

mulation that describe the system are

�2� = R� ��

�x

�c

�x
+

��

�y

�c

�y
� +

1

e−Rc

�c

�y
, �8�

�c

�t
+

��

�y

�c

�x
−

��

�x

�c

�y
= �2c − Da c�c − 1��c + d� . �9�

The system of Eqs. �8� and �9� are solved subject to initial

and boundary conditions. The right-hand side of Eq. �8� rep-

resents the −� term. We need both these conditions for con-

centration. For the streamfunction, we need only boundary

conditions. No conditions are required for the vorticity func-

tion as it is governed by an algebraic equation. For dynamic

simulations, the domain in the x direction is divided into

FIG. 1. Schematic model of the system under investigation.
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three parts: �0, Li−1
* �, Li

*, and �Li+1
* ,A Ra�. Here, Li

* repre-

sents the x distance of the ith grid point from the top. The

initial conditions at t=0 used for the simulations are

0 	 x 	 Li−1
* , c = 0,

�10�
Li+1

* 	 x 	 A Ra, c = 1.

Along x=Li
*, we specify a random number in the range �0,1�

which specifies the disturbance in the system. The random

number generates the disturbance in the concentration. The

evolution of concentration as time progresses is studied by

numerically simulating the governing equations.

Along the boundaries x=0 and x=A Ra, we use Dirichlet

boundary conditions for concentration. We impose �=0

along the boundaries x=0 and x=A Ra. Periodic boundary

conditions are applied along the y direction for both c and �.

These can be represented mathematically as

c�x = 0� = 0, c�x = A Ra� = 1,

�11�

c�y = 0� = c�y = Ra�, � dc

dy
�

y=0

= � dc

dy
�

y=Ra

,

��x = 0� = 0, ��x = A Ra� = 0,

�12�

��y = 0� = ��y = Ra�, �d�

dy
�

y=0

= �d�

dy
�

y=Ra

.

Typical values of various parameters that have

been reported by experimentalists for IAA reactions

are �0=1.002 g /cm3, �=0.0099 cm2
/s, ��=1.3
10−4,

Da=1.71, and d=0.0021. Similarly, in polymerization

processes,
24

the typical values of various parameters are

Ra=50, Prandtl number=10, and adiabatic temperature

change=140. We observe that even a small difference in den-

sity is sufficient to trigger the hydrodynamic instability.

III. TRAVELING FRONTS

The system of Eqs. �5�–�7� admits a solution in the form

of a traveling wave. The traveling front occurs in the absence

of any convection or bulk motion and is induced primarily

by the interaction of the autocatalytic chemical kinetics and

diffusion in the system. This wave is one dimensional and is

a chemical concentration wave. Equation �7� in the absence

of convection admits two spatially uniform steady states: c

=1 is a stable chemical steady state corresponding to the

products and c=0 is the unstable steady state corresponding

to the reactants.
30

The concentration wave is dependent on a

single independent variable z given by z=x+vt, where v is

the traveling front velocity. The spatial and temporal varia-

tion of concentration in this traveling wave can be written as

c�x , t�=1 /1+e−�Da /2�x+vt� in a spatially unbounded do-

main. The velocity v of the traveling wave is given by v

=�Da /2�1+2d�.16
This represents physically the rate of

movement of the interface in the upward direction due to the

reaction at the interface. The governing equation which gen-

erates the traveling wave is obtained from Eqs. �5�–�7�, as-

suming concentration is a function of only z. The traveling

wave form is the solution of

v

dcss

dz
=

d2css

dz2
+ Da f�css� , �13�

where f�c�=−c�c−1��c+d�. The traveling wave solution of

Eq. �13� for a finite domain is obtained by numerically solv-

ing Eq. �13� subject to suitable boundary conditions. Instead

of the boundary conditions c�−��=0 and c���=1 for the

infinite domain, the conditions were chosen as c�−z1�=0 and

c�z1�=1. The domain �−z1 ,z1� was varied by changing z1 to

ensure the domain independence of the solution. The second-

order differential equation �13� is converted to two first-order

ordinary differential equations and is solved as a boundary

value problem. A shooting method in combination with the

Runge–Kutta �fourth-order� method was used for numeri-

cally determining the traveling wave solution governed by

Eq. �13�.
The traveling wave concentration and the gradient

css=css�z�, dcss�z� /dz are obtained directly at all the grid

points in this method. The traveling front obtained numeri-

cally for finite domains is shown in Fig. 2 for Da=0.01 and

Da=0.1 for d=0.1. The grid spacing used for the simulations

is 1, but they were validated with other spacings of 0.5 and 2

to ensure grid space independence. The range of the domain

to obtain a converged solution varied with Da. It was −135 to

+135 for Da=0.01. This range was lower for a higher Da, as

the wave front becomes sharp as we increase Da. The veloc-

ity of the wave increases and the total length of the domain

required for the traveling wave to become domain indepen-

dent reduced with an increase in Da. Figure 3 depicts the

variation of viscosity, density and concentration as a function

of z �traveling wave coordinate� for Da=0.01. The density

variation is very low, of the order of 10−3, and hence it is

plotted on a separate scale on the right side.

−150 −100 −50 0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

z

c

Da = 0.1

Da =0.01

FIG. 2. Effect of Da on the traveling wave front.
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IV. LINEAR STABILITY

The stability of the traveling wave obtained was deter-

mined to analyze the system behavior. A stable behavior im-

plies that the concentration does not vary across the cross

section and the concentration front moves as a planar front

with a constant velocity. Linear stability analysis is used in

our case for predicting the onset of stability. Instability is

characterized by the interface �the surface separating the

c=0 and c=1 regions� deforming as fingers and accompa-

nied by the onset of convection. A spatial perturbation is

given to the variables and its evolution is studied. The base

state is the traveling wave obtained numerically in the

previous section for a finite domain. This base state corre-

sponds to

uss = 0, wss = 0, css = css�z�, and pss = pss�z� .

We analyze the deviation of the variables from this base

state. These are defined as

c̃ = c − css,

ũ = u − uss,

�14�
w̃ = w − wss,

P̃ = P − Pss.

The viscosity variation with concentration is linearized as

� = �ss + �d�

dc
�

ss

c̃ . �15�

Substituting Eqs. �14� in Eqs. �5�–�7� and subtracting the

base state values, we obtain the system of equations that

describe how the perturbations evolve with time and space:

�ũ

�z
+

�w̃

�y
= 0, �16�

�P̃

�z
= − �ssũ − c̃ , �17a�

�P̃

�y
= − �ssw̃ , �17b�

�c̃

�t
+ v

�c̃

�z
+ ũ

�css

�z
=

�2c̃

�z2
+

�2c̃

�y2
− Da� �f

�c
�

ss

c̃ . �18�

We seek solutions for Eqs. �16�–�18� in the form of normal

modes; i.e., with a periodic dependency in the y direction.

The deviation of the variables is taken to be of the form

c̃�z,y,t� = c̄�z�e�teiky ,

ũ�z,y,t� = ū�z�e�teiky ,

�19�
w̃�z,y,t� = w̄�z�e�teiky ,

P̃�z,y,t� = P̄�z�e�teiky ,

with � representing the growth rate of the disturbances and k

representing the wave number. We eliminate w̄ and P̄ from

Eqs. �16�–�18� and obtain the final set of ordinary differential

equations that determine the linear stability as

d2ū

dz2
+

1

�ss

d�ss

dz

dū

dz
− k2ū −

k2

�ss

c̄ = 0, �20�

d2c̄

dz2
− k2c̄ − v

dc̄

dz
− ū

dcss

dz
− Da

�f

�c
c̄ = �c̄ . �21�

Equations �20� and �21� are discretized using a second-order

central finite difference. These are written for each individual

node. This results in 2m equations for a total of m nodes in

the x direction. The equations can be expressed in the general

matrix form as

�A�	ū

c̄

 = �	0 0

0 1

	ū

c̄

 . �22�

Equation �22� represents a generalized eigenvalue problem

that can be written mathematically as Ax=�Bx. The largest

eigenvalue � of the matrix A is obtained for various wave

numbers k. When this is negative the system is stable since

all the other eigenvalues are also negative. The numerical

code used for obtaining the maximum eigenvalue is devel-

oped in MATLAB
®

. The dependency of the growth constant,

i.e., the largest eigenvalue of A on k, is depicted as dispersion

curves.

Figure 4 shows the dispersion curves for two situations

for the parameters Da=0.01, d=0.1, and R=0. The first situ-

ation consists of heavier products introduced at the bottom of

the chamber filled with lighter reactants. Here, the heavier

products lie below the lighter reactants resulting in a gravi-

tationally �density� stable situation. The dispersion curve lies

entirely below the x axis with the maximum eigenvalue al-

ways being negative. This is depicted as a line with circles in

Fig. 4. In the second case, we have the chamber filled with

reactants, and the products which are lighter than the reac-

tants are introduced at the bottom. Here, the system shows

density induced instability and the dispersion curve �depicted

as solid line� has a maxima above the z axis. This results in

FIG. 3. Effect of �, �, c as a function of z �traveling wave coordinate�.
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an unstable flow where we see fingering patterns. The maxi-

mum of the growth constant � occurs for k=0.043, and this

wave number determines the reciprocal of the wavelength of

the spatial pattern observed when instability is initiated. The

numerical calculation of the unstable and stable dispersion

curves is carried out by means of changing the term −k2
/�ssc̄

to +k2
/�ssc̄ in Eq. �20�. This term arises due to the gravity

part in the x component of Darcy’s law. This occurs because

in the density unstable situation �0��1 and both Ra and U

are positive, as defined in the paragraph after Eq. �4�. For

the density stable situation, we need to define �� as

��1−�0� /�0, so as to keep U and Ra positive. Figure 5�a�
shows the effect of Da and R on the dispersion curve when a

heavy reactant solution lies above the lighter product solu-

tion ��0��1�. Here, the system shows a density induced in-

stability. The interface of the traveling front moves upward at

a velocity dependent on Da and d. An increase in Da for a

fixed R results in an increase in the growth rate and the

dispersion curve is shifted upwards. An increase in Da physi-

cally implies that the reaction rate dominates diffusion and

convection. A large value of Da decreases the stabilization

effect caused by diffusion. The traveling wave becomes

sharp with an increase in Da. The wavelength of the fingers

is reduced with an increase in Da as the maxima of the dis-

persion curve moves to the right. The results for the constant

viscosity fluid �R=0� were reproduced for the same set of

parameters as was used by De Wit.
16

The effect of the pa-

rameter Da on the dispersion curve is similar to the trends

already observed by other researchers.
16

There, the viscosity

was taken to be constant and the density was assumed to

vary linearly with concentration. In the present work we use

the same functional representation for density, but viscosity

is assumed to depend on the concentration of the products

through an exponential relationship. The incorporation of the

viscosity dependency on concentration does not affect the

chemical kinetics. Consequently the effect of Da and d on

the dispersion curves are similar to that observed

previously.
16

Figure 5�a� also depicts the effect of parameter

R on the stability of the system. It is seen that as R increases

from 0 to 1, the system becomes more unstable. R�0 im-

plies that the front moves from low viscosity to high viscos-

ity region.

Figure 5�b� shows how the stability of the interface de-

pends on the mobility ratio R for Da=0.01 and d=0.1. The

results are for a gravitationally unstable situation where the

lighter products invade the heavier reactants from the bot-

tom. The interface keeps moving upward and exhibits finger-

ing when the viscosity is independent of concentration; i.e.,

when R=0. When R=1, the viscosity of the products is lower

than that of the reactant. Consequently, the lower viscous

fluid invades the higher viscous fluid and this serves to make

the system more unstable. The dispersion curve shifts up-

wards for R�0. For R	0, the curve starts shifting down-

ward and we observe that for R=−5, the dispersion curve is

completely below the x axis. Here, the increase in viscosity

of the products stabilizes the density unstable system en-

tirely. The hydrodynamics is strongly affected here by the

introduction of viscosity dependency on concentration and

this is seen in the shift of the dispersion curves with the

parameter R.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

k

σ

Density Unstable situation

Density stable situation

FIG. 4. Density stable and unstable reaction fronts for Da=0.01, R=0, and

d=0.1. Line with circles represents stable and “—” represents unstable.

FIG. 5. Dispersion curve showing the variation of growth constant on wave

number. �a� Effect of Da for R=0 and R=1. �b� Effect of R.
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V. NONLINEAR SIMULATION

To verify the predictions of the linear stability analysis,

we have also simulated the nonlinear system dynamically. A

finite difference scheme was used for the simulation of Eqs.

�8� and �9�. All the simulations are carried out for Ra=512

and A=2 unless otherwise mentioned. The grid size chosen

is 256
128 with 256 rows along the vertical direction

�x direction� and 128 along the y direction. This results in a

uniform grid spacing of four units in both the directions. This

grid spacing was arrived at after a grid independence study

was carried out.

The equations are solved using a second-order central

finite differencing scheme in space. The discretization used is

Forward in Time Central in Space �FTCS�. Nonlinear simu-

lations are used to predict the long term dynamics. The vari-

ous steps in the numerical algorithm for the simulation of

Eqs. �8� and �9� are outlined below.

�1� Equation �9� is integrated numerically to calculate

c�t+�t� at each and every grid point using the values

of ��t� and c�t� at the earlier time instant.

�2� The known ��t� and c�t+�t� are used for evaluating

the terms occurring on the right-hand side of Eq. �8�
and the Laplacian of ��t+�t� is determined on the

left-hand side. The variable ��t+�t� is iterated using

a point-by-point scheme until the convergence of � is

assured.

�3� c�t+�t� is recalculated in Eq. �9� using the estimated

value of ��t+�t�.
�4� These steps are repeated until we have convergence of

c and � for the time step.

�5� We then proceed to the next time step.

The nonlinear dynamics of the fluid interface is analyzed

by simulating the system for several combinations of param-

eters. The initial stages of the interfacial dynamics obtained

are compared with the linear stability predictions. Figures

6�a� and 6�b� show the nonlinear simulation prediction for

the cases where the heavier liquid is at the top and bottom,

respectively. Figure 6�a� depicts the arrangement where the

system shows instability. Here, the lighter product solution

FIG. 6. Nonlinear simulation showing the variation of growth constant on

wave number. �a� Density unstable flow and �b� density stable flow.

FIG. 7. Nonlinear simulation results showing the

time evolution of concentration contours �0.1–0.3� for

unstable displacement for R=1, Da=0.01, d=0.1,

Ra=512. �a� Time=100 s, �b� time=500 s, and �c�
time=1200 s.

FIG. 8. Nonlinear simulation results showing the concentration contours

�0.1–0.3� illustrating the effect of Da for R=1, d=0.1, t=500 s, Ra=512. �a�
Da=0.01 and �b� Da=0.1.
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from the bottom invades the heavier reactant solution at the

top resulting in a fingered interface. When the heavier solu-

tion lies below the lighter solution, the system shows a stable

planar interface represented by Fig. 6�b�. This situation cor-

responds to a heavier product solution invading the lighter

reactant solution on top. These nonlinear simulation predic-

tions are in agreement with the results of the linear stability

analysis of Fig. 4. The effect of viscosity dependence on

concentration was neglected in these simulations; i.e., we

take R=0. The time evolution of the stable front shows that it

always remains stable. Figures 7�a�–7�c� show the time evo-

lution profiles when both density and viscosity have a desta-

bilization effect �R=1�. For low times �t=100 s� the inter-

face is not deformed significantly, but at a later time instant

�t=500 s� distinct fingers are visible. This is in contrast to

Fig. 6�b�, where the interface or reaction front keeps moving

as a stable planar front at extremely large time instants also.

As we evolve in time, when the system is unstable the fin-

gers merge and the number of fingers gets reduced; at large

times, just three fingers are obtained �Fig. 7�c��. For even

larger times, these merge to yield a single dominant finger.

This is a characteristic of the nonlinear dynamics at large

times, which leads to the decrease in the number of fingers as

time evolves.

Figures 8�a� and 8�b� discuss the effect of Da on the

interface shape for R=1, d=0.1 at a time instant of 500 s. An

increase in Da leads to faster moving fronts. Here, as the

velocity of the traveling wave is proportional to �Da, the

average interface position has moved further upwards for the

higher Da for the same time instant. The nonlinear simula-

tions confirm the critical wave number predictions of the

linearized stability analysis at early time instants. Instability

is predicted by the linear stability analysis for these param-

eters �see Fig. 5�a�� and these have been confirmed by the

nonlinear simulations.

Figures 9�a�–9�c� depict the concentration contours for a

gravitationally unstable situation. Here, the lighter liquid is

placed below a heavier one and hence the effects of gravity

tend to destabilize the interface. Figure 9�a� shows the fin-

gering trends when R�0. Here, the lighter fluid is less vis-

cous than the heavier more viscous fluid. Figure 9�b� shows

the chemically driven density fingering. Here, no viscosity

gradient is present. Figure 9�c� shows how the viscosity de-

pendence on concentration �R	0� can stabilize an interface,

which is gravitationally unstable. The stabilization of the

front is achieved by a large negative R. This continues to be

stable with progress in time. In the case of an unstable inter-

FIG. 9. Nonlinear simulation results showing the con-

centration contours �0.1–0.3� for the effect of viscosity

on density instability when lighter products are injected

at the bottom for Ra=512, Da=0.01, d=0.1, t=300 s.

�a� R=1, �b� R=0, and �c� R=−5.

FIG. 10. Nonlinear simulation results showing the con-

centration contours �0.1–0.3� illustrating the effect

of Ra for R=1, Da=0.01, d=0.1, and t=400 s. �a�
Ra=256, �b� Ra=512, and �c� Ra=768.
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face the number of fingers is more when R=0. The amplitude

of the disturbance, however, is more for R=1 as both density

and viscosity have a destabilizing effect. They increase the

amplitude of the disturbance by acting in tandem. These re-

sults from the nonlinear simulations confirm the predictions

from the linear stability analysis �Fig. 5�b��.
Figure 10 shows the contour plots of concentration for

three different Rayleigh numbers. An increase in Ra physi-

cally implies that the system becomes larger. The dimension-

less width of the system as well as length of the system is

increased proportionately here �because the aspect ratio A is

constant�. More fingers are observed for larger Ra. Thus, if

we examine Fig. 10�b� we see that the number of fingers is

almost double that in Fig. 10�a�. The wavelength of the spa-

tial structures observed is independent of Ra for R=1.

So far, we have analyzed the system for the case where

the products are injected at the bottom to initiate the reaction.

The system is gravitationally unstable when the lighter prod-

ucts invade the heavier reactants. This can be stabilized only

for R	0 �if the products are more viscous than the reac-

tants�. Since in general a more dense liquid has a higher

viscosity, stabilization of an unstable system would be diffi-

cult to attain for the case of injection of the products at the

bottom. We now consider the situation where the product is

introduced at the top to initiate the reaction.

We consider the gravitationally unstable situation where

the product density is higher than the reactant density. The

traveling wave generated now moves along the positive

x axis. Hence, v in Eq. �21� is replaced by −v for the present

case.

The resulting equations, which determine the linear sta-

bility, are modified to

d2ū

dz2
+

1

�ss

d�ss

dz

dū

dz
− k2ū +

k2

�ss

c̄ = 0, �23�

d2c̄

dz2
− k2c̄ + v

dc̄

dz
− ū

dcss

dz
− Da

�f

�c
c̄ = �c̄ . �24�

Now, when the product density is higher than the reactant

density, we have a gravitationally unstable situation and

hence a fingered interface is observed. The results of the

linear stability analysis are shown in the form of dispersion

curves in Fig. 11. Here we show these curves for three dif-

ferent values of the parameter R. For R=0, the dispersion

curve lies partially above the x axis, and this confirms the

gravitational instability of the system. For R�0, a heavier

less viscous fluid invades a lighter more viscous fluid. This

amplifies the disturbance and this is reflected in the disper-

sion curve moving upward. We observe that for R=−5, the

dispersion curve is completely below the x axis and hence

the gravitationally unstable system is stabilized. The change

in direction is incorporated in the nonlinear simulations by

changing the characteristic velocity from U to −U. Figure 12

depicts the results of nonlinear simulations when the product

is injected at the top. For R=1, both viscosity and density

tend to destabilize the interface �the products on top are

heavier and less viscous�. The fingers observed are distinct.

When R=0, only gravity induces instability and this results

in the fingers being less prominent as compared to the case

R=1. For R=−5, the heavier product is more viscous than

the lighter reactant. The higher viscosity of the product is a

stabilizing influence, while the higher density of the product

is a destabilizing influence. Here, the former dominates over

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.04
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R = 1
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R = − 5

FIG. 11. Dispersion curve showing the variation of growth constant on

wave number when heavier products are introduced at the top of the cham-

ber for different mobility ratios with Da=0.01 and d=0.1.

FIG. 12. Nonlinear simulation results showing the con-

centration contours �0.1–0.3�, the effect of viscosity de-

pendent on concentration on density instability when

heavier products introduced at the top. The parameters

were maintained at Ra=512, Da=0.01, d=0.1, and

t=400 s. �a� R=1, �b� R=0, and �c� R=−5.
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the latter and the interface of the system remains flat, as can

be seen in Fig. 12�c�. The results from the nonlinear simula-

tions of Fig. 12 validate the predictions of the linear stability

of Fig. 11.

VI. SUMMARY AND CONCLUSIONS

In this work we have analyzed the stability of the inter-

face in miscible displacement in a vertical column. The col-

umn is filled with a reactant fluid and we introduce products

to initiate an autocatalytic reaction at one end. The interface,

i.e., the reaction front, moves up, as the reaction proceeds, in

the form of a traveling wave.

We have analyzed the system when both viscosity and

density of the fluid vary with concentration. We show that

when the system exhibits a density induced instability vis-

cosity dependency of the fluids on concentration can have a

stabilizing effect or can amplify the destabilizing effect.

When the front travels upward, and the density of the prod-

uct is lower than that of the reactant, the system is gravita-

tionally unstable. In this case we have shown that when the

viscosity of the product is larger than that of the reactant the

interface can be stabilized. However, when the product vis-

cosity is lower than the reactant viscosity, the disturbance

gets amplified further. The role of the effect of viscosity on

stability was found to be independent of the direction of the

traveling wave. The effect of kinetic parameters Da and d on

the dispersion curve were found to be similar to the case

where viscosity was assumed a constant.
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