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In this paper, instability mechanisms in a low Mach number reacting flow are inves-

tigated. Here, the emphasis is on the growth or decay of acoustic oscillations which

arise from the acoustic-hydrodynamic interaction in a low Mach number reacting

flow. Motivated by the studies in magnetohydrodynamics and atmospheric flows, we

propose to investigate the acoustic-hydrodynamic coupling as a system of wave-mean

flow interaction. For example, a comparison with the heat fluctuation modified

hydrodynamics associated with magnetohydrodynamics is useful in understanding

this coupling. The wavelike acoustic disturbance is introduced here as a compress-

ibility correction to the mean flow. Accounting for the multiple scales introduced by

the weak compressibility, we derive a set of equations governing wave-mean flow

interaction in a reacting low Mach number flow. Sources such as volume expansion

(which, in atmospheric flows arises due to the density variation with altitude) occur

in reacting flows due to the heat release rate. This heat release rate, when coupled

with the acoustic field, often leads to self-sustained thermo-acoustic oscillations. In

the study of such oscillations, we discover a relation between the acoustic pressure

and second order thermal fluctuations. Further, using this relation, we discover the

nonlinear coupling mechanism that would lead to self-sustained oscillations in a

reacting low Mach number flow. This mechanism, represented by a coupled convec-

tion reaction diffusion system, is presented here for the first time. In addition to the

acoustic pressure and temperature fields, we also discover the role of acoustic veloc-

ity field in the acoustic-hydrodynamic interaction through a convective and lift-up

mechanism. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923233]

I. INTRODUCTION

In a reacting low Mach number flow, an acoustic field introduces weak compressibility in an

otherwise incompressible flow. Zank and Matthaeus1 described such a flow as nearly incompress-

ible fluid flow. In magnetohydrodynamic (MHD) flows, Zank and Matthaeus1 studied the effect of

weak compressibility using the method of multiple scales (MMS). Such an approach is not unique

to the study of MHD. In atmospheric flows, where density varies with altitude, a similar system

has been studied.2 Accounting for density inhomogeneity, Bühler2 derived a system of equations for

describing wave-mean flow interaction. This system of equations resembles that of nearly incom-

pressible fluid flow derived by Zank and Matthaeus.1 Following Zank and Matthaeus,1 Hunana

et al.3 extended the analysis to include large scale density inhomogeneity in the solar wind. The

description of wave-mean flow interaction in atmospheric flows and nearly incompressible flows in

MHD resembles that of a reacting low Mach number flow.

Mechanisms responsible for wave-mean flow interaction vary from one system to another.

In a nearly incompressible fluid flow as found in MHD, there is a mutual coupling between the

magnetohydrodynamic turbulence and the acoustic field.4 The volume expansion due to the density

inhomogeneity influences the waves in atmospheric flows.2 In a reacting flow, volume expansion

a)Electronic mail: vinuvargheseijk@gmail.com
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is one of the sources driving the acoustic field. Here, the volume expansion is due to the heat

release rate from chemical reaction. This volume expansion can become unsteady when it occurs

in response to the unsteady heat release rate. We will show in this paper that such a process can

lead to the nonlinear evolution of acoustic field variables. In reacting flows, when the acoustic

driving is stronger than the damping in the system, the acoustic-hydrodynamic interaction can

establish a positive feedback loop, leading to self-sustained acoustic oscillations.5 This phenom-

enon is known as “thermo-acoustic instability.” Thermo-acoustic oscillation is a consequence of

acoustic-hydrodynamic interaction in reacting flows.5–7

These self-sustained acoustic oscillations introduce localized fluctuations in the heat release

rate. Apart from that, vortex shedding5 or parametric instability of flame8 also result in localized

heat release rate fluctuations. The spatial scale corresponding to these fluctuations is much shorter

compared to the long wavelength acoustic wave. We will derive equations to describe the influence

of the heat release rate fluctuations on the wave-mean flow interaction.

Towards this purpose, we need to know the mechanisms responsible for heat release rate modi-

fication in a reacting low Mach number flow. Dunlap9 suggested a possibility where the reaction rate

is modified by the second order thermal fluctuations or acoustic pressure fluctuations. Consistent

with the earlier theoretical studies,10–12 we will use the terms “temperature coupling” and “pressure

coupling” to describe such processes.

In addition, Markstein13 suggested a velocity coupling mechanism in which the heat release

rate is modified by the gas flow velocity around the flame. The modified heat release rate, in turn,

modifies the gas flow velocity. Based on the equations derived for acoustic-hydrodynamic interac-

tion, we show that the above mentioned coupling mechanisms due to gas flow velocity, acoustic

pressure, and thermal fluctuations are essentially nonlinear. We show that this nonlinear behavior

contributes to the self-sustained oscillations in a thermo-acoustic system.

Theoretical studies on these nonlinear mechanisms focus on the rate of growth or decay of

acoustic oscillations.10–12,14 These studies necessitate a characteristic time scale for describing the

growth or decay of acoustic oscillations. The necessity for two time scales, an acoustic time scale

and a characteristic time scale for the growth or decay of acoustic amplitude, is thus clear from

the earlier theoretical studies.10–12,15 Later in this paper, based on these earlier studies, we will

determine a characteristic time scale that describes the coupling process responsible for the growth

or decay of acoustic oscillations.

The coupling mechanisms have their origin in the acoustic-hydrodynamic interaction. Analyt-

ical studies for acoustic-hydrodynamic interaction are limited to cases where the reaction zone is

compact (length scale of the reaction zone is much less than the acoustic wavelength) and can be

treated as a discontinuity.14–16 A Rankine-Hugoniot relation is used to relate the acoustic velocity

across the discontinuity.14,15 However, in such cases, the acoustic pressure does not vary across the

reaction zone.12 Matalon and Matkowsky16 and Wu et al.14,15 showed that when the flame is treated

as discontinuity, the acoustic-hydrodynamic interaction is governed by the velocity coupling. For

a distributed mean heat release rate, such as in a well stirred reactor, the flame can no longer be

treated as a discontinuity and the acoustic pressure varies across the flame. For such a case, Clavin

et al.10,11 suggest the existence of pressure and temperature coupling.

These coupling mechanisms are essentially related to the heat release rate from chemical reac-

tion. Therefore, the first step towards understanding pressure, temperature, and velocity couplings

is to find out how the fluctuations of pressure, temperature, and velocity lead to the heat release

rate fluctuation.10 While deriving the governing equations for acoustic-hydrodynamic interaction,

we will show that finding such a relation is possible once we understand the order of magnitudes of

fluctuations in pressure, velocity, and temperature due to the acoustic field. Clavin et al.10 provide us

with such an understanding, where they suggest the order of fluctuations with respect to the mean

flow variables.

A subsequent study by Clavin et al.11 shows the influence of the order of magnitude of acoustic

pressure and acoustic velocity on the heat release rate fluctuation. With this insight, and consid-

ering the fluctuation of heat release due to turbulence, they modeled a nonlinear acoustic pressure

equation to study the transition of thermo-acoustic system to instability or self-sustained oscilla-

tions. They investigated the nonlinear evolution of the acoustic pressure caused by turbulence. The
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nonlinear effects, arising from the coupling between the hydrodynamic field and the acoustic field,

were examined earlier by Culick17,18 for compressible flows. He describes a “gas dynamic nonlin-

earity” due to the acoustic source terms u′.∇u′ and p′∇p′, where u′ and p′ are the acoustic velocity

and pressure, respectively. However, in the case of weak compressibility, as in the case of nearly

incompressible flow, contribution from such terms is negligible when compared to the nonlinear

terms due to heat release rate.

This weak compressibility, however, gives rise to self-sustained acoustic oscillations. Our

objective is to reveal the fundamental mechanisms of acoustic-hydrodynamic interaction leading to

such oscillations. An investigation in that direction will lead to a general theory for instability in

low Mach number reacting flows. An understanding of the nonlinear processes introduced by weak

compressibility, when extended to include density inhomogeneity and volume expansion due to heat

release rate, helps to explain the origin of self-sustained oscillations in low Mach number flows.

In this paper, from the equations governing compressible fluid flow, we will derive equations

describing the acoustic-hydrodynamic interaction. Using these equations, we will derive a nonlinear

equation describing the growth or decay of acoustic oscillations. Physical mechanisms such as pres-

sure coupling, temperature coupling, and velocity coupling will be explained using the equations

for acoustic-hydrodynamic interaction. We show the significance of these coupling mechanisms in

the origin of self-sustained oscillations, by deriving nonlinear coupled convection reaction diffusion

(CRD) equations. Our CRD equations, which show the influence of heat release rate fluctuations in

determining the nonlinear evolution of acoustic pressure, are introduced for the first time to study

the stability of reacting low Mach number flows. For demonstrating the influence of heat release rate

on the self-sustained oscillations, we have used a reaction-diffusion (RD) system, by neglecting the

effect of convection in CRD equations, to predict the transition to self-sustained acoustic pressure

oscillation. Then, we solve the full convection reaction diffusion system to study the change in the

nature of transition due to convective effects. We will also prove, by describing the nonlinear evolu-

tion of acoustic pressure amplitude as a function of convective time scale, the role of convective

time scale as the characteristic time scale for describing the acoustic-hydrodynamic interaction.

II. DERIVATION OF NONLINEAR EQUATIONS FROM COMPRESSIBLE FLUID FLOW
EQUATIONS

A. Governing equations

The governing equations, nondimensionalized by their reference variables, are given as fol-

lows:19

∂ρ

∂t
+ ∇.(ρu⃗) = 0, (1)

∂ρu

∂t
+ ∇.(ρu⃗u⃗) +

1

γM2
∇p =

1

Re
∇.τ, (2)

1

(γ − 1)

Dp

Dt
= −

γ

(γ − 1)
p∇.u⃗ + H Da Q̇ +

1

RePr
∇2T, (3)

∂ρYi

∂t
+ ∇.ρYiu⃗ =

1

ReSc
∇2Yi + Daω̇k . (4)

Equations (1)-(4) are the continuity, momentum, energy, and species conservation equations, respec-

tively, for compressible flow. Here, ρ, p, and T are density, pressure, and temperature, respectively,

and u⃗ is the velocity vector. The reaction rate ω̇k follows the Arrhenius rate law. In Eq. (3), Da, H ,

and Q̇ are the Damkohler number, heat release parameter, and heat release rate, respectively.

B. Method of multiple scales

The next step is to construct a solution expansion for the field variables. Towards this purpose,

we follow earlier theoretical studies.10–12 Clavin et al.10 and Pelce and Rochwerger12 have suggested
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orders of magnitude for the acoustic field variables in the context of combustion instability. Clavin

et al.10 suggest that the acoustic pressure and temperature perturbations to be of the same order.

The acoustic velocity perturbation is O(1/M) times the acoustic pressure perturbation. Based on the

order of magnitudes, the acoustic perturbation variables are ordered as follows:

ρ = ρ0 + ϵ
2ρ2, (5)

u⃗ = u⃗0 + ϵ u⃗1, (6)

p = p0 + ϵ
2(p2h + p2a), (7)

T = T0 + ϵ
2T2. (8)

To eliminate the singular coefficient 1/(γM2) of the pressure gradient term in Eq. (2), the hydro-

dynamic pressure variable p2h is chosen to be of second order (ϵ2) in solution expansion (7).19 The

small number ϵ is proportional to the Mach number (ϵ =
√
γM). The heat release rate expansion

is determined based on the suggestion by Clavin et al.,10 following which, the mean heat release

rate Q̇0 is expressed to be of the same order as the heat release rate fluctuation (due to the acoustic

wave) Q̇′,

Q̇ = Q̇0 + Q̇′. (9)

All the hydrodynamic field variables are written with subscript 0, except p2h which is written at a

higher order to eliminate the singular term with coefficient 1/(γM2). In Eqs. (5)-(8), p2h and p2a

are the hydrodynamic pressure and acoustic pressure, respectively. The acoustic velocity is written

as u⃗1. The higher order variable ρ2 represents the acoustic density fluctuation. T2 represents the

second order thermal fluctuation. The mean heat release rate along with its fluctuations due to

hydrodynamics is represented with Q̇0. The heat release rate fluctuation due to acoustic wave is

represented at the same order of the mean heat release rate as Q̇′.

The low Mach number limit introduces two time scales and two length scales as τ = τ′/ϵ and

η = ξ/ϵ , where τ and τ′ are the acoustic and the convective time scales, respectively. The spatial

scales η and ξ are the hydrodynamic and long wavelength acoustic length scales, respectively.

The operator splitting is performed as ∂/∂t = (1/ϵ)∂/∂τ + ∂/∂τ′ for the temporal operator and

∇ = ϵ∇ξ + ∂∇η for the spatial operator.1 The equations governing the hydrodynamics are obtained

at leading order in ϵ as follows:

∂ρ0

∂τ′
+ ∇η · ρ0u⃗0 = 0, (10)

∂ρ0u⃗0

∂τ′
+ ∇η · (ρ0u⃗0u⃗0) + ∇ηp2h −

1

Re
∇η · τ0 = 0, (11)

1

(γ − 1)

∂p0

∂τ′
=

−γ
(γ − 1)

[p0∇η · u⃗0] (12)

+ HDa(Q̇0 + Q̇′) +
1

RePr
∇2
ηT0,

∂ ρ0Yi0

∂τ′
+ ∇η.ρ0Yi0u⃗0 =

1

ReSc
∇2Yi0 + Daω̇k, (13)

p0 = ρ0T0. (14)

Equations (10)-(13) imply that the short length scale η and the convective time scale τ′ govern the

unsteady hydrodynamics and the resulting unsteady heat release rate.

The fast time scale equation for u⃗1 is obtained from the leading order momentum equation

following Zank and Matthaeus,1

∂ρ0u⃗1

∂τ
+ ∇ηp2a = 0. (15)

The density perturbation equation at O(ϵ) is as follows:

∂ρ2

∂τ
+ ∇η.(ρ0u⃗1) + ∇ξ.(ρ0u⃗0) = 0. (16)
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Equation (16) has derivatives in two length scales. An equation on the long length scale may provide

an unbounded solution (∇ξ = 1/ϵ∇η) as ϵ → 0. This is the consequence of non-zero divergence

∇.u⃗0. The non-zero divergence or the dilatation term is the consequence of the heat release rate

during combustion. Later in this paper, the dilatation term will be shown as a source term for the

acoustic pressure. Averaging the fluctuations over the short length scale, the evolution equation for

ρ2 in the acoustic time scale is obtained,

∂ρ2

∂τ
= −∇ξ.ρ0u⃗0. (17)

Integration yields

ρ2 = τ[−∇ξ.ρ0u⃗0]. (18)

Since the hydrodynamic variables ρ0, u0, and T0 are independent of the acoustic time scale, ρ2→ ∞
as ϵ → 0 which is the case since τ = τ′/ϵ . To ensure the convergence of the solution expansion,

we have to impose a solvability condition20 as ∇ξ.ρ0u⃗0 = 0. In other words, we have eliminated the

dependence of the hydrodynamic variables on the long length scale. The resulting acoustic time

scale equation for the density perturbation ρ2 is

∂ρ2

∂τ
+ ∇η.(ρ0u⃗1) = 0. (19)

At O(ϵ), the acoustic time scale equation for acoustic pressure perturbation is obtained as

∂p2a

∂τ
+ γp0∇ηu⃗1 = − γp0∇ξu0 (20)

+
γ

RePr
[∇η∇ξT0 + ∇ξ∇ηT0].

Integration with respect to τ will lead to the following expression for p2a:

p2a = τ [−γp0∇ξu0 +
γ

RePr
[∇η∇ξT0 (21)

+ ∇ξ∇ηT0]] − γp0


∇ηu⃗1 + C(t, η, ξ).

The acoustic perturbation velocity u⃗1 is a function of acoustic time scale τ. The terms with coeffi-

cient τ will grow linearly as ϵ → 0. We have imposed the solvability condition

− γp0∇ξu0 +
γ

RePr
[∇η∇ξT0 + ∇ξ∇ηT0] = 0 (22)

to ensure the convergence of the solution expansion for pressure variable (p = p0 + ϵ
2(p2h + p2a)).

The equation for acoustic perturbation pressure p2a on the acoustic time scale is obtained as

∂p2a

∂τ
+ γp0∇ηu⃗1 = 0. (23)

From Eqs. (15) and (23), the linear wave equations for u⃗1 and p2a are obtained as

∂2p2a

∂τ2
− ∇η.c2

0∇ηp2a = 0, (24)

∂2u⃗1

∂τ2
− c2

0∇
2
ηu⃗1 = 0, (25)

where c0 is the speed of sound. Here, we will assume a solution of the form Ai(η, ξ, τ
′)eiωτ for the

perturbation variables, where Ai = ( ρ̂2,
ˆ⃗u1, p̂2a,T̂2) and eiωτ is the part of the solution which satisfies

Eqs. (24) and (25). These equations imply that whenever there is a non-zero amplitude Ai, the

acoustic pressure and velocity field variables admit an oscillatory solution.

The momentum equation at O(ϵ), the continuity equation at O(ϵ2), and the energy equa-

tion at O(ϵ2) yield the convective time scale equations for u⃗1, ρ2, and p2a. The solution form

Ai(η, ξ, τ
′)eiωτ is substituted in the equations for u⃗1, ρ2, and p2a. Applying the conditions for solv-

ability and collecting terms with coefficient eiωτ, a set of weakly nonlinear equations are obtained
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for the convective time scale,

∂ ˆ⃗u1

∂τ′
+

1

ρ0

∇ξ p̂2a = − u⃗0.∇η ˆ⃗u1 − ˆ⃗u1.∇ηu⃗0 (26)

+
1

ρ0Re
∇2
η

ˆ⃗u1,

∂ ρ̂2

∂τ′
+ ρ0∇ξ ˆ⃗u1 = −∇η.( ρ̂2u⃗0), (27)

∂ p̂2a

∂τ′
+ γp0∇ξ ˆ⃗u1 = − u⃗0.∇η p̂2a − γ p̂2a∇η.u⃗0 (28)

+
γ

RePr
∇2
ηT̂2.

The equation of state at O(ϵ2) is obtained as follows:

p2h + p2a = ρ0T2 + ρ2T0. (29)

Equations (26)-(28) have derivatives with respect to two length scales (η and ξ). Assuming u0→ 0

as ξ → ∞ (far away from the heat source), we derive governing equations for long wavelength

acoustic waves as follows:

∂ ˆ⃗u1

∂τ′
+

1

ρ0

∇ξ p̂2a =
1

Re
∇2
ηu⃗1, (30)

∂ ρ̂2

∂τ′
+ ρ0∇ξ ˆ⃗u1 = 0, (31)

∂ p̂2a

∂τ′
+ γp0∇ξ ˆ⃗u1 =

γ

RePr
∇2
ηT2. (32)

From Eqs. (30)-(32), we see that long wavelength acoustic waves are subjected to dissipation. These

dissipation terms are not found in the analysis of Wu et al.14,15 When dissipative forces cannot be

neglected, such as low to moderate Reynolds number flows, our analysis gives a better description

of the acoustic-hydrodynamic interaction. Equations (30)-(32) form a dissipative system, leading to

the damping of the long wavelength acoustic waves.

Next, we introduce short length scale equations, by assuming a solution of the form A(η, τ′)eiωτ

for acoustic field variables,

∂ ˆ⃗u1

∂τ′
+ u⃗0.∇η ˆ⃗u1 +

ˆ⃗u1.∇ηu⃗0 = −
1

ρ0Re
∇2
η

ˆ⃗u1, (33)

∂ ρ̂2

∂τ′
+ ∇η.( ρ̂2u⃗0) = 0, (34)

∂ p̂2a

∂τ′
+ u⃗0.∇η p̂2a + γ p̂2a∇η.u⃗0 =

γ

RePr
∇2
ηT̂2. (35)

Equations (33)-(35) describe the acoustic-hydrodynamic coupling equations. These equations

resemble the wave-mean flow coupling mechanisms proposed by Buhler2 for atmospheric flows.

The wave and mean flow variables are chosen depending on the physical phenomena under investi-

gation. As a result of our analysis of acoustic-hydrodynamic interaction, we obtain these variables

as pressure and velocity corresponding to the acoustic and hydrodynamic fields. The terms ˆ⃗u1.∇ηu⃗0

and u⃗0.∇η ˆ⃗u1 in Eq. (33) and the terms p̂2a∇η.u⃗0 and u⃗0.∇η p̂2a in Eq. (35) represent the mutual

interaction of the wave and the mean flow.

The terms ˆ⃗u1.∇ηu⃗0 and u⃗0.∇ηû1 represent the coupling between hydrodynamic and acoustic

velocities. These terms are known as Reynolds forces in the study of nearly incompressible flows.21

These Reynolds forces, which describe the mutual transportation of the acoustic and hydrodynamic

velocities, are also known as convective (u⃗0.∇ηû1) and lift-up terms ( ˆ⃗u1.∇ηu⃗0) in the study of transi-

tion to turbulence in fluid flow.22 Here, in a low Mach number reacting flow, convective and lift-up
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mechanism could also establish a velocity coupling, where the acoustic velocity (u⃗1) and the flow

field (u⃗0) in a combustor influence each other.

C. Nonlinear equations

For a reacting low Mach number flow, the dilatation term ∇η.u⃗0 in Eq. (35) is related to the heat

release rate fluctuation. From Eq. (12),

∇η · u⃗0 =
γ − 1

γp0

HDa(Q̇ + Q̇′) (36)

+
γ − 1

γp0RePr
∇2
ηT0 −

1

γp0

∂p0

∂τ′
.

The next step is to determine the influence of the heat release rate Q̇ and the fluctuation of heat

release rate Q̇′ due to the acoustic field on the acoustic pressure field. Equation (36) for dilatation is

substituted in Eq. (35) to obtain

∂ p̂2a

∂τ′
+ u⃗0.∇η p̂2a + γ p̂2a[

γ − 1

γp0

HDa(Q̇ + Q̇′) (37)

+
γ − 1

γp0RePr
∇2
ηT0 −

1

γp0

∂p0

∂τ′
] =

γ

RePr
∇2
ηT̂2.

Assuming an Arrhenius rate law and a single step chemical reaction, the heat release rate fluctuation

Q̇′ due to the acoustic wave can be expressed as

Q̇′ = Bρ2
2XY e−Ea/RT , (38)

where B is the pre-exponential factor and the acoustic density perturbation ρ2 is a function of τ

and τ′. However, the heat release rate expansion (Q̇ = Q̇0 + Q̇′) appears in Eq. (12) as well as in

Eq. (37). To ensure the convergence of p0, we eliminate the fast time scale dependence of Q̇′ by

expressing it in terms of ρ̂2(η, t). Substituting the solution form Ai(η, τ
′)eiωτ in Eq. (29), we obtain

ρ̂2 =
p2h

T0

e−iωτ +
p̂2a

T0

− ρ0

T̂2

T0

. (39)

As ϵ → 0, τ → ∞, because in the relation τ = τ′/ϵ , we have assumed τ′ of O(1) and τ of O(1/ϵ). In

the limit τ → ∞, (p2h/T0)e
−iωτ → 0. The expression for ρ̂2 can be rewritten as

ρ̂2 =
p̂2a

T0

− ρ0

T̂2

T0

. (40)

The new expression for heat release rate fluctuation can be written as

Q̇′ = B ρ̂2
2XY e−Ea/RT . (41)

First, the expression for ρ̂2 (i.e., Eq. (40)) is substituted in Eq. (41). Then, Eq. (41) becomes

Q̇′ = B(
p̂2

2a
− 2ρ0p̂2aT̂2 + ρ2

0
T̂2

2

T2
0

)XY e−Ea/RT . (42)

Equation (42) is then substituted in Eq. (37) to obtain

∂ p̂2a

∂τ′
+ u⃗0.∇η p̂2a = (43)

(γ − 1)HDaω

p0

(
−p̂3

2a
+ 2ρ0p̂2

2a
T̂2p2a − ρ2

0
T̂2

2

T2
0

)

+
γ

RePr
∇2
ηT̂2 −

(γ − 1)p̂2a

p0RePr
∇2
ηT0

−
(γ − 1)HDaωp̂2a

p0

+
p2a

p0

∂p0

∂τ′
,
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where ω = BXY e−Ea/RT . Equation (43), which is a nonlinear equation, can be rewritten by group-

ing the terms of same order as

∂ p̂2a

∂τ′
= − u⃗0.∇η p̂2a + α p̂3

2a + θT̂2p̂2
2a (44)

+ ϑT̂2
2 p̂2a + λ p̂2a +

γ

RePr
∇2
ηT̂2.

Substituting (40) in Eq. (34), we obtain an equation for T2,

∂T̂2

∂τ′
= − u⃗0.∇ηT̂2 + αT̂2p̂2

2a + θT̂2
2 p̂2a (45)

+ ϑT̂3
2 + λT̂2 +

γ

ρ0RePr
∇2
ηT̂2.

Equations (44) and (45) are nonlinear equations for acoustic pressure and second order thermal

fluctuations, with the coefficients α, θ, and ϑ corresponding to the physical processes in the system

such as heat release rate, temperature diffusion, pressure or temperature coupling, and the rate of

change of the mean pressure p0. These nonlinear equations show that the amplitude of the acoustic

pressure is coupled with the thermal fluctuation through volume expansion. Nonlinear equations

Eqs. (44) and (45) represent this “pressure-temperature” coupling. Without the convection term

(u0.∇ηp2a), the nonlinear equations resemble the RD systems discussed in the study of chemical

oscillations,23 where the effect of a nonlinear source term along with the diffusion term governs

the stability of chemical reactions. Conventionally, the nonlinear term in the RD system is called

a reaction term owing to its popular use in the study of the stability of chemically reacting sys-

tems. In a thermo-acoustic system, the stability is decided by the influence of fluid flow on the

nonlinear nature of heat release rate-acoustic interaction. Theoretically, such an influence is under-

stood by the incorporation of a convection term into the nonlinear equations. The convection term

is present in our nonlinear equations. Therefore, the derived nonlinear equations are called CRD

equations.

III. INSTABILITY MECHANISM

In the case of pressure coupling mechanism, the heat release rate fluctuation Q̇′ and acoustic

pressure fluctuation p̂2a are of the same order.10 This is emphasized in Eq. (37), where Q̇′ and p̂2a

appear at the same order (O(ϵ2)). In addition to the heat release rate fluctuation, convective terms

are also present due to the acoustic-hydrodynamic interaction. Equation (44) derived from (37),

thus, serves to explain the pressure coupling mechanism associated with the acoustic-hydrodynamic

interaction. From Eqs. (44) and (45), we see that acoustic pressure is coupled with the thermal fluc-

tuations due to interaction between acoustic field and heat release rate fluctuation. These equations

together form a set of convection reaction diffusion equation.

A. Convection reaction diffusion equations

Equations (44) and (45) for acoustic pressure and thermal fluctuations are re-cast as follows:

∂ p̂2a

∂τ′
+ u⃗0.∇η p̂2a = f (p̂2a,T̂2) +

γ

RePr
∇2
ηT̂2, (46)

∂T̂2

∂τ′
+ u⃗0.∇ηT̂2 = g(p̂2a,T̂2) +

γ

ρ0RePr
∇2
ηT̂2, (47)

where f (p̂2a,T̂2) = α p̂3
2a
+ θT̂2p̂2

2a
+ ϑT̂2

2
p̂2a + λ p̂2a and g(p̂2a,T̂2) = αT̂2p̂2

2a
+ θT̂2

2
p̂2a + ϑT̂3

2
+ λT̂2

are nonlinear functions in the CRD equations. The coefficients in the nonlinear functions f and g

are
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α = −
(γ − 1)HDaω

p0T
2
0

,

θ = 2
(γ − 1)HDaω

p0T
2
0

ρ0, (48)

ϑ = −
(γ − 1)HDaω

p0

ρ2
0,

λ = −
(γ − 1)

p0RePr
∇2
ηT0 −

(γ − 1)HDaω

p0

+
1

p0

∂p0

∂τ′
.

These coefficients represent the important physical processes in a thermo-acoustic system. α, θ, and

ϑ have the physical parameters governing the chemical reaction, i.e., the Damkohler number (Da)

and the reaction rate (ω). In combustors, these parameters are determined by the type of the fuel and

the mass flow rate of fuel and air into the combustor. From Eqs. (40) and (41), we know that the

nonlinear functions f and g represent the heat release rate fluctuation. The coefficients α, θ, and ϑ,

therefore, are “weights” that determine the intensity of heat release rate fluctuation. The coefficient

λ combines the effect of DC shift (
∂p0

∂τ′ ), thermal diffusion (∇2
ηT0), and the mean heat release rate

(HDaω). Since λ is the coefficient of the linear term, we see that the phenomena such as DC

shift, thermal diffusion, and mean heat release rate contribute only to the linear growth of acoustic

pressure amplitude. The change in mean pressure, known as “DC shift,” is a consequence of the

heat release rate fluctuation due to the acoustic field as shown by Eq. (12). The close correlation

of DC shift with the acoustic pressure oscillations was theoretically explained by Flandro et al.24

They observed that, with the growth in mean pressure, there is an associated growth of the acoustic

pressure amplitude. They proposed that the acoustic pressure could be a source term in the energy

equation. This finding enabled them to design an algorithm that could help designing the rocket

motors with reduced possibility of instability. Here, we have shown another mechanism-coupling of

acoustic pressure oscillation with heat release rate fluctuation, as the cause for the change in mean

pressure, and growth or decay of acoustic pressure oscillations. The heat release rate fluctuation

in turn becomes a source term for DC shift. The representation of a thermo-acoustic system as a

convective reaction diffusion system gives more insight into the stability characteristics. Many of

the stability properties of a CRD system resemble that of a thermo-acoustic system.

B. An example demonstrating the transition to instability

In this section, we attempt to show the growth of a local perturbation to acoustic pressure,

which eventually modifies the acoustic field. Such a modified acoustic field, with higher acoustic

pressure amplitude may result due to the presence of a premixed flame in a duct14,15 or a localized

heat release rate fluctuation.5 This process of growth in the acoustic pressure amplitude results

from a small but finite amplitude initial perturbation to the acoustic field. Such a model problem,

even though do not resemble closely a real combustor, serves the purpose of studying the nonlinear

thermal-acoustic coupling found in a flame-acoustic interaction.

The model problem resembles a horizontal Rijke tube, with locally a higher heat release rate

that arises from a local heat source. This higher heat release rate can arise from the local or nonuni-

form burning of vortices in a combustor.5 Everywhere else, we assume uniform heat release rate.

We attempt to address the influence of localized higher heat release rate on the acoustic pressure

amplitude. Such a localized heat release rate fluctuation is numerically implemented here with

the weights of the nonlinear terms. We have given, locally, higher values for these weights (note

that their value is proportional to the heat release rate) representing higher heat release rate. For

example, in the present numerical configuration, at the location of the heat release rate fluctuation,

we chose the values of α, θ, and ϑ to be 1.2 times their magnitude in other parts of duct, where

the heat release rate is uniform. The species mass fractions are absorbed into the weights, as the

mass fractions result in the heat release rate. Therefore, instead of separately prescribing the values

of mass fractions, we prescribe the values of α, θ, and ϑ. Such an approach is made to reduce the
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FIG. 1. Schematic of a small but finite amplitude local perturbation given to long scale acoustic field.

complexity of our mathematical model (i.e., CRD equations) and emphasize more on the nonlinear

nature of instability.

The flame-acoustic interaction is governed by CRD equations written with respect to the short

space scale variable. These equations also represent the evolution of initial perturbation to acoustic

pressure field. The long space scale equations for acoustic field (Eqs. (30)-(32)) are not solved here.

This is another advantage of the using MMS. The acoustic pressure amplitude p̂2a(η, t) is separated

from the acoustic pressure field p2a(ξ, t). The schematic representation of this separation is shown

in Fig. 1. The numerical simulation of the convection reaction diffusion system (Eqs. (46) and (47))

is attempted here on a one dimensional domain representing a tube. 1D domain is represented by

a spatial coordinate “x.” The discretization of 1D domain is done with different numbers of grid

points (N = 28, 56, 112, 224). A grid convergence study shows that, for grid number N = 56 and

above, solution remains the same. We have chosen N = 56 for the present numerical simulation.

We impose a small but finite amplitude perturbation. To represent such a small perturbation, we use

an initial condition shown in Fig. 3. CRD equations are for short space scale η. Long wavelength

acoustic wave equations (30)-(32) are separate from the short space scale equations. The acoustic

boundary conditions need to be applied only to the long space scale equations whose length scale

is comparable to the tube length. The study of short scale fluctuations can be performed only

when the localized sources are far away from the end points. For an open-open duct, boundary

conditions (BC) at both end points is the same. This is a simple boundary condition to prevent

spurious numerical oscillations. Also, we believe that this boundary condition is sufficient to study

the growth of acoustic pressure amplitude due to the heat source. Here, the value of p2a at the end

point is extrapolated with the adjacent point (i.e., p2a at N = 56 is equal to p2a at N = 55. Similarly,

p2a at N = 0 is equal to p2a at N = 1). The 1D geometry is shown in Fig. 2. The above discussed

numerical configuration represents the model problem. The initial acoustic pressure perturbation is

given in the middle of the 1D grid. The grid number is chosen to be N = 56. The initial condition for

the acoustic pressure amplitude perturbation is shown in Fig. 3.

Here, the linear coefficient λ is chosen as the bifurcation parameter. Our choice is inspired by

the efforts of Flandro et al.,24 in determining the stability limits based on the DC shift. Apart from

the DC shift, we also have heat release rate and thermal diffusion terms grouped inside λ.

Next, we use continuation algorithms employed in AUTO to study the bifurcations exhibited by

CRD system. We observed two different types of bifurcations when the convection term is included

in the computation of acoustic pressure amplitude. One type is a supercritical bifurcation with a

secondary bifurcation and other type of bifurcation exhibits a hysteresis zone. Both types of bifur-

cations involve a bistable zone. A supercritical bifurcation, conventionally, is not known to cause

bistability. However, when there is a secondary bifurcation, multiple stable branches may exist.25

FIG. 2. 1D representation of an open-open tube with flame located in the centre.
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FIG. 3. The initial condition for acoustic pressure perturbation amplitude. X-axis shows the number of grid points represent-

ing the discretized 1D geometry.

The existence of bistable zone, resulting from a model nonlinear convection reaction diffusion

equation, was discovered earlier in the study of the hydrodynamic stability by Chomaz.26 He used

a Ginzburg Landau model to study the influence of convection of the bifurcations observed in fluid

flow instabilities. In the present study, we also point out the influence of nonlinear terms in (1) deter-

mining the saturation amplitude and (2) the threshold point (λh) at which the bifurcation occurs.

Figures 4-6 show these nonlinear effects. We demonstrate these effects by varying the “weights” (θ

and ϑ) of nonlinear terms.

For the values of ϑ of O(10−2), CRD system permits the type of bifurcation shown in Fig. 4.

Here, there exists a hysteresis region near the critical point λh. Such a hysteresis effect is widely

studied in thermo-acoustics.27,28 In the previous investigations, transitions are described by a change

from non-oscillatory to oscillatory state due to Hopf bifurcation. Here, we show the pitchfork

bifurcation of the acoustic pressure amplitude. This is a consequence of separating the slow varying

amplitude from oscillating solution on fast time scale. Here, a nonzero amplitude (p̂2a) represents

an oscillatory solution (p2a = p̂2ae−iωτ). In the vicinity of such a bifurcation, only a sufficiently

large perturbation will lead to an oscillatory state. This process of introducing a large perturbation

is called “triggering.” The significance of nonlinear terms in determining the saturation amplitude

is discussed by Zinn and Lieuwen.28 We have shown, while deriving nonlinear equations (46) and

(47), that the nonlinear effects are introduced by the heat release rate fluctuations. Exploring the

significance of the coefficients of nonlinear terms is therefore worthwhile. Next, we will explore the

significance of the coefficients of other nonlinear terms.

The significance of θ is explained with the help of Fig. 5. The curve b1 in Fig. 5 is computed

with θ = 0.6, while λ is varied. The value of θ, used for the computation of b2 (i.e., θ = 0.9) is

greater than that used for the computation of b1, which implies the increase in saturation amplitude

when θ is increased. Larger values of θ also increase the hysteresis width, by shifting λh away

from the fold point at λ = 0(λh1 (for θ = 2) > λh2 (for θ = 0.9) > λh3 (for θ = 0.6)). Therefore,

FIG. 4. Bifurcation for acoustic pressure amplitude p2a. Dotted lines show unstable solutions. Solid lines indicate stable

solutions. This type of bifurcation creates a hysteresis. The hysteresis zone exists in the control parameter range between F

and λ = λh. Parameters chosen for the computation of this bifurcation diagram are α =−1, θ = 0.6, ϑ = 0.09, and u0= 1.
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FIG. 5. Bifurcations of acoustic pressure amplitude computed with different values of θ and ϑ. Curve b1 is computed using

the values θ = 2 and ϑ =−1. Curve b2 is computed with θ = 0.9 and ϑ =−0.2025. Curve b3 is computed with θ = 0.6 and

ϑ =−0.09. λh1, λh2, and λh3 represent the critical values of λ at which bifurcation occurs for curves b1, b2, and b3,

respectively.

from Fig. 5, we know that the role of θ is twofold: (1) first, the magnitude of θ determines the

saturation amplitude and (2) then the value of θ determines the value of the control parameter at

which bifurcation occurs. Here, larger values of θ imply that the magnitude of θ relative to the

magnitude of ϑ is high. In real combustors, due to the intense heat, the mean density drops. Then,

the magnitude of θ (∝ ρ0) is greater than ϑ (∝ ρ2
0
). The physical insight from these computations is

helpful in delaying or preventing the onset of instability. First, when there is an increase in θ, the

triggering amplitude to reach the stable oscillatory solution is higher than the one that is needed for

lower θ. Further, the onset of instability is delayed as a consequence of the shift in λh.

The change in hysteresis width in response to the variation in system parameters is an active

area of investigation in thermo-acoustics. The reduction in hysteresis width with the decrease in

mass flow rate is observed by various researchers29–31 for a Rijke tube. Gopalakrishnan and Su-

jith31 show that the variation in hysteresis width is related to the ratio of convective time scale

to the acoustic time scale. In the present study, the “weights” of the nonlinear terms are func-

tions of Damkohler number Da (ratio of flow time scale to the chemical time scale). Therefore,

these weights definitely bear a relation to the mass flow rate in a combustor. A theoretical study

performed by Mcintosh32 claims that the burning rate is dependent on the acoustic time scale. A

conjecture suggesting a relation between the chemical time scale and the acoustic time scale can

be made. An investigation in this direction is promising, as it will establish a relation between

instabilities in Rijke tube and the general thermo-acoustic instabilities.

Figure 6 shows the secondary bifurcation where, in spite of a supercritical bifurcation at

λ = λh, there is a secondary fold bifurcation at F1 (note that the value of ϑ is 0.01, which is

relatively smaller than that used in the computation of Fig. 4). Further, we impose locally (at the

FIG. 6. Supercritical bifurcation exhibited by the acoustic pressure amplitude p̂2a. Dotted lines show unstable solutions.

Solid lines indicate stable solutions. Further, a fold point bifurcation, indicated by F1 creates a bistable zone. Parameters

used for the computation are α =−1, θ = 1, ϑ = 0.01, and u0= 1. F1 denotes the fold point and bifurcation occurs at λ = λh.

For λ > λh, system is absolutely unstable. For the convection reaction diffusion system, such a secondary bifurcation is

obtained for any value of ϑ ≤ 0.01.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  131.217.6.9 On: Sun, 27 Sep 2015 14:10:46



074101-13 V. V. Pulikkottil and R. I. Sujith Phys. Fluids 27, 074101 (2015)

location of initial perturbation shown in Fig. 3) the values of α, θ, and ϑ to be 2 times their

magnitude in other parts of duct. This implies a higher heat release rate than the one imposed

in the numerical configuration discussed above. The fold bifurcation results in the creation of a

second stable branch C2. The stable branch C2 can be approached by the system in two ways: (1)

by introducing any small perturbation, while system is in the parameter space corresponding to the

unstable branch U1 or (2) by introducing a sufficiently large amplitude perturbation (perturbation

amplitude greater than the one corresponding to the unstable branch U2), while system stays in the

stable branch C1. When the second stable branch is attained, the system continues to stay in that

branch till λ = λm. This can cause a hysteresis effect, widely studied in the field of thermoacoustic

oscillations.

The magnitude of the coefficients of nonlinear terms is significant in determining the nature of

bifurcation. These coefficients determine the intensity of heat release rate fluctuation. Therefore, by

varying the magnitude of the coefficients, we vary the intensity of heat release rate fluctuation. We

show that the variation in the intensity changes the nature of transition in a thermo-acoustic system.

The possibility of secondary bifurcation, creating a family of limit cycles in vibrating mechan-

ical systems, was pointed out earlier by Ananthkrishnan et al.25 They used a van der Pol oscillator

model for the demonstration of secondary bifurcation. Later, Ananthkrishnan et al.33 extended this

reduced order model to show the existence of multiple limit cycle oscillations in thermo-acoustic

systems. The existence of two stable oscillatory solutions for the same heat release rate parameter

is obtained by Juniper.34 He obtained these multiple stable states as the solutions of nonlinear

momentum and energy equations. The nonlinear heat release rate term acts as a source to the

energy equation. Juniper proposes the heat release rate to be dependent on the mean flow velocity

( ˜̇Q ∝ (u0/3)
1/2). The acoustic-mean flow interaction is therefore expected to cause multiple oscilla-

tory state. The chemical reaction systems such as continuous stirred-tank reactor (CSTR) are also

found to be exhibiting multiple oscillatory states.35 The possibility of existence of a secondary

bifurcation in our CRD system is explored in this paper.

For the configuration shown in Fig. 2, we attempt to study the change in the state of acoustic

pressure while the strength of heat release rate caused by the flame is varied. In a real combustor,

this variation can be implemented by the variation of the inflow of species and oxidizer (i.e., heat

release rate is determined by the fuel-air mass fraction). The secondary bifurcation shown in Fig. 6

is obtained for low values of ϑ (O(10−3)). ϑ is one of the coefficients present in the nonlinear

functions f and g. The presence of ρ2
0

in ϑ and θ makes the nonlinear functions f and g dependent

on the mean density in the combustor. The nonlinear functions govern the saturation amplitude of

acoustic pressure. Therefore, the value of mean density has an influence on the bifurcation charac-

teristics of thermo-acoustic system. The gas temperature variation that arises from the combustion

results in the variation of density. Here, the mean density appears in the coefficients θ and ϑ.

Therefore, the value of mean density decides the weight of the nonlinear terms. Various types of

fluid dynamic instability arise in the reacting flows as a result of the variation in the density of gas.36

Here, through the variation in the magnitude of ϑ and θ, we show that the density has a significant

influence on the nature of bifurcation for acoustic pressure amplitude.

IV. CONCLUSION

We find that thermo-acoustic system has similarities with many wave-mean flow interacting

systems. This viewpoint has helped us in developing a new theory for the transition to instability in

a thermo-acoustic system. Considering the presence of two time scales in a wave-mean flow interac-

tion system, we have employed MMS to understand thermo-acoustic interactions. Using MMS, two

fundamental mechanisms of coupling, pressure-temperature coupling and velocity coupling, are

derived from the compressible fluid flow equations. The pressure-temperature coupling is expressed

through coupled convection reaction diffusion system of equations. The nonlinear terms represent

the influence of heat release rate fluctuations. The separation of long scale wave equation from the

short scale perturbation equations allows us to study the effect of short perturbations introduced by

localized flames. These perturbation equations are proposed as a system of CRD equations. The
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CRD equations are nonlinear and therefore predict the saturation amplitude. Therefore, the CRD

system (Eqs. (44) and (45)) gives a better mathematical description of the nonlinear behavior of

thermo-acoustic system in a low Mach number flow.

We observe two types of transitions: (1) through a bifurcation that causes a hysteresis region

(shown in Fig. 4) and (2) through a secondary bifurcation (shown in Fig. 6). The secondary bifur-

cation was predicted in vibratory mechanical systems. In thermo-acoustics, the existence of multi-

ple limit cycle can be observed experimentally. Theoretically, their existence was indicated using

reduced order models (using van der Pol equations to model thermo-acoustic system). In this paper,

derivation of a theoretical framework from the full compressible fluid flow equations, to predict

multiple limit cycle, is attempted for the first time. The significance of the coefficients of nonlinear

terms in delaying the onset of bifurcation is an interesting outcome of our study. This phenomenon

also implies the significance of heat release rate fluctuation in the transition to instability.

The representation of the velocity coupling though a convective and lift-up mechanism

(Eq. (33)) is introduced for the first time. The significance of physical parameters such as heat

release rate in determining the growth or decay of oscillations is emphasized. Finally, we can also

infer, from the convection reaction diffusion equations, that the convective time scale governs the

acoustic-hydrodynamic interaction. The coupling mechanisms discussed in this paper are inherent

to flame-acoustic interactions in combustion chambers. The study of this interaction, influenced by

the flow field, is an immediate application of our theoretical framework.
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