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Abstract. Modal and non-modal analysis of superfluid He-II is carried out in this paper. Landau’s two
fluid model for superfluid flow is assumed and stability of both normal fluid and superfluid are considered
separately by taking the effect of the other through mutual friction. Stability of normal fluid, with a
numerically calculated base flow, shows Tollmien-Schlichting mode of instability similar to classical fluids.
Non-modal analysis shows the transient growth of perturbations at sub-critical Reynolds numbers. Mutual
friction is found to have a stabilizing effect on normal fluid. Superfluid, with an inviscid uniform profile is
found to be linearly stable for all wave numbers. Non-modal analysis rules out the possibility of transient
growth of perturbations and sub-critical transition. The presence of turbulence in superfluid brings in a
possibility that an initial uniform base flow is getting altered due to the action of mutual friction and this
altered profile is likely to become unstable.

1. Introduction

The hydrodynamical properties exhibited by superfluid Helium-II is phenomenologically explained
using Landau’s two-fluid model. According to this model, He-II is an intimate mixture of two fluid
components, a viscous normal fluid and an inviscid superfluid, with different velocity fields (Vn & Vs)
and densities (ρn & ρs). System is governed by two separate equations for momentum conservation of
the two fluids, which are coupled through a mutual friction force (Gorter & Mellink, 1949). Vorticity
in superfluid is quantized and turbulence in it is considered to be a tangle of quantized vortex lines
(Feynman, 1955). Because of the existence of two velocities, turbulence in He-II can be coflow
turbulence or counterflow turbulence, based on whether the two components are moving in same
direction or in opposite directions. Coflow turbulence is analogous to classical turbulence, where as
counterflow turbulence is excited by thermal counterflow (Vinen, 1957). Tough (1982), argued that
there exists two different turbulent states T1 and T2 , marked by sudden jumps in superfluid vortex line
density. T1 state is triggered when the relative velocity of normal fluid and superfluid, Vns, exceeds a
critical value Vc1, and T2 state is triggered at a higher critical value Vc2. Melotte & Barenghi (1998a,b)
numerically studied the effect of superfluid vortex tangle on the stability of normal fluid in thermal
counterflow. They considered a circular pipe closed at one end and open to helium bath at other end.
It was observed that the normal fluid becomes unstable by the action of superfluid vortices by linear
mechanism. Superfluid vortex line density for unstable regimes were calculated and compared with
experimental results, and concluded that “transition from T1 to T2 state is an instability of normal fluid”.
Godfrey et al. (2001) carried out a linear stability analysis numerically, in plane Poiseuille flow of He-
II, where the two fluids were flowing in the same direction. Normal fluid and superfluid components
were considered separately by taking the effect of the other through a mutual friction term. They found
that normal fluid is linearly unstable similar to classical fluids, and mutual friction has a destabilizing
effect. They also found a new regime of stability at lower streamwise wave number which they termed as
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lower unstable branch. Interestingly, superfluid part was observed to be linearly stable for all Reynolds
numbers. The classical Tollmien-Schlichting waves (linear mechanism) are shown not to be the cause of
instability in a superfluid flow. However, superfluid is known to become turbulent and here we attempt
to see algebraic transient growth mechanism as a possible route to instability.

2. Formulation

This paper computes instabilities in a plane channel He-II superfluid flow. Vn & Vs are the velocities
and ρn & ρs are the densities of normal and superfluid respectively. The total density of He-II is,

ρ = ρn + ρs (1)

The two fluid model requires two sets of equations, one for normal fluid and one for superfluid.
Considering isothermal flow, and using the assumption of incompressibility, we can write the mass
conservation equations as,

∇ · Vn = ∇ · Vs = 0 (2)

The intimate mixture of two fluids interact with each other through mutual friction, which occurs
due to the scattering of the normal fluid by superfluid vortices, Hall & Vinen (1956a,b). Hence the
momentum conservation equations for the two fluids will have a coupling term to account for this mutual
friction between the fluids. Assuming that there is no temperature gradient, the momentum conservation
equations for the two fluids in non-dimensional form are (Godfrey et al., 2001; Chandrasekhar &
Donnelly, 1957; Chandrasekhar, 1957),

∂

∂t
Vn + (Vn · ∇)Vn = −∇P +

1
Re
∇2Vn − Fmf (3)

∂

∂t
Vs + (Vs · ∇)Vs = −∇P +

ρn

ρs
Fmf (4)

Here Re is the normal fluid Reynolds number defined as Re =
LV0

ηn
. L is the channel half width and

V0 is the centre line velocity of the normal fluid, and are used as the length and velocity scales for
non-dimensionalizing. ηn is the kinematic viscosity of the normal fluid defined using ρn . Pressure is
non-dimensionalized using ρV0

2 . Fmf is the is the non-dimensionalized mutual friction force per unit
mass of the normal fluid given by (Hall & Vinen, 1956a,b; Godfrey et al., 2001),

Fmf =

(
BρsL
ρV0

)
Ω̂s × [Ωs × (Vn − Vs)] +

(
B′ρsL
ρV0

)
Ωs × (Vn − Vs) (5)

where B and B′ are the mutual friction coefficients and Ωs is the vorticity vector of quantized superfluid
vortex lines and Ω̂s is the unit vector in direction of superfluid vorticity. The first term gives the mutual
friction force in streamwise direction and the second term gives that of transverse direction. The complex
mutual friction term given above is approximated as given by Godfrey et al. (2001) as,

Fmf = f (z)[Vn − Vs] (6)

where f (z) is a coefficient to account for the spatial dependence for mutual friction, which can be
regarded as the distribution of superfluid vortex lines along the wall-normal or transverse direction, z,
and is given by,

f (z) = fmax{exp[−(z − z−)2/2σ2] + exp[−(z − z+)2/2σ2]} (7)

which gives a Gaussian distribution centered at points where superfluid and normal fluid velocities are
equal, where fmax is the temperature dependent coefficient, z± = ±1/

√
3 and σ is the standard deviation

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 092032 doi:10.1088/1742-6596/318/9/092032

2



of the distribution. The velocity profile for normal fluid is calculated numerically from the modified
Navier-Stokes equation (Equation 3), assuming steady flow and Vn has only transverse dependence
(Vn = Un(z)x̂) with no slip boundary condition at the walls, Figure 1. A uniform velocity profile with
same volume flow rate as normal fluid is assumed for superfluid component.

Figure 1. Sample velocity profiles of normal and
superfluid. velocity profile for normal fluid
with fmax = 0.03 and σ = 0.15, velocity
profile for classical fluids. uniform profile
for superfluid.

Figure 2. Neutral stability curve for normal fluid
with fmax = 0.005, σ = 0.15. line represent
the neutral stability for classical fluids.

3. Results and Discussion

3.1. Stability of Normal Fluid
The stability of normal fluid is studied here by adding perturbations, keeping superfluid undisturbed, and
observing the subsequent evolution of those perturbations. Following the standard procedure for linear
stability analysis as in Schmid & Henningson (2001), modified Orr-Sommerfeld and Squire’s equations
can be written in matrix form as,

−iω
(
k2 − D2 0

0 1

) (
ṽ
η̃

)
+

(
LOS 0

iβUn
′ LS Q

) (
ṽ
η̃

)
= 0 (8)

where
LOS = iαUn(k2 − D2) + iαUn

′′ +
1

Re
(k2 − D2)2 − [ f ′(z)D + f (z)D2 − k2 f (z)] (9)

LS Q = iαUn +
1

Re
(k2 − D2) + f (z) (10)

where v′ = ṽ(z)ei(αx+βy−ωt) and η′ = η̃(z)ei(αx+βy−ωt) are the normal perturbation velocity and vorticity
respectively, α & β are the wave numbers in x and y directions, k2 = α2 + β2, ω = cα where c is the
complex wave speed whose real part cr represents the phase speed of perturbation and imaginary part
multiplied by streamwise wave number, αci represents the growth or decay of perturbations and D stands
for differentiation in z direction

(
∂
∂z

)
. Here x, y, z axes represents streamwise, spanwise and wall normal

directions respectively. Equation (8), an eigenvalue problem, is solved with the boundary conditions
ṽ = Dṽ = η̃ = 0, using Chebyshev spectral collocation method. The above linear stability results
gives neutral stability curve similar to those of classical fluids, but the critical Reynolds number being
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shifted to higher values, showing that the mutual friction is stabilizing the normal fluid flow, Figure 2. A
Tollmien-Schlichting(TS) mode of instability is present but it requires higher Reynolds number to trigger
the first TS mode. Our stability results are different from that of Godfrey et al. (2001), in which they had
two unstable regions, a top neutral curve similar to classical fluids and a bottom curve showing low wave
number instability. Mutual friction was reported to destabilize the normal fluid flow. In their formulation
they have added the mutual friction term Fmf to the R.H.S. of momentum equation for normal fluid,
while we have subtracted Fmf from the R.H.S. of normal fluid equation. We have followed formulations
in Tilley & Tilley (2005), and this seems to represent the physics better because whenever normal fluid
velocity is greater than superfluid velocity, mutual friction force will have a decelerating effect on normal
fluid, Hall & Vinen (1956a,b).

Figure 3. Variation of Critical Reynolds
number with fmax for different values of σ.
◦ for σ = 0.1, 4 for σ = 0.15, ut for σ = 0.25.

Figure 4. Variation of Recrit with standard
deviation of superfluid vortex line distribution,
σ for different fmax. ◦ for fmax = 0.005,
4 for fmax = 0.1, ut for fmax = 0.2.

The variation of critical Reynolds number with fmax for different σ is plotted in Figure 3. It shows
that increasing fmax has a stabilizing effect for σ values 0.12 and higher, but has a destabilizing effect for
σ = 0.1. It may be infered that the mutual friction have a destabilizing effect on the normal fluid only
for a very localized superfluid vortex line distribution. Note that Recrit ≈ 5772 at fmax = 0 , which gives
a validation of the code that we have used. The variation of Recrit with σ is plotted in Figure 4. The plot
shows that at σ ≈ 0.12 the mutual friction has no effect on the stability of normal fluid, for σ>1.2 mutual
friction has stabilizing effect and for σ<0.12 mutual friction destabilizes the flow.

Now, as in the case of classical fluids we can expect modified stability operator to be non-normal, due
to which perturbations can have amplification of the order of 105 (for Re just below Recrit) by a linear
mechanism even though all the eigenvalues decay asymptotically and this intermediate growth can cause
a sub-critical transition to turbulence (Schmid & Henningson, 2001). We have conducted a non-modal
analysis on normal fluid equations to check for a possible transient growth and sub-critical transition to
turbulence.

The above eigenvalue problem (8) can be written using vector notation as,

Lq̃ = iωq̃ (12)

where

q̃ =

(
ṽ
η̃

)
and L =

(
k2 − D2 0

0 1

)−1

×

(
LOS 0
iβU′ LS Q

)
(13)
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Figure 5. Contours of Gmax with Re = 1000,
fmax = 0.005 and standard deviation of superfluid
vortex line distribution, σ = 0.15.

Figure 6. Maximum Gmax plotted against fmax,
for Re = 1000 and different σ. ut for σ = 0.1,
◦ for σ = 0.15, 4 for σ = 0.25.

Since L is a linear operator Equation (12) is valid for any disturbance q, which is a linear combination
of eigen vectors q̃. The eigenvalue problem is actually a simplification of the initial value problem

∂q
∂t

= Lq (14)

with solutions of the form q = q̃ × e−iωt. We define the maximum possible amplification, G(t), of an
initial disturbance q0, which is the optimized one over all possible initial conditions, as

G(t) = max
q0,0

q(t)2

q02 (15)

The maximum growth rate function, Gmax, is defined as largest possible energy amplification for all
times. The contours of maximum growth rate, Gmax, in α-β plane is shown in Figure 5. The figure
shows that normal fluid has a transient growth of perturbations at sub-critical Reynolds numbers, but
the growth rate is less compared to classical fluids due to mutual friction. As in the case of classical
fluids maximum value of Gmax occurs at α = 0 and β ≈ 2, showing that stream wise vortices have higher
transient growth and the possible cause for sub-critical turbulence. The effect of fmax and σ on maximum
Gmax are shown in Figures 6 and 7. The above results shows a stabilizing effect for mutual friction in the
case of normal fluid. In normal mode analysis fmax and σ were found to have a stabilizing effect. The
values of σ and fmax have significant effects on the stability results.

3.2. Stability of Superfluid
This section deals with the instability of superfluid, by adding perturbations to superfluid keeping normal
fluid undisturbed to see if superfluid can trigger transition. Modified Rayleigh and Squire’s equations for
superfluid can be written in matrix form as,

−iω
(
k2 − D2 0

0 1

) (
ṽs
η̃s

)
+

(
LR 0

iβU′ LS Q

) (
ṽs
η̃s

)
= 0 (16)

where

LR = iαUs(k2 − D2) + iαU′′s − [ f ′(z)D + f (z)D2 − k2 f (z)] (17)

LS Q = iαUs + f (z) (18)
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Figure 7. Variation of maximum Gmax with σ for
Re = 1000 and different fmax. ut for fmax = 0.005,
◦ for fmax = 0.1, 4 for fmax = 0.2.

Figure 8. Variation of maximum growth rate,
ωi with fmax for different σ. ◦ for σ = 0.25,
ut for σ = 0.2, 4 for σ = 0.15.

where we have assumed ρn
ρs

= 1. Linear modal and non-modal analysis is carried out as in section 3.1 with
vanishing perturbations as boundary conditions. Here the base flow velocity of superfluid is assumed to
be uniform. A uniform profile for inviscid channel flow is neutrally stable for all wave numbers. As we
add mutual friction, perturbations start decaying which indicates mutual friction has a stabilizing effect
on superfluid. Owing to the possibility of transient growth due to non-normality of eigenfunctions of
stability operator as in classical fluids, a non-modal analysis for superfluid is performed. The results
do not show any non-normal behaviour of eigenfunctions and the perturbations are found not to have
any transient growth. Thus linear modal and non-modal analysis predicts the stability of superfluid with
a uniform base flow profile for all wave numbers of perturbation. Experimental results in Baehr et al.
(1983); Baehr & Tough (1984) shows that dissipationless flow of superfluid breaks down at some critical
velocity and this has been attributed to the onset of turbulence in superfluid. Therefore, it is plausible
that a linear instability mechanism is absent in superfluid and transition to turbulence in superfluid is
different from classical fluids. However, the assumption of uniform base flow profile may not be valid
in the case of superfluid and has to be reviewed. A more convincing argument may be to compute the
base flow profile numerically from superfluid equation ( Equation 4), similar to the case of normal fluid
(Equation 3).

4. Conclusion

The effect mutual friction is shown to have a stabilizing effect on both normal and superfluid components.
Tough (1982), showed that two different regimes of turbulence, T1 and T2 states, exists in flow of He-II
in circular pipes and this has been attributed to the onset of turbulence in superfluid and normal fluid
respectively, at different critical velocities. Our study on normal fluid reveals that not only a TS mode of
instability but also a sub-critical transition to turbulence due to the non-normal behaviour of eigen vectors
is possible. It is also showed that a low wave number instability as proposed by Godfrey et al. (2001) is
not found in the present computation. The superfluid which is known to become turbulent, is stable for all
wave numbers in our analysis, showing the absence of modal and non modal mechanisms of instability
in superfluid. This stable behaviour of superfluid equations is mainly because of the uniform inviscid
base flow profile which eliminates the terms containing first and second order derivatives of base flow in
the stability equations. The presence of turbulence in superfluid brings in a possibility that uniform base
flow is getting altered due to the action of mutual friction and this altered profile becomes unstable. The
altered profile has to be numerically calculated from the equation for superfluid with steady and parallel
flow assumptions. However, this will end up contradicting the earlier assumption of both fluid with same
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volume flow rate. Consequently, the base flow equations need to be modified suitably to apply it for
plane Poiseuille coflow case, where mass and entropy flow are in the same direction.
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