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The excitation of thin planar liquid sheets formed by impinging two collinear water jets to acoustic

waves was studied at varying frequencies and sound pressure levels �SPLs�. Experiments were

conducted over a range of liquid velocities that encompassed the stable and flapping regimes of the

sheet. For a given frequency, there was a threshold value of SPL below which the sheet was

unaffected. The threshold SPL increased with frequency. Further, the sheet was observed to respond

to a set of specific frequencies lying in the range of 100–300 Hz, the frequency set varying with the

Weber number of the liquid sheet. The magnitude of the response for a fixed pressure level,

characterized by the reduction in the extent of the sheet, was larger at lower frequencies. The droplet

sizes formed by the disintegration of the sheet reduced with an increase in the measured response

and the drop-shedding frequency was near the imposed frequency. Model equations for inviscid flow

and accounting for the varying pressure field across the moving liquid sheet of constant thickness

was solved to determine the linear stability of the system. Numerical solution shows that the most

unstable wavelengths in the presence of the forcing to be smaller than in the absence, which is in

line with observations. Both the dilatational and sinuous modes are coupled at the lowest order and

become significant for the range of acoustic forcing studied. The model calculation suggests that the

parametric resonance involving the dilatational mode may be responsible for the observed instability

although the model was unable to predict the observed variation of threshold SPL with frequency.

© 2010 American Institute of Physics. �doi:10.1063/1.3290745�

I. INTRODUCTION

When two laminar liquid jets of equal diameter and ve-

locity impinge head-on, the equal and opposite forces of

each jet acting at the point of impact cancel each other,

thereby creating a region of high pressure that spreads the

liquid radially outward.
1–5

The liquid sheet, so formed, ex-

pands at the point of impact in the plane perpendicular to the

direction of the two jets until it breaks up into droplets. The

spread and the dynamics of such sheets are characterized by

the Weber number, We=�lV
2do /�, that measures the compe-

tition between the inertial force driving the liquid outward

and the restraining force of surface tension at the periphery

of the sheet. Here, �l and � are the density and surface ten-

sion of the liquid, respectively, while V and do are the jet

velocity and diameter, respectively. Huang
4

measured the

sheet radius for varying We and identified two distinct modes

of breakup of the liquid sheets comprising wavy and non-

wavy processes. For 100�We�500, the liquid sheet was

stable with a near-perfect circular edge. In this range of low

We, the liquid collects into a thick rim at the sheet edge

which subsequently disintegrates into beads and detaches

from the sheet at regular intervals to form droplets. The sur-

face of the sheet is smooth and free from oscillations. A force

balance at the circular edge along with a mass balance relat-

ing the jet diameter �do� to the sheet diameter �D� gives
2,3

D

do

=
We

4
, �1�

which shows that the sheet diameter increases with We.

When We is increased to values 500�We�800, the distur-

bances at the point of impingement create capillary waves on

the sheet that propagate radially outward. These waves, also

known as cardioid waves,
6

converge at the periphery result-

ing in cusp-shaped edge of the liquid sheet instead of the

circular edge observed at lower values of We. For yet higher

values of We �800�We�2000�, a steady transition occurs

from the stable sheet regime to the flapping regime.

When the We exceeds 800, the liquid sheet becomes

distinctly unstable and oscillates/flaps like a membrane. Here

the sheet diameter reduces with increasing We.
4,7

Squire
1

showed that when a thin liquid film moves rela-

tive to a gas, the interfaces become unstable due to the

Kelvin–Helmholtz �KH� instability, and the deformation of

the two interfaces gives rise to two different wave modes,

viz., antisymmetric and symmetric waves �Fig. 1�. A simple

scaling analysis shows that the growth rates of the two

modes are related as
8,9 �D��h /���S, where �S and �D are

the growth rates for the dilatational �symmetric� and sinuous

�antisymmetric� waves, h is the sheet thickness, and � is the

wavelength. As the ratio h /� is less than unity in most cases,

the sinuous waves tend to dominate the breakup process.

Based on the maximum unstable growth rate calculated

by Squire,
1

Villermaux and Clanet
7

showed the sheet diam-

eter to vary as

D

do

� � �l

�a

�2/3

We−1/3, �2�

where �a is the density of the surrounding gas. Further, the

droplet size, d, decreases with We for the stable regime,
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d

do

� We−1/3, �3�

while the undulatory motion of the sheet in the flapping re-

gime causes the liquid sheet to disintegrate at a substantially

smaller scale via indentations of the rim from which small

droplets detach. The drop size also decays much faster with

increasing jet velocity in the flapping regime of the sheet

than in the stable regime and is given by

d

do

� ��a

�l

�−2/3

We−1. �4�

While most of the previous work has focused on the dynam-

ics of liquids sheets, only a few have investigated the influ-

ence of external disturbances on the sheet. Rhys
10

studied the

influence of acoustics on the stability of the sheet. Sound

waves emanating from a speaker impinged on a flat liquid

sheet produced from a rectangular orifice. The influence of

sound frequency, sound intensity, and liquid velocity on the

sheet dynamics was determined. It was observed that at a

fixed decibel level, the sheet response was significant at low

frequencies. Also, at a fixed frequency, the amplitude of

sheet undulation/flapping increased with the sound intensity.

Sivadas et al.
11

introduced acoustic disturbances in the co-

axial flow of air over the top and bottom surfaces of a planar

liquid sheet. The breakup length was seen to be a good mea-

sure of the stability of the liquid sheet. A characteristic

breakup frequency was identified as the frequency at which

large amplitude waves grow to break up the liquid sheet. The

influence of the acoustic disturbance was greater for Wes

��lV
2h /��9, for which the momentum transfer from the

air to the liquid sheet is smaller.

Bremond et al.
12

recently studied the atomization of cir-

cular liquid sheets where a solid vertical cylinder on which a

jet impacts is oscillated at a controlled frequency and ampli-

tude. The vibrating cylinder results in an undulated sheet

where both the frequency and amplitude of the sheet can be

set independently. Experiments were performed in both the

stable and flapping regimes and the sheet diameter reduced

under this forcing. They observed fluid droplets ejected from

preferential sites on the sheet rim although they do not report

a shedding frequency for the droplets. For a given We, they

distinguished a stable and an unstable forcing regime based

on a critical forcing frequency. The latter was derived by first

equating the real part of the sinuous mode
1

to the forcing

frequency while simultaneously setting the growth rate

�imaginary part� to zero. While the latter gives the wavenum-

ber at neutral instability, the two relations together give a

critical frequency below which the sheet is unstable,

�c

do

V = We��a

�l

��1 −
4

We
� . �5�

Note that the above relation has been modified to account for

the impingement of two jets compared to a single jet in their

case. They further predict the reduction in the sheet radius in

the presence of external forcing by determining the growth

rate of transverse sheet undulations due to the vertical accel-

eration caused by the difference in the liquid and sinuous

wave velocity. This “wavy corridor” mechanism, which re-

sults from the Rayleigh–Taylor �RT� instability of the thin

sheet, predicts a decrease in the sheet radius with increasing

forcing frequency for a given forcing amplitude and jet

speed.

The study reported here is motivated by the need to un-

derstand the atomization of liquid sheets in the presence of

external disturbances. The formation of sprays using imping-

ing liquid jets is preferred in a number of different applica-

tions considering the flexibility to vary the degree of atomi-

zation and mixing. The unsteadiness of sprays formed from

impinging jets and the interaction with external disturbances

often causes combustion instability problems in high power

density combustors. The present study addresses the influ-

ence of the external acoustic waves on the dynamics of liq-

uid sheets produced from impinging liquid jets. A series of

experiments were conducted with water sheets formed by the

head-on impingement of laminar jets. The influence of

acoustic waves of different frequencies on the disintegration

and the size of droplets formed by the disintegration for the

stable and flapping regimes of the sheet were determined. A

stability analysis of the liquid sheet that included the effects

of the liquid motion and external pressure is carried out to

interpret the experimental results. The analysis shows that

for the range of system parameters applicable for our experi-

mental conditions, the dilatational and sinuous modes

couple, and unlike the Squire case, results in dilatational

growth rates equal in magnitude to that of the sinuous mode.

The response at the select frequencies is also attributed to the

dilatational mode as the corresponding growth rates vary sig-

nificantly with respect to the external forcing frequency.

II. EXPERIMENTAL SETUP

Figure 2 shows the experimental setup. The nozzles,

made of borosilicate glass with an exit diameter close to

2 mm and length of 20 mm, were used to form laminar jets.

The nozzles were mounted on three-dimensional �3D�
traverses and could be rotated using rotating stages. The di-

ameter of the jet was determined accurately from photo-

graphs obtained with a high-speed camera and was deter-

mined to be 2.175 mm. The jets were observed to remain

laminar up to a distance of 3 mm from the nozzle at the

highest value of We used in the experiments. The two

nozzles were placed 4 mm apart opposite to each other along

a common center line.

A continuous supply of water was obtained from over-

head tanks situated at a height of around 16 m with respect to

the experimental setup. The flow rate in each nozzle was

measured with the help of rotameters of capacity 0.1–1 and

(a) Sinuous waves (b) Dilatational waves

FIG. 1. Wave modes in a thin liquid sheet.
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0.4–4 l/min, which had an uncertainty of �0.2% of full

scale. Care was taken to remove the air bubbles trapped in-

side the pipeline. The liquid sheet was illuminated with

1000 W halogen lamps and the images of the sheet were

captured on a Redlake Motion Pro
®

high-speed camera

�Fig. 2�. Acoustic waves were generated using a high decibel

performance speaker �Ahuja VS 200
®

, a 200 W RMS

speaker with a maximum sound pressure level �SPL� of 125

dB�. The speaker was placed normal to the liquid sheet at a

distance of 60 cm �Fig. 2�. The speaker was capable of de-

livering sound of frequencies ranging from 65 to 18 000 Hz.

Since the experiments were focused on studying the

changes in the diameter of the sheet and the subsequent

changes in the pattern of droplet ejection, the speaker and the

camera were placed on the opposite sides of the liquid sheet.

Care was taken to ensure that the center of the speaker was

located along the axis of the nozzles so that the intensity of

the acoustic wave was uniform over the entire sheet.

An extensive image analysis was performed to study the

liquid sheet atomization phenomenon in the absence as well

as in the presence of acoustic field. The sheet diameter was

determined using about 1000 images recorded at a frame rate

of 500 frames/s. These images were averaged by overlapping

all the images over each other using MATLAB’s
®

image analy-

sis modules. The diameter of the sheet in the averaged image

was then used in the analysis. Further, there was an over all

error of 5% in the measurement of the sheet diameter from a

single image while converting pixel dimensions on the image

to distance units. The study of the effect of acoustic forcing

on the droplet shedding frequency and the drop size distri-

bution was also performed using images recorded on the

high-speed camera.

A. Effect of acoustic field on the diameter
of the liquid sheet

The accuracy of the results was checked by comparing

the results obtained in the absence of acoustics with those

from earlier investigations. The dimensionless diameter of

the sheet �D /do�, determined in the absence of the acoustic

field, is plotted against C2 We /4, where C is the coefficient

of contraction of the jet �Fig. 3�. The solid line represents

Huang’s results corrected by C while the points represent the

present experimental measurements. The value of C2 We /4

is used since in the experiments of Huang, the liquid jet was

detached from the nozzle and the effective Weber number

was based on the diameter of the nozzle. The diameter of the

jet was the product of the coefficient of contraction and the

orifice diameter. In the present set of experiments, the jet is

attached to the nozzle. The plots show that the measurements

agree with his results for both the steady and flapping

breakup regimes thereby confirming the accuracy of the

measurements.

The response of the sheet to the acoustic pressure distur-

bance was quantified by the reduction in the diameter of the

sheet. The various stages of sheet breakup are shown in Fig.

4 where the images are separated by a short time interval. On

switching on the acoustics, surface ripples are observed all

over the sheet and they appear to travel downstream toward

the edge. Within a short time after switching on the acous-

tics, radial streaks originate about 4–5 cm away from the

edge of sheet and expand toward the edge of the sheet. This

can be seen close to the circumference of the sheet in Figs.

4�b� and 4�c� and is highlighted with arrows in Fig. 5 to

show that the distance between the streaks is approximately

constant. As soon as the ends of the streaks reach the circum-

FIG. 2. Schematic of the apparatus used. FIG. 3. Comparison of present work with that of Huang �Ref. 4�. Here C is

the coefficient of contraction.

(a) 0 s, tV d
o
= 0 (b) 0.078 s, tV d

o
=144.9

(d) 0.098 s, tV d
o
=182.0(c) 0.082 s, tV d

o
=152.3

FIG. 4. The images present the breakup of the sheet at We=492 in the

presence of acoustics for 150 Hz ��do /V=0.51� and 111 dB �Pdo /�
=0.21�, where P is the root mean square pressure. Image �a� represents the

first image where a ripple was observed on the sheet surface after the acous-

tics was turned on.
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ference, the sheet diameter starts to reduce while tiny jets of

water are ejected from the circumference of the sheet. The

streaks then almost disappear as in Fig. 4�d�. In some cases,

falling droplets may induce a perforation �as seen in Fig. 4�b�
at the nine o’clock position� in the sheet followed by an

immediate reduction in the sheet diameter. The formation of

a hole is a clear indication of the pinching of the sheet. The

sheet finally reduces in diameter to a stable size under acous-

tic forcing �Fig. 4�d�� where the radial streaks vanish. The

drops either simply detach from the rim or are ejected as a

fine spray at discrete locations along the rim.

Figures 6�a� and 6�b� show two steady-state images of

liquid sheet at We=875 taken in absence and in the presence

of acoustic waves of frequency 160 Hz at 100 dB. The av-

erage diameter of the sheet reduced from 302 to 206 mm

under the influence of acoustic forcing with a significant in-

crease in the number of droplets. A closer inspection of the

two images also seemed to indicate that the size of the drop-

lets had decreased.

A similar response is seen at We=492 when the liquid

sheet is influenced by acoustic waves of 110 Hz at 100 dB

�Fig. 6�c� and 6�d��. Here, the lighting arrangement was

changed so as to highlight the ripples on the sheet surface

induced by the acoustics. The wavy surface is seen as bright

bands along the azimuthal direction in the upper half of

the sheet �Fig. 6�d��. The SPL acting on the sheet can

be calculated from the definition of sound intensity,

dB=20 log10�P / �2�10−5��, where P is the root mean square

SPL in pascal. For varying We, Fig. 7 plots the threshold

SPL, in dimensionless form �Pcdo /��, for decibel levels

ranging from 70 dB �0.002� to 125 dB �1.0� against the forc-

ing frequency. Here, Pc denotes the value of pressure only

above which the sheet responds �i.e., size is reduced� to the

external forcing. In these experiments, the frequency was

fixed and the decibel level at which the sheet responded was

recorded. The experiments were conducted for varying We

with measurements made at increments of 20 Hz. The value

of Pc for all We increases with frequency. As We increases at

a fixed frequency, the value of Pc reduces. These observa-

tions can be physically interpreted by noting that the sheet is

displaced perpendicular to its interface by the oscillating ex-

ternal pressure field. Balancing the external pressure with the

inertia of the film gives the magnitude of the acceleration as,

	�2� P /�lh, where 	 is the characteristic displacement of

the sheet. If we assume that a given liquid sheet will break

up only when the magnitude of the acceleration is above a

critical value, then the critical pressure should vary as the

square of the frequency. The solid line in Fig. 7 is drawn

with a slope of 2 suggesting that the observations follow this

trend. A more careful examination of the trend however in-

dicates that it is nonmonotonic between 100 and 300 Hz with

the sheet responding more readily to some select frequencies

in that range. For example, the nondimensional SPL for

We=578 increases from 0.035 to 0.1 and then decreases to

0.04 at �do /V=0.8 before rising again at higher frequencies.

This seems to suggest a possibility that the film resonates

with the forcing frequency at select frequencies.

In order to conduct a more extensive study of the influ-

ence of the acoustics on the sheet disintegration, we hence-

forth report experiments where the decibel level was fixed at

100 dB �Pdo /�=0.06� and the response of the sheet was

recorded for varying frequency. The experiments were

repeated several times to ensure the reproducibility of the

results.

(a) (b)

FIG. 5. A close-up of the radial streaks observed in the second quadrant of

the liquid sheet in �a� Fig. 4�b� and �b� Fig. 4�c�. The arrows highlight the

position of the streaks.

(a) (b)

(c) (d)

FIG. 6. Photographs of the liquid sheet at We=875, 160 Hz ��do /V

=0.32� �a� in the absence and �b� in the presence of acoustics �100 dB,

Pdo /�=0.06� and at We=492, 110 Hz ��do /V=0.37� �c� in the absence and

�d� in the presence of acoustics �100 dB, Pdo /�=0.06�. The lighting in the

latter case is changed to reveal the surface undulations.

0.001

0.01

0.1

1

0.1 1 10

We = 414

We = 465

We = 520

We = 578

We=608

We = 735

We=875

Slope =2

FIG. 7. The root mean square threshold SPL �Pc� is plotted against fre-

quency for various Weber numbers in the stable sheet regime.
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B. Response of the sheet to acoustics

The change in the diameter of the sheet is a good quan-

titative measure of the response of the sheet to acoustic forc-

ing. A detailed image analysis was performed to quantify

it. Experiments were performed at two different We in

the stable regime �We�800�, viz., We=492 and 608 and

two in the transition/flapping regime �We
800�, namely,

We=875 and 1350.

C. Stable sheet regime „We<800…

The top plot in Fig. 8 presents the response of the sheet

to various dimensionless frequencies ��do /V� for We=608.

The response is indicated in terms of the ratio of modified

diameter �D�� under the influence of acoustics to the original

diameter �D� of the sheet in the absence of any acoustic

forcing. Since the overall error in the sheet diameter mea-

surement is about 5%, a horizontal line passing through

0.95 is drawn to indicate that only those frequencies with

D� /D�0.95 are considered as a response to acoustics. It is

seen that the sheet responds to only select frequencies. For

example, while significant response can be observed at di-

mensionless frequencies of 0.33 ��a� 110 Hz� and 0.49 ��d�
160 Hz�, almost no change was observed at other frequen-

cies. The figure also includes the images of the sheet at fre-

quencies that correspond to those indicated by �a�–�f�. Image

�g� corresponds to the sheet formed in absence of acoustic

forcing. One of the noticeable aspects about these responses

is that the sheet is maximally influenced at the lower select

frequencies suggesting that the sheet resonates to these forc-

ing frequencies. Further, the measured wavelength of the

ripples on the sheet was approximately 0.011–0.014 m.

When the frequency was increased beyond 320 Hz and up

to 1500 Hz at 100 dB, the sheet showed no response at

all. Similar set of experiments performed for We=492

�not shown in the figure� resulted in a weak response at

�do /V=0.37 �110 Hz� and showed no response at higher

frequencies. This is in line with the previous observation that

the threshold SPL for breaking up the sheet increases with

frequency.

D. Flapping sheet regime „We>800…

Experiments were conducted in the transition/flapping

regime for We=875 and 1350. For We=875, the sheet re-

sponded to all dimensionless frequencies less than 0.91

�360 Hz� and showed no response for dimensionless frequen-

cies above 1.12 �440 Hz�. This trend is different from that

observed at We=608, where response was observed only at

selected frequencies. A similar observation was recorded by

Rhys
10

who noted significant response at low frequencies

�in his experiments, the response of the sheet to 776 Hz at

130 dB was more than at 1140 Hz at the same decibel level�
for thin liquid sheets of Wes=1100. A near-perfect circular

sheet was observed at We=875 with dimensionless frequen-

cies of 0.27 �110 Hz� and 0.41 �160 Hz�.
The response at We=1350 was different from that at

We=875 in that the response was much weaker �Fig. 8�.
Some reduction in sheet size was observed at frequencies

�0.65 �320 Hz� and 0.93 �460 Hz�� higher than those for

lower We. When the frequency was increased in steps of

50 Hz from 500 to 1000 Hz, the sheet did not show any

significant response.

E. Uniformity of sound intensity over liquid sheet
and standing waves

Recall that a significant response was observed at 110,

160, and 220 Hz at We=608. Figure 9 presents the measured

sound intensity levels at four different locations of the sheet

for an average intensity of 100 dB for six different frequen-

cies. The four measurements were made in the four quad-

rants of the sheet at a radial distance of 10–12 cm from the

point of impingement. A comparison of the intensity distri-

bution for 150 Hz �Fig. 9�c�� and 160 Hz �Fig. 9�d�� shows

FIG. 8. The normalized sheet diameter for We=608 and 1350 subjected to varying frequencies at 100 dB. The images show the response of the sheet. Image

�g� in both cases shows the sheet in the absence of forcing. The error bars account for the spatial and temporal variation in the size of the sheet.
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that the intensity levels in the four quadrants to be slightly

higher in case of 150 Hz although the response for

We=608 was pronounced at 160 Hz and significantly lower

at 150 Hz. The same is also true for 220 Hz where sheet

breakup is observed but the reading in the four quadrants

is somewhat lower than 100 dB. These observations sug-

gest that it is not the variation of sound intensity at the

sheet surface that results in pronounced response at select

frequencies.

Further, we checked if the resonance could be caused by

standing waves formed from the interaction of the reflected

waves from the sheet with the incident excitation. As men-

tioned in the experimental section, the distance between the

liquid sheet and the speaker is 60 cm. Since the speed of

sound is about 330 m/s, the characteristic frequency of the

standing wave is the quarter wave mode with a frequency of

330 / �4�0.6�=137.5 Hz. Note that this will be the lowest

frequency at which one would expect resonance with higher

ones being integer multiples of 137.5 Hz. Clearly, this is not

observed in our case since the resonant frequencies occur

more closely.

F. Droplet shedding frequencies

Drops ejected from the periphery of the sheet were

counted in a small region of interest �ROI� selected very

close to the sheet’s periphery in each of the captured images.

This ensured that only those drops that were shed from that

particular section were accounted in the analysis. Figure 10

shows two images of a section of the sheet, the first being a

single raw image with the ROI next to the sheet rim and a

second where the ROI in the same image has been processed

by first thresholding the image so as to clearly contrast the

drop against the background, using despeckle option to re-

move noise, and then smoothen to get whole drops. Using

this procedure we were able to determine the number and

size distribution of the drops in the ROI of each frame.

The drop-shedding frequency ��� was determined for

We=608, 875, and 1350 with sound level fixed at 100 dB.

The number of drops in the ROI was plotted against the

frame number and then the shedding frequency was evalu-

ated using the fast Fourier transform �FFT� technique. The

sound level was fixed at 100 dB in all cases. Figure 11 pre-

sents the intensity versus the frequency spectrum ��� in the

absence and presence of acoustic forcing.

The FFT plot for We=608 �Fig. 11� shows that there are

two shedding frequencies, one corresponding to the natural

frequency ��do /V=0.1,33 Hz� corresponding to the case of

no forcing and the other close to the forcing frequency

��do /V=0.33,110 Hz�. The latter is indicated by the arrow

in the plot. For We=875, in the absence of acoustics, there is

a distinctive peak at 0.05 �20 Hz� corresponding to the natu-

ral shedding frequency. In the presence of acoustics

��do /V=0.56,220 Hz�, a shedding frequency very close to

the applied acoustic frequency is observed.

In the flapping regime, corresponding to We=1350, a

weak response was observed at 440 Hz which corresponds to

�do /V=0.89. While there is a peak close to this value, there

are large peaks at several other lower frequencies. It should

be noted, however, that the measurement is prone to error by

the fact that We=1350 lies in the flapping regime where the

99.4 dB 99.7 dB

100.3 dB100.0 dB

98.5 dB 98.5 dB

97.8 dB99.9 dB

100 dB 99.8 dB

100.1 dB100.2 dB

(a)

(f)(e)(d)

(c)(b)

98.5 dB 99.4 dB

96.9 dB96.2 dB

99.4 dB 99.1 dB

100.0 dB100.1 dB

96.7 dB 99.2 dB

98.7 dB98.0 dB

FIG. 9. Measured sound intensity levels at four locations along the sheet for

100 dB at �a� 110 Hz, �b� 130 Hz, �c� 150 Hz, �d� 160 Hz, �e� 170 Hz, and

�f� 220 Hz.

Liquid sheet

(a)

(b)

FIG. 10. �Color online� �a� An original image with ROI and �b� a processed

image for determining the number and size distribution of drops. Only the

ROI is processed where the threshold was set between 55 and 255 followed

by despeckling and smoothening.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

We = 608
Without acoustics

�d
o
/V=0.33

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

We = 875
Without acoustics

�d
o
/V=0.56

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

We = 1350

�d
o
/V

Without acoustics

�d
o
/V=0.89

FIG. 11. Intensity vs droplet shedding frequency ��� in the absence and

presence of acoustics for We=608, 875, and 1350. The arrows indicate the

forcing frequency.
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sheet disintegration is violent and with large number of small

drops being dispersed everywhere. The number of stray

droplets coming into the camera frame increased signifi-

cantly during this experiment which might have resulted in

frequency peaks other than the forcing frequency.

G. Droplet size distribution

As in case of the shedding frequency, only the drops

very close to the sheet were considered for measurements.

This ensured that the droplets remained in the plane of the

sheet �since the distances were calibrated in the plane of the

sheet�. The drop size distribution was determined for We

=608, 875, and 1350 for various frequencies and decibel

levels. The results for the mean dimensionless drop sizes

�	d
 /do� are summarized in Table I. As We increases, the

mean drop size decreases in both the stable and flapping

regime and the measured sizes agree with those reported by

Villermaux and Clanet.
7

The introduction of the acoustic

field causes a further reduction in droplet sizes by about 35%

when the sheet maximally responds to the acoustic field. In

case of minimum response when the sheet diameter remains

unchanged in the presence of acoustics, there is a small

change in the average size confirming the fact that the

acoustic waves do not significantly affect the sheet at those

frequencies.

Figure 12 plots the probabililty distribution function for

various forcing conditions against the dimensionless drop

size. Interestingly, all the data points collapse even though

the flow conditions are very different. This is in line with

earlier studies which show that the distribution is universal in

shape with a long exponential tail at large drop sizes.

Villermaux et al.
13

showed that the drop size distribution,

irrespective of the atomization process, can be modeled by

focusing on the ligament breakup process during atomiza-

tion. The predicted drop size distribution follows a gamma

distribution,

p�X� =
nn

��n�
Xn−1e−nX, where X =

d

	d

. �6�

The experimental probability density function �PDF� ob-

tained by Bremond et al.
12

for liquid sheets forced by oscil-

lating jet impactor follows the above distribution with n ly-

ing between 4 and 5. In our case, the best fit value for n is

about 2.2 indicating that the decay at large sizes is somewhat

slow. This is because we are imaging a region close to the

sheet rim. Large drops on dissociating from the rim/sheet

edge and captured in our ROI undergo further breakup after

emerging out of the ROI. Also two neighboring drops at

distances less than our camera resolution �0.2 mm� will be

imaged as a single large drop. Consequently, we get a small

fraction of large drops �d / 	d

2.5� with PDF�0.04. Fur-

ther, the smallest drop that we can image is about 0.2 mm

�d / 	d
�0.2�, which corresponds to the size of 1 pixel.

III. MODEL EQUATIONS

In this section, we investigate the stability of moving

liquid sheets to externally varying pressure fields in an at-

tempt to explain some of the experimental results reported in

Sec. II. A time varying pressure field would accelerate the

sheet perpendicular to its plane and could destabilize the

sheet due to a RT type of instability. Our derivation of the

model equations follows that of Keller and Kolodner
14

who

derived the inviscid flow stability equations for a thin station-

ary liquid sheet accelerated perpendicular to its plane while

ignoring the flow in the gas phase. Our analysis builds on the

previous work by including the interaction of the liquid sheet

with the surroundings by perturbing the flow in the gas phase

while simultaneously accounting for motion of the liquid

sheet both parallel and perpendicular to its plane. It is impor-

tant to recognize at the outset that in our experiments, the

sheet thickness varies spatially and the flow is radial. How-

ever, in order to capture the main effects of external acoustic

forcing on such a flow, we simplify the situation to a constant

thickness sheet moving in a rectilinear direction.

Consider then a thin liquid sheet of thickness h moving

at a speed V in the horizontal �x� direction �Fig. 13�.
The acoustic source present on one side of the sheet sets

a time varying pressure field far away from the sheet,

Patm+ Pm cos��t�, while the pressure on the other side is at-

mospheric, Patm. The difference in the pressure across the

sheet imparts a vertical acceleration to the liquid sheet while

TABLE I. Mean droplet size �	d
 /do� with and without acoustics at 100 dB

and varying frequency.

We No acoustics Maximum response Minimum response

608 1.02 0.67 0.99

875 0.54 0.42 0.49

1350 0.37 0.32 0.34

0.0001

0.001

0.01

0.1

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PDF

We=608, 0 Hz

We=608, 110Hz, 100 dB

We=875, 460Hz, 90 dB

We=1350, 0 Hz

We=1350, 220 Hz, 100 dB

We=1350, 440 Hz, 100 dB

Fit (n=2.2)

d d

0.0

0.4

0.8

1.2

0 1 2 3 4

FIG. 12. PDF for drop size in the presence and absence of acoustics for

varying flow and forcing conditions. The solid line is a curve fit using the

gamma probability distribution �6�.
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FIG. 13. Acoustic pressure acting on one side of the sheet exposed to the

speaker.
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the liquid sheet moves in the transverse direction. If 
 and �
are the velocity potentials in the liquid and gas phase,

respectively, the pressure in each phase for inviscid flow is

given by

pl

�l

=
�


�t
−

1

2
��
�2,

�7�
pa

�a

=
��

�t
−

1

2
����2.

The top �i=1� and bottom �i=2� interfaces of the film

are prescribed by

z = Fi�x,y,t� . �8�

The normal stress balance at the liquid-gas interface �z=Fi�
is given by

�l� �


�t
−

1

2
��
�2 − �− 1�i

�i2Hi

�l

� = �a� ��

�t
−

1

2
����2� ,

�9�

while the kinematic boundary condition at the interface

z=Fi in the two phases is obtained as

�


�z
−

�


�x

�Fi

�x
−

�


�y

�Fi

�y
+

�Fi

�t
= 0, �10�

��

�z
−

��

�x

�Fi

�x
−

��

�y

�Fi

�y
+

�Fi

�t
= 0. �11�

We assume a series expansion for the solution so that the

zero order term corresponds to the base state, 
=
0+�
1

+¯, �=�0+��1+¯, and Fi=Fi
0+�Fi

1+¯. For a liquid

sheet moving simultaneously in the x direction with speed V

and in the z direction with speed u�t�, the velocity potential

�zeroth order� is given by


0 = − u�t�z − Vx + b�t� , �12�

which on substitution in Eq. �7� gives

db

dt
= u̇Fi

0 +
u2

2
+

V2

2
+

pa,i

�l

�13�

with the velocity in the z direction related to the sheet inter-

face motion �from Eq. �10��, u=dFi
0
/dt. Note that since the

sheet is undeformed the pressure in the liquid phase is the

same as that in the gas phase. The liquid sheet thickness is

given by F1
0−F2

0=h. The corresponding equations for the gas

phase are

�i
0 = − u�t�z + ci�t� and

�14�
pa,i

�a

= −
1

2
u�t�2 − u̇�t�Fi

o +
dci

dt
.

Since pa,1=0 and pa,2= Pm cos��t�, the external pressure can

be related to the sheet acceleration using Eq. �14� and the

normal stress balance condition, u̇�t��lh= Pm cos��t�.
The first order solution is obtained by substituting the

velocity potential and the sheet position in the series expan-

sion in Eq. �9� and retaining terms linear in only first order,

�l� �


�t
− u̇Fi + u
z + V
x − �− 1�i

�i�
2Fi

�l

�
z=Fi

= �a� ��i

�t
+ u�t�

��i

�z
− u̇�t�Fi�

z=Fi

. �15�

The superscript “1” has been dropped for convenience.

Similarly, the kinematic boundary conditions �10� and �11�
reduce to

V
�Fi

�x
+

�


�z
+

�Fi

�t
= 0 on z = Fi, �16�

��i

�z
+

�Fi

�t
= 0 on z = Fi. �17�

Since 
 satisfies the Laplace equation, we assume the fol-

lowing form:


 = 
g1�t�ekz + g2�t�e−kz���x,y� . �18�

Consequently, Eq. �16� suggests the interface location,

Fi= f i�t���x ,y�, so that from Eq. �17� we have

��i

�z
= −

� f i

�t
��x,y� . �19�

Further if we assume �i�x ,y ,z , t�= �−1�i−1��x ,y�si�z�� f i /�t,

we have

dsi

dz
�z = Fi� = �− 1�i. �20�

Also, �i satisfies the Laplace equation,

�2�

�
= −

1

si

�2si

�z2
= − k2. �21�

The above relation along with the boundary condition �20�
suggest the following form for si�z�:

si�z� =
e�− 1�ik�z−Fi�

k
�22�

so that s1�z→��→0 and s2�z→−��→0.

On substituting the expression for 
 in Eq. �16�, we

have

k
g1ekFi
0

− g2e−kFi
0

� + ḟ i

Vf i

= −
�x

�
. �23�

Since we will consider motion only in the x and z directions,

we drop dependence on y so that ��x�=�oeikx. On substitut-

ing ��x�, the above equation relates f i and, g1 and g2,

g1�t� =
e−kF1

0

k
� � ḟ2e−kh − ḟ1� − ikV�f1 − f2e−kh�

1 − e−2kh � , �24�

g2�t� =
ekF1

0

k
� � ḟ1 − ḟ2ekh� − ikV�f2ekh − f1�

1 − e2kh � . �25�

Similarly, Eq. �15� becomes
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ġ1ekFi
0

+ ġ2e−kFi
0

− u̇ f i + ku�g1ekFi
0

− g2e−kFi
0

�

+ ikV�g1ekFi
0

+ g2e−kFi
0

� + �− 1�i
k2Tf i

�l

+ �− 1�i
�a

�l

1

k

d2f i

dt2
+

�a

�l

�u
df i

dt
+ u̇ f i� = 0, �26�

where the gravity term has been dropped. On substituting the

above expressions for g1 and g2 along with that for �i in the

above equation gives two second order differential equations

in terms of f+= f1+ f2 �sinuous mode� and f−= f2− f1 �dilata-

tional mode�,

f̈+�tanh� kh

2
� +

�a

�l

� + ḟ+�2Vik tanh� kh

2
��

+ f+�− k2V2 tanh� kh

2
� +

k3�

�l

�
= f−u̇k�1 −

�a

�l

� − ḟ−

�a

�l

ku , �27�

f̈−�coth� kh

2
� +

�a

�l

� + ḟ−�2Vik coth� kh

2
��

+ f−�− k2V2 coth� kh

2
� +

k3�

�l

�
= f+u̇k�1 −

�a

�l

� − ḟ+

�a

�l

ku . �28�

We recover the result of Squire �KH instability� on consid-

ering only the sinuous mode with u̇=u=0. The other limit of

pure RT instability for an accelerating sheet
14

is obtained �in
the absence of gravity� when the pressure difference across

the sheet is assumed to be a constant and both the density of

air and the transverse velocity of the sheet are set to zero.

For small forcing, an approximate solution to Eqs. �27�
and �28� is possible using method of multiple scales. The

asymptotic solution, which is given in the Appendix, demon-

strates two distinct time scales corresponding to the sinuous

and the dilatational modes. The predicted threshold value of

SPL at which instability occurs decreases with We and in-

creases with �, both in qualitative agreement with the ex-

perimental observations. However, the threshold value is an

order of magnitude lower while the predicted wavelengths

are higher than those observed. These discrepancies are not

surprising since the experimental conditions correspond to

finite forcing which motivates the need for full numerical

solution of the governing equations for comparison with ex-

perimental results.

IV. COMPUTATIONAL RESULTS

The governing Eqs. �27� and �28� are solved using the

Floquet theory which states that for a system of equations of

the form

A�t�f�t� = Bf��t� , �29�

where f�t� is the unknown function of time, A�t� is a con-

tinuous T periodic matrix, and B is a constant matrix, there

exists a constant matrix R such that

S�t + T� = RS�t� . �30�

Here, S�t� is the fundamental solution matrix satisfying

Eq. �29�. Further, if the characteristic roots of R are

�i , i=1,2 , . . ., then the solution of Eq. �29� can be written as

xi = e�itzi�t� with zi�t + T� = zi�t� ,

where the characteristic exponents �i are related to the char-

acteristic roots by

�i =
1

T
ln��i� .

Since S�T�=RS�0�, R can be obtained by integrating Eq.

�30� over one period with S�0�=I, where I is the identity

matrix. The stability property is determined by the sign of �i.

The flow is linearly unstable if the real part of �i is positive;

if it is negative the flow is stable. Otherwise the flow is

neutrally stable. The imaginary part of �i determines the fre-

quency response of the perturbed flow to the periodic forc-

ing. Further, it is assumed that the physically observable

growth rate will correspond to the wavenumber with the

largest positive value of the real part of �i.

The simulations were performed for the We=608 �stable

regime� and 1350 �flapping regime�, sheet thicknesses of 7

and 100 �m and varying frequencies and dimensionless

wavenumber �x=kh /2�. While the latter thickness applies to

regions close to the point of impingement, the former is rep-

resentative of the outer edge of the sheet �see Table II�. All

the computations were performed at SPL of 100 dB, which

corresponds to peak pressure of 2.83 Pa �Pmdo /�=0.085�.
The predicted maximum growth rates are plotted in Fig.

14 against the respective frequencies and wavelengths for

7 �m thickness sheets. For comparison, we have also plot-

ted the sinuous and dilatational growth rates in the absence

of forcing �purely KH instability�. At We=608, the dilata-

tional growth rate is much larger than the sinuous mode for

the KH instability �Fig. 14�a��. For the pure KH case, it is

well known that the sinuous mode is always stable for

Wes�2, whereas the dilatational mode will be unstable. For

We=608 in Fig. 14�a�, Wes=1.97 implying that the sinuous

mode is stable. However, even the maximum dilatational

growth rate in the absence of acoustics �pure KH case� is

two orders of magnitude lower than the peak values in the

presence of acoustics �Fig. 14�b��. Further, two distinct peaks

in growth rates at a fixed forcing frequency are observed.

TABLE II. Measured sheet diameter and predicted film thickness at the edge

of the sheet.

V

�m/s� We

D

�m�
h

��m�

4.04 492 0.27 8.9

4.49 608 0.33 7.9

5.38 875 0.28 7.5

6.73 1368 0.24 10.2
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The magnitude of the second peak at the larger value of x is

higher suggesting that the forcing will result in wavelengths

that are smaller than that predicted in the absence of acous-

tics �KH instability�. If the droplets are assumed to be related

to this wavelength then the prediction is in line with the

experimental observation where the drop size reduced sig-

nificantly under forcing. Note further that the magnitude of

the sinuous and dilatational modes are comparable unlike in

the case of KH instability. The variation of the growth rates

of the two modes with frequency will be discussed later.

At higher liquid velocity but at the same SPL, the mag-

nitude of the growth rates due to KH instability becomes

significant. This is evident on comparing We=1350 for the

KH case �Fig. 14�c�� with that under forcing �Fig. 14�d��
where the growth rates for the two cases match for x�1.5

�10−3. The lower peaks at higher x are from the periodic

forcing. Thus for a constant thickness, the growth rates for

the periodic forcing are much higher at lower velocities,

which explains the strong influence of acoustics for all We-

ber numbers except We=1350 �the peak in growth rate here

is set by the KH instability�. Not only does the growth rate of

the KH instability increases with We but the wavelength

for the maximum growth rate for the KH instability also

decreases.

At a fixed velocity, the thicker sheet is less affected by

the forcing compared to the KH instability since the accel-

eration imparted by the forcing goes as, Pm /�lh. This is evi-

dent from the comparison of growth rates for 100 �m �Fig.

15� where the dimensional growth rates for the periodic forc-

ing is almost an order of magnitude lower than that due to

KH instability. Again, the peaks due to the KH instability

match in the two-dimensional �2D� and 3D plots.

V. COMPARISON WITH EXPERIMENTS

Recall that the observed wavelengths of the ripples in

the radial direction are ��0.011–0.014 m. Figure 16�a�
plots the most unstable wavelength as a function of the di-

mensionless frequency for h=7 �m, which corresponds to

the edge of the sheet �results for h=10 �m are similar�. The

predicted values lie close to the observed range �indicated by

two horizontal dotted lines�. On the other hand, the purely

KH instability wavelengths �i.e., in the absence of forcing�
are twice the measured values and the growth rates are two

orders of magnitude lower than those in the presence of

acoustics �Fig. 16�b��. The zero frequency case, also plotted

in Fig. 16�b� and which Bremond et al.
12

consider �purely RT

instability�, results in a flat growth rate curve in the ROI and

does not yield a unique wavelength. While Bremond et al.
12

attributed the wavelength selection to extraneous factors,

such as the roughness of the injecting device, the most un-

stable wavelength in our case is determined uniquely by the

parametric resonance. This applies also to a periodically

(a) (b)

(c) (d)

FIG. 14. The dimensionless maximum growth rate plotted as a function of x=kh /2 and �do /V for a sheet of thickness 7 �m, and V=4.5 m /s �We=608�,
�a� without and �b� with forcing. Similarly, for V=6.73 m /s �We=1350�, �c� without and �d� with forcing.
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forced stationary liquid sheet �V=0, �=691.1 rad /s in Fig.

16�b��, which shows a peak growth rate at a unique wave-

length.

The question now arises if the pronounced response ob-

served at selected frequencies can be predicted by the model

calculations. Note that this trend is also observed for other

Weber numbers �Fig. 7� where the SPL to induce response is

nonmonotonic in the frequency range of �do /V=0.3–1.0.

Recall that We�800 corresponds to the stable sheet regime

where the balance of surface tension and inertial forces at the

rim sets the sheet diameter. The sheet surface is smooth and

is not significantly perturbed by the KH instability. In our

experiments, the thickness close to the edge of the sheet is of

the order of 10 �m and a rim of a few millimeter thickness

borders the sheet. Consequently, the displacement of the rim

is expected to be at least two orders of magnitude lower than

the rest of the sheet. Therefore, the rim is displaced negligi-

bly by the external forcing compared to the rest of the sheet.

The situation is identical to a circular elastic sheet that is

pinned at the edges which is capable of supporting standing

waves. This is somewhat similar to the case studied by

Benjamin and Ursell
15

who showed that the liquid surface is

excited at only those frequencies that corresponded to the

spatial modes supported by the geometry of the container.

The differential equation for the spatial mode of the ripples

can be obtained in one dimension on solving Eq. �21� with

the boundary conditions of symmetry at the center and

negligible displacement at the edges. The solution gives the

spatial modes of the system as cos�kmD /2�=0, where

km= �2m+1�� /D and m=1,2 , . . .. For simplicity, we use the

cosine function instead of the Bessel function as the zeros of

the two functions are nearly equal for large m. Figure 17

presents separately for We=608 and h=7 �m, the 2D plots

of the most unstable mode for selected spatial modes

�m=22–25� that exhibit significant growth rates. For a given

spatial mode, the growth rate consists of large regions of

high growth rate interspersed by regions of negligible rates.

The trend seems to suggest that the sheet will break up over

a certain range of forcing frequencies if the frequency lies in

regions of high growth rates. The plot also includes vertical

arrows that indicate the frequencies at which the sheet re-

sponded significantly in our experiments to the acoustics.

Although the observed frequencies lie in the range predicted

by the model, no response was recorded at higher frequen-

cies �0.5��do /V�0.9�, where the predicted growth rates

are higher. Thus the agreement between the observations and

predictions is only qualitative and more work is required to

ascertain the reasons behind these discrepancies. However,

the model predictions are in line with those of the nonlinear

stability analysis by Jazayeri and Li
16

of a moving plane

liquid sheet �in the absence of acoustics� who used a pertur-

bation expansion technique and showed that while the most

unstable mode at the lowest order is sinuous �linear stabil-

ity�, the thinning and subsequent breakup of the sheet is

caused by the second order term that is dilatational in nature.

This suggests that in our case, the external varying pressure

(a) (b)

(c) (d)

FIG. 15. The dimensionless maximum growth rate plotted as a function of x=kh /2 and �do /V for a sheet of thickness 100 �m, and V=4.5 m /s

�We=608�, �a� without and �b� with forcing. Similarly, for V=6.73 m /s �We=1350�, �c� without and �d� with forcing.
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field couples the sinuous and dilatational modes at the lowest

order leading to an early breakup.

A close look at the second quadrant of the circular sheet

in Fig. 5 reveals radial streaks separated at a distance of

0.008–0.012 m just before breakup. It is possible that the

streaks are a result of the sheet becoming unstable in the

azimuthal direction also. Further, once the sheet reaches a

stable diameter under acoustic forcing, the droplets either

detach from the rim as observed in the stable regime or are

ejected in form of a fine spray at discrete locations along the

rim of the sheet. These observations indicate that the mea-

sured drop size distribution is an outcome of a complex pro-

cess of atomization, which may not be captured by the linear

stability analysis presented here. The ripples observed in our

experiment, in all probability, are caused by the superposi-

tion of various unstable modes. While it is not possible to

ascertain the exact spatial modes excited by the acoustics, the

qualitative agreement between the observed wavelength of

the surface ripples �0.011–0.014 m� and that of the spatial

modes in Fig. 17 lends support to the proposed mechanism.

Simulations were also performed to determine the criti-

cal pressure for a constant growth rate and for varying fre-

quency at the experimentally observed wavenumbers. While

the pressure showed peaks at selected frequencies, as ex-

pected from the trend in Fig. 17, we are unable to predict

numerically the observed increase in the critical SPL varia-

tion with forcing frequency. In fact our simulations show that

for a fixed thickness, wavelength, and liquid velocity, the

growth rate increases with frequency. Kumar
17

predicts in-

creasing forcing amplitude with frequency for stationary liq-

uid sheets and attributes it to the viscous dissipation. How-

ever, their numerical simulations for thick sheets ��1 mm�
for high frequencies ��10 kHz� show an almost linear in-

crease with applied frequency. These results along with the

fact that the liquid sheet thickness varies spatially and is

moving underscores the need for solving the viscous mo-

mentum equation along with determining the stability of the

film to spatially growing instabilities in the film.

VI. CONCLUSION

We study the influence of acoustics on thin planar liquid

sheets formed by impinging two collinear water jets. Experi-

ments have been performed over a range of We, forcing fre-

quency and SPL. For a given We and acoustic frequency,

there is a threshold SPL below which the sheet will not re-

spond. The threshold SPL appears to scale as the square of

the forcing frequency. For experiments conducted at a fixed

sound intensity of 100 dB �Pdo /�=0.06�, the sheet re-

sponded to external forcing for We=492, 608, 875, and

1350. Further, the sheet showed pronounced response at se-

lected frequencies. The droplet size reduced significantly and

the shedding frequency was close to the forcing frequency in

some cases.

(a)

(b)

FIG. 16. �a� Comparison of the most unstable wavelength for h=7 �m with

measurements. The wavelength predicted from the purely KH instability is

included for comparison. �b� Growth rate for a moving sheet under periodic

forcing, a stationary sheet under forcing, a purely RT, and a purely KH

instability.
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FIG. 17. Dimensionless growth rate plotted as a function of dimensionless

forcing frequency for a sheet of thickness 7 �m and V=4.5 m /s

�We=608� for x=0.001 566 �m=22�, 0.001 633 �m=23�, 0.001 699

�m=24�, and 0.001 766 �m=25�. These values of x fall within the measured

range. The arrows indicate the frequencies at which significant sheet reduc-

tion was observed.
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The model of Squire
1

was extended to account for the

influence of the external pressure forcing on a liquid sheet of

constant thickness. The model equations show that the sinu-

ous and the dilatational modes are coupled, which is in con-

trast with the KH instability, where the growth rates for the

dilatational modes are negligibly small. The Floquet analysis

was employed to determine the maximum growth rate for a

given set of parameters. At a constant thickness, the growth

rates for the periodic forcing are higher at lower velocities,

which explains the importance of periodic forcing over the

KH instability. On the other hand, at a fixed velocity, the

thicker sheet is less affected by the forcing compared to the

KH instability. The simulations predict maximum growth

rates at wavenumbers close to those observed in the experi-

ments. However, the model was neither able to predict the

observed variation of SPL with forcing frequency nor was it

able to reproduce the pronounced response at discrete fre-

quencies. Clearly, more work is needed to clarify these

issues.
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APPENDIX: MULTIPLE SCALE ANALYSIS
FOR THE COUPLING OF SINUOUS
AND DILATATIONAL MODES

Equations �27� and �28� are reminiscent of the Mathieus

equation for an oscillating pendulum with a periodically

varying length except that in our case, the periodicity comes

from the coupling of the sinuous and dilatational modes.

Consequently, we attempt an approximate solution using the

method of multiple scales in manner similar to those for the

Mathieus equation. The response of the sheet at selected fre-

quencies, the existence of a threshold value of SPL only

above which the sheet responds to external forcing, and the

variation of threshold SPL with We is simulated by an

asymptotic analysis of the equations governing the evolution

of waveforms of the sheet. The main step of the solution

procedure is to recognize the existence of two distinct time

scales at which the amplitude of the sinuous and dilatational

mode varies. There is a fast time scale at which the ampli-

tude oscillates while a much longer time scale at the which

the amplitude drifts. While the former occurs at inverse of

the eigenvalues of Eqs. �27� and �28� obtained in the absence

of the external pressure variation, the latter is the result of the

coupling between the two modes.

We proceed by rendering Eqs. �27� and �28� dimension-

less,

f̈+�z + r� + ḟ+2�zi + f+�� − �2z�

= �1 − r��f− cos t̄ − r� ḟ− sin t̄ , �A1�

f̈−�1 + zr� + ḟ−2�i + f−��z − �2�

= �1 − r�z�f+ cos t̄ − zr� ḟ+ sin t̄ , �A2�

where �= Pmk /�l�
2h, z=tanh�kh /2�, �=kV /�, t̄=�t,

r=�a /�l, and �=k3� /�l�
2. We look for a solution of the

forms f+�t̄ ;��= f+�T0 ,T1 ;�� and f−�t̄ ;��= f−�T0 ,T1 ;��, where

T0= t̄ is the fast time scale and T1=�t̄ is the slow time scale.

We propose an expansion in f+ and f− for ��1,

f+�t̄;�� = f+
0�T0,T1� + �f+

1�T0,T1� + ¯ , �A3�

f−�t̄;�� = f−
0�T0,T1� + �f−

1�T0,T1� + ¯ . �A4�

Substituting the above expansion in Eqs. �A1� and �A2�
and comparing coefficients of �n, we obtain a sequence of

problems.

At �0,

D0
2f+

0�z + r� + D0
1f+

02�zi + f+
0�� − �2z� = 0, �A5�

D0
2f−

0�1 + zr� + D0
1f−

02�i + f−
0��z − �2� = 0. �A6�

Here, D0
1�� /�T0, D0

2��2
/�T0

2, etc. Integrating with respect

to T0 and treating T1 as an independent variable held con-

stant, we obtain a general solution,

f+
0 = A1�T1�eia1T0 + A2�T1�eia2T0, �A7�

f−
0 = B1�T1�eib1T0 + B2�T1�eib2T0, �A8�

where ai=1,2 and bi=1,2 are the eigenvalues for sinuous and

dilatational modes for the KH instability in the absence of

the external pressure, respectively.

At �1,

D0
2f+

1�z + r� + D0
1f+

12�zi + f+
1�� − �2z�

= − 2�z + r�D0D1f+
0 − 2�ziD1f+

0 +
f−

0

2
�eit + e−it� , �A9�

D0
2f−

1�1 + zr� + D0
1f−

12�i + f−
1��z − �2�

= − 2�1 + zr�D0D1f−
0 − 2�iD1f−

0 + z
f+

0

2
�eit + e−it� .

�A10�

Since for our case r�1 we have dropped the sin t̄ term on

the right hand side of Eqs. �A1� and �A2�. Substituting Eqs.

�A7� and �A8� in the above two equations we recognize that

resonance arising from the coupling is possible when

ai = bi + 1. �A11�

In the case of ai�bi+1, we introduce a detuning parameter
18

� defined by ai=bi+1+�� to determine the bounds for

stable forcing. Substituting this new expression for ai in Eqs.

�A9� and �A10� and applying the secularity condition that the

asymptoticness is not lost when T1=O�1� gives a differential

equation for A1,
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D1
2A1 + i�D1

1A1 + �A1 = 0, where

�A12�

� =
z

16��1 + zr�bi + ����z + r�ai + �z�
.

Substituting A1=ei�T1 in the above equation gives

�= �−����2+4�� /2. Thus the coupling leads to instability

when �2+4��0. Consequently, substitution of ai and bi

in the expression for � gives two possible combinations

of eigenvalues at which instability could occur, namely,

a1=b2+1+�� or a2=b1+1+�� with

� = −
1

16

z

���2 + �1 + zr���z − �2����2z2 + �z + r��� − �2z��
.

The line of neutral stability and therefore the transition curve

is obtained from �2+4�=0,

a1 = b2 + 1 � 2����� , �A13�

a2 = b1 + 1 � 2����� . �A14�

The asymptotic solution �Eqs. �A13� and �A14�� repre-

sents transition curves that divide the pressure-frequency

plane into regions of stability and instability. The approxi-

mate analysis also gives the growth rate of the instability for

low forcing ��� and negligible liquid velocities. The growth

rate on coupling of the sinuous and dilatational modes attains

the highest value for �=0, �=����. On neglecting interac-

tions with surrounding air �r=0�, the dimensional growth

rate becomes �Pm
2

/16k�h2�l �root mean square pressure is

related to the peak pressure, Pm= P�2�. If we assume that

sheet will become unstable when the flow time scale is of the

order of the inverse of growth rate, the critical SPL �Pc�
becomes

� Pc
2

8k�h2�l

�
2V

D
. �A15�

The wavenumber is related to the applied forcing frequency

by the resonance condition, Eq. �A11�, k=���lh /2�. For

low We, the diameter of the sheet is related by Eq. �1�, giving

Pcdo

�
� 8�2

��do/V�1/2

We7/4
. �A16�

The above scaling predicts that the critical SPL decreases

with We and increases with �, both in qualitative agreement

with the observation �Fig. 7�. However the prediction is

about an order of magnitude lower and the increase with

frequency is much slower ���� than that observed ���2�.
Further, the predicted wavelength �=2� /k�0.04 m is

higher than measured values �0.011–0.014 m�. These dis-

crepancies are not surprising since the experimental condi-

tions correspond to ��O�1�, which motivates the need for

full numerical solution of the governing equations for com-

parison with experimental results.

We would like to note that the “wavy corridor” mecha-

nism suggested by Bremond et al.
12

for the breakup of liq-

uids sheets oscillated using a jet impactor is different from

the coupling mechanism suggested here. Their analysis based

on transient accelerations imparted to the sheet involving a

centrifugal instability of a RT type suggests a growth rate

that varies as ��h�2
/2�, where � is the imposed sheet ac-

celeration. On the other hand, the parametric resonance pre-

dicted by our analysis results in a growth rate �asymptotic

solution� which is different, ���2
/16�k, where k is related to

the thickness via the resonance condition, k=���lh /2�. Fur-

ther, they showed that for a fixed jet velocity and imposed

amplitude of oscillation, the radius of the sheet reduces

monotonically with increasing imposed frequency. The

present results show that on solving the full equations, the

sheet reduction occurs over a selected range of frequencies

when it is exposed to external acoustics.
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