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Abstract: We study the inflation, extension, torsion and shearing of an isotropic inhomogeneous compress-
ible annular right circular cylinder. Current approaches to homogenization that appeal to an equivalence in the
stored energies could lead to serious errors in the estimate for stresses in a inhomogeneous body as stresses
depend on the derivatives of the stored energy with respect to the deformation gradient. This is a serious
drawback as many a time failures are determined by the stresses. The study demonstrates that, in particular,
great caution should be exercised in homogenization, especially if an inhomogeneous body is to be approxi-
mated by a homogeneous body belonging to the same class. Comparison of local measures, such as stresses,
reveal that their values in the case of the inhomogeneous body and its homogeneous counterpart can be both
qualitatively and quantitatively far apart. Even the differences in global measures like the axial load, torque,
etc., are found to be significant between the inhomogeneous body and its homogeneous counterpart. It is also
shown that the material parameters characterizing the homogenous approximation gleaned from correlations
from different experiments, performed on the same inhomogeneous body, can be quite different.

Kev Bindy: inhomogeneaous bodies, equivalent stored energy, homogenization, compressibie body, isotropic body

1. INTRODUCTION

Advances in material science have led to the engineering of many bodies such as polymer
and metal matrix composites and metallic alloys which are inhomogeneous. Also, most
biological bodies like arteries, tendons, ligaments, etc., are inhomogeneous. Efficient design
and optimal choice of the constituents has resulted in increased safety, as well as cost savings
and this in turn has led to increased use of composites. However, such structures do fail,
and the cause for the failure is still poorly understood. In the case of biological bodies, it is
imperative to understand the role of inhomogeneities if one is to comprehend the growth and
adaptation process of bodies suffering various pathologies like hypertension and aneurysms.
These and many other technologically important problems have kindled the interest in the
study of the response of inhomogeneous bodies in recent years.

Two material points Py, P, € B are said to be materially uniform (see Truesdell and
Noll [1]), when attention is restricted to purely mechanical processes (i.e. we do not consider
the body’s thermal, electro-magnetic or other responses), if there exist two placers ~; and

Mathematics and Mechanics of Solids 10: 603--650, 2005 DOI: 10.1177/10812865050G36422
€ 2005 SAGE Publications

Downloaded from mms.sagepub.com at Universitats-Landesbibliothek on December 13, 2013



604 U. SARAVANAN and K. R. RAJAGOPAL

K such that there exist neighborhoods Nx, of X; = k;(P;) and Nx, of Xy = ra(P)
that are indistinguishable with respect to their mechanical response. A body, B, is said to
be homogeneous if all the material points are materially uniform with respect to a single
placement. A body that is not homogeneous is said to be inhomogeneous.

A deformation is said to be homogeneous if in a Cartesian coordinate system, the matrix
components of the deformation gradient (F, ) has constant entries. Thus, in a homogeneous
deformation straight lines remain straight lines after deforming. A deformation that is
not homogeneous is said to be inhomogeneous. Hence, a homogeneous body can deform
homogeneously or inhomogeneously as can an inhomogeneous body.

Ericksen [2] showed that the only deformations possible in every member of the class of
isotropic homogeneous compressible elastic bodies are homogeneous deformations. Hence,
inhomogeneous deformations of inhomogeneous isotropic compressible elastic bodies have
to be studied for specific forms of the stored energy function.

Here we consider bodies which have a stored energy of the form proposed by Blatz
and Ko [3]. The response of homogeneous Blatz—Ko bodies (i.e. bodies whose stored en-
ergy is given by the form proposed by Blatz and Ko {3]) to homogeneous deformations
has been studied in some detail (see for example [4, 5, 6]). A variety of analytical and
numerical solutions have been obtained for special sub-classes of Blatz—Ko bodies when
the deformation is inhomogeneous. Chung et al. [7] obtained analytical solutions for the
inflation of a cylinder. Carroll and Horgan [8] obtained analytical solutions for the pure
torsion of a circular cylinder and also deformations analogous to controllable deformations
for incompressible bodies. Polignone and Horgan [9, 10, 11] explored the forms of the stored
energy functions that support isochoric deformations corresponding to torsion, longitudinal
or circumferential shear and found special classes of stored energy functions that admit such
solutions. Mioduchowski and Haddow [12] studied the axial and torsional shearing of a
circular cylindrical tube, Zidi [13, 14] studied torsion and circumferential shearing, torsion
and telescopic shearing of compressible anisotropic tubes and Zidi [15] studied torsion,
circumferential and telescopic shearing of compressible anisotropic tubes.

Here we study the combined inflation, extension, torsion, circumferential and longi-
tudinal shearing of inhomogeneous, compressible bodies. We use a semi-analytical solution
scheme that can be used for a large choice of stored energy functions. We illustrate the efficacy
of the method within the context of the Blatz--Ko stored energy function.

In the study of composites, polycrystals, bodies with voids or cracks and many other
bodies, it is common to homogenize the inhomogeneous body and work with the homoge-
nized approximation. The purpose here is not to present the homogenization procedure
or obtain bounds for errors if and when possible, but to explore the appropriateness of
homogenization that appeals to the equivalence of stored energies, by comparing the solutions
obtained by solving identical boundary value problems (BVPs) for both the inhomogeneous
body and its homogeneous approximation. From a practical standpoint, while carrying out
such a homogenization, we have to

(1) ensure that the actual inhomogeneous body will not fail, when subject to external load-
ing at which the corresponding approximate homogenized model predicts that the body
would not do so (or vice versa);

(2) obtain a good estimate for the force or traction required to enforce a displacement
boundary condition (or vice versa).
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DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 605

Hill [16] was one of the early investigators to consider the homogenization of
heterogeneous bodies. Much of the research that has followed this has been concerned
with homogenization such that the total stored energy of the inhomogeneous body and its
homogeneous counterpart are the same for a given BVP, or they are concerned with obtaining
bounds for material parameters for the homogeneous approximation. Other than the study,
by Imam [18] of a problem analogous to the one studied by Eshelby [17] most other studies
in finite elasticity concerns with obtaining estumates. Of course, it might be relevant, in
certain cases, for both the inhomogeneous body and its homogeneous counterpart to have
the same total stored energy, but the question is whether this assumption will help the
engineer satisfactorily answer all the issues of interest, for example develop a reasonable
failure criterion. Here we show that most such homogenization procedures cannot lead to the
development of a meaningful criterion. That is, equivalence of stored energy does not ensure
that the estimate for stresses or tractions will be robust. These differences arise because the
quantities that are of interest are related to the gradient of the stored energy.

Bolzon [19], using the same methodology as Hill [16], homogenized the Blatz—Ko model,
using numerical methods. He studied the response of a sheet with a circular void in the
center and sought to obtain a homogeneous model that fills in the void. He concluded that
the inhomogeneous Blatz-Ko model cannot be approximated by a homogeneous Blatz-Ko
model.

Let y denote some generic material parameter, which varies over the body. Then, we
could define a mean value for y as

X)dVv
VYmean = :[Z-y-('—)——y (l)
I, a7

We then define that two inhomogeneous bodies are equivalent if the mean of each of
their material parameter(s) is the same. By equivalent we do not mean that their mechanical
response will be the same or similar. While two inhomogeneous bodies can have the same
mean shear modulus their response could be markedly different. This depends on the
inhomogeneity and on the deformation under consideration. This will become apparent
during the course of this study. We could also introduce the mean by introducing weight
functions in the integral (1).

Consistent with the findings of Saravanan and Rajagopal [20, 21] we show that the above
average has no relevance to the constant value for the property, even if the inhomogeneity is
very “mild” (a body with holes in it or an inclusion that has markedly different properties, 1s
not a mildly inhomogeneous body). This is of course not in the least surprising.

Suppose we perform an experiment in which we axially pull an inhomogeneous,
isotropic, compressible elastic right circular cylinder and use a constant value y;‘jp‘f “such that
the axial load required to engender a certain stretch correlates well with the experiment. Then,
we find that y’:;‘;E'" # Vmean » I general. Also, the constant value obtained from correlating
with different experiments, namely y/.~'" for pressurizing and inflating, y/;~*" for axial
extension, are different. For a given inhomogeneity, depending on the specific BVP
Yex could vary by as much as 1800 % in the correlations from different experiments. Such
large variations suggest the futility and inadequacy in obtaining bounds for these material
parameters using the criteria of equivalent moduli, as they cannot be tight. Of course,
here we have assumed that the stored energy of the homogeneous approximation belongs
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606 U.SARAVANAN and K. R. RAJAGOPAL

to the same class as that of the inhomogeneous body. We might of course need to model an
inhomogeneous body comprised of homogeneous bodies of a certain class by a homogenized
model of a different class, i.e. a body comprised of different Blatz-Ko bodies would be
approximated by a homogenized body that is not a Blatz—Ko body. In fact, this would indeed
be the case. However, if the inhomogeneity is “mild”, 1.e. if the body is made up of Blatz—Ko
bodies whose material properties are close to one another, we would be tempted to model the
inhomogeneous body as an equivalent homogeneous Blatz-Ko model. In fact, many studies
make such an assumption. Few rigorous studies concern non-linear elastic inhomogeneous
solids undergoing large deformations. Irrespective of the homogenization procedure, if such
a mode! is arrived at based on energy considerations it will not lead to models that predict
the stress accurately. It has been suggested erroneously that one could approximate an
inhomogeneous isotropic body as a homogeneous anisotropic body (see for example [22]).
However, it should be borne in mind that material symmetry concerns response at a material
point and inhomogeneity is associated with the response at different matertal points.

We study the variation of these constant values, y.., for different types of departures from
the mean, 1.e. we examine if the results obtained are significantly different for a sinusoidal
variation versus a piecewise constant or linear variation, provided the mean value is the same.
We find that depending on the inhomogeneity, ygf[')"rw’ , the constant obtained from correlating
the torque required to engender a given twist for a specific stored energy function could vary
by as much as 360 %, indicating the importance of knowing the actual inhomogeneity. Thus,
the parameter y.,, will be different for different inhomogeneous bodies even though they are
in some sense equivalent.

When we focus our attention to local quantities such as the stress, we once again reattirm
the observation of Saravanan and Rajagopal [20,21] that even the sense of the stresses cannot
be captured correctly by the homogenized approximation. Thus, even if homogenization is
reasonable for the global response of the body, it is quite inappropriate when one is interested
in determining the failure of the body.

The arrangement of the paper is as follows. In Section 2 we introduce the basic
kinematical quantities and follow this in Section 3 with a discussion of the stored energy
function that is considered in this study. In Section 4 we introduce the various types of
inhomogeneities considered. In the next section we introduce the specific deformations
that are to be studied and outline the semi-analytical scheme to solve the BVP In Section
6 we obtain y,,, from various correlations. In Section 7 we present a few interesting results
concerning the distribution of stresses in inhomogeneous compressible solids vis-a-vis the
homogenized body. This is followed by a very brief account of the response of homogeneous
compressible solids.

2. KINEMATICS

Let X € xg (B) denote a typical particle belonging to the natural reference configuration
rig (B) of the body, and let x € k,(B) denote the position occupied by X at time / in the
configuration «, (). The motion of the body is defined through the mapping X, that is
one-to-one for each ¢t € R:
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DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 607

x = X (X,1). (2)

We shall assume that the motion is sufficiently smooth to render all the derivatives that
follow to be meaningful. The deformation gradient F,, is defined through

0X e
o= A 3
a X’ )

and the Cauchy—Green stretch tensors, B,,, and C,, , are defined through

B, = F,FT, (4)
C, = FLF,. (5)

The principal invariants of any second-order tensor A are defined through

L =trA, I, = =[(trA)? — trA?], I =detA. (6)

SR ]

We find it convenient to express some of the results in terms of the invariants
h=1, h=2=tuw(AY), k=57 (7)

These kinematical quantities are sufficient for our purpose.

3. CONSTITUTIVE RELATIONS
In this study we restrict ourself to bodies whose stored energy is such that
W.= W(X,Jl,JQ,Jg). (8)

Then, the Cauchy stress is given by
2
T =W;1+ —J—[WIB'\R - W_),B;l], 9
3

where, W, W, W5 denote the derivatives of the stored energy function with respect to Ji,
Jo, Js, respectively. The stored energy W should be such that

W3 S 0; Wl > Oy W2 Z 01 (10)

to satisfy E-inequalities (see Truesdell and Noll [1]). The Cauchy stress can be expressed as
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608 U. SARAVANAN and K. R. RAJAGOPAL

T = W1 + T¢, (11)

where T¢ = %{Wl B,, — W.B_']. We find this decomposition convenient to present our
results.

The homogeneous version of the stored energy function which we consider was proposed
by Blatz and Ko [3]. The inhomogeneous form of this stored energy is given by

W =0.5xu; (X)[a(Js) + u2(X) % (J1 = 3) + (1 — (X)) * (S = 3)], (12

and the stress is obtained from (12) and (9) as

_ #1(X)

T
Js

[t (J3)1 + p2(X)Bg, — (1 — p2(X)) B, (13)

where a(Jy) = [2(X) (5™ 1) + (1 = ua(XD " = 1]/ (X)), i () =
& (—i“j'i— = [P — g (X) (350 4 g The parameter s is related to the Poisson
ratio (v) (see [3, 5]), i3 = =5 Itcan be easily verified that the E-inequalities hold when
to(X) = 1 and g, (X) > 0. Horgan [23] showed that this corresponds to the case when the
ellipticity condition is satisfied for all values of stretch. Wineman and Waldron [6] showed
that when i, = 1, there exists a unique shear deformation corresponding to a given shear
stress even in the absence of normal traction. We study in detail the case when g, = 1. Then,
the stress is given by

#1(X)

T = 7,

(—J.j?“(x)l + B, ) . (14)

We shall neglect body forces and as we shall consider only static problems, the balance
of linear momentum reduces to

div(T) = 0. (15)

Next we discuss the non-dimensionalization procedure. ~ We first introduce a
dimensionless prescription of the position, gradient and divergence through

e

X = %x, grad(-) = L x grad(-), div(:) = L*div(-), (16)

where L is a relevant length scale, grad(:) = %} and grad(-) = % We note that the
deformation gradient ., is already a dimensionless quantity. We introduce a parameter, /t,,,
with units of stress, to render the Cauchy stress dimensionless. The parameter u, depends on
the specific form of the stored energy function. Here g, is assumed to be the mean value of

1. Thus, Equation (9) becomes

~ 2 —
T =W+ #iBy - WBJ|, (17)

3
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DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 609

where, as usual, ?V/, = W;/u, and T=T /.. Consequently, Equation (15) becomes
div(T) = 0. (18)

For convenience we drop the tilde with the understanding that all the quantities
considered henceforth are non-dimensional uniess otherwise explicitly stated.

4. FORMS OF INHOMOGENEITIES

Here, we shall confine our investigations to a body B that is the annular region between two
co-axial right circular cylinders:

B={(R6,Z)R, <R<R,0<0 <210 Z< hy, (19)

and, in this study, we identify L, the characteristic length scale, with the outer radius, R, .

Let y(X) denote any one of the material parameters z1(X) or u2(X) or u3(X). We
assume that the material properties vary only along the radial direction, y(X) = y(R). Thus,
u; are all functions of R. Before we discuss the manner in which the properties vary, we shall
introduce a parameter R in terms of which we find it convenient to discuss the variation as
this parameter ranges between 0 and 1:

- R-R
R= - 20
Rr) - Ri ( )
The following functional forms for y(R) are such that
o v(R)dR /‘ =
VYmean — —_— = Yy R)dR =1. (21)
(Ro - Rl) 0 ( )

First, we shall consider cases where the material parameter varies monotonically. Here,
we consider two types of variations, one in which y (R) increases from R; to R, and in the other
in which it decreases. While this can happen in a variety of ways, we choose the following
simple vanations.

Linear variation:

) =2(L - )R + 9, (22)

~
=

where 0 < & < 2. Thus,
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610 U. SARAVANAN and K. R. RAJAGOPAL

d {>0, 0<d <1,

drR 1 <0, 1<d<2.

Exponential variation:

Here we suppose that

d SR

Y(ﬁ):m*e :

where, —oc < 0 < oc. Thus,
dy [ >0, J>0,
drR | <0, J < 0.

We shall also study cases where the variation of u is non-monotonic.

Piecewise constant (PWC) variation:

In this case we shall assume that

n=0

S+2x(1—8) A L (~1)"H(R - L), kisodd,

[zzan)

y(R) = { 5+2*(1—5)*Zk—1(—1)"H(§—Z—), k is even,

— n 0 ifR<%,
where H (R - —) = —
k 1 ifR> 7.
Here 6 and k determine the amplitude and frequency of the variation.

Sinusoidal variation:

For such a variation, we assume that
y(R) = 1+ d * sin(2knR),
where J determines the amplitude of the variation and & the frequency.

Cosine variation:

Finally, we study the case

y(R) = 1+ & * cos(2knR),

Downloaded from mms.sagepub.com at Universitats-Landesbibliothek on December 13, 2013

(23)

(25)

(26)

27

(28)



DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 611

with the é and & having the same meaning as in the previous case. We require that in all the
above cases, & has to be an integer.

5. INFLATION, EXTENSION, TORSION AND SHEARING OF AN ANNULAR
CYLINDER

We shall consider a reasonably large class of inhomogeneous deformations that have been
studied in great detail for homogeneous isotropic elastic solids. We shall seek a semi-inverse
solution of the following form, for the deformation, in cylindrical polar coordinates:

r=r(R), 0 =¢(R)+pO+0Q2Z, z=w(R) + KO+ 4Z, (29)

where (R,0,Z) and (r,0,z) represent the coordinates of a typical material point, before
and after deformation, respectively. In Equation (29), f, §2, x and 4 are constants. The
function r(R) describes the inflation or deflation of the annular region, ¢ (R) denotes the
circumferential shear of the annular region while w(R) denotes the transverse or anti-plane
shear. The constant €2 denotes the angle of twist per unit length of the undeformed cylinder,
« the azimuthal shear, A the extension suffered by the body, and £ is related to the angular
displacements undergone by radial filaments.

As with all semi-inverse methods, the traction that is necessary to engender the
deformation (29) can be calculated once the function and unknown parameters that appear in
(29) are determined. The functions and unknown parameters are determined such that they
satisfy the equilibrium equation (15) and the boundary conditions (yet to be specified). It 1s
of course possible that these equations cannot be satisfied. But this is not to be construed as
there being rio other solutions to the BVE, for there could be solutions that have a different
structure than the semi-inverse solution that is sought. Similarly, there can exist a multitude
of other possible solutions that have a different structure that solve the BVP

The deformation gradient ¥, corresponding to the deformation (29) in a cylindrical
coordinate system has the matrix representation given by

Fr 0 0
F,=| rés B3 rQ |. (30)
Wr FH A

where (.) x denotes %&—), a notation used throughout this paper. Then, the left stretch tensors

B and B! have the following matrix representation:

2
rr FO TR WRYR

B, = roprr (ror): 4+ (B5) + (0 rQA+rwror + &5 |, (D
wrrr rQA+rwerdr + zzhr (A)2 + w2 + (£)?
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612 U. SARAVANAN and K. R. RAJAGOPAL

{1+ HRE) + &2} i (AR + 18] L5 [QER? + BE]

rr@?
Bﬂfkl = ,-_;_—Rlﬁ[iéle + K&y (7‘/}—).2—[&2 + (RA)?] ,—;é [Br + QAR
T[R4 By o [Br+QARY LB+ (RO
(32)
wherep = 1 — Ok, $1 =wrQ — PrA, Ea =wirf — O R K.
For this deformation
r K\’ ‘
D= e PR 0 P i+ (3] (39)
1 1 : 1 [ K®+ (RA)? A
5= fresiwer e} {SEE ey war] oy
r
Jy = EF‘R([). : (35)

It immediately follows that r ; > 0. Also, if we do not allow inversion of the cylinder,
¢ > 0, hence fA > Qk, a restriction enforced in this study.

For the special form of the assumed deformation, the deformation gradient is only a
function of R and therefore the stored energy has the form W = W(F,, (R),R). Then the
equilibrium equation (15) simplifies to

ar +;(T,-r—T99) = 0, (36)
d7, 2
*+ 21, = 0, (37)
dr r
d7,-
=iz~ o (38)
dr r

Equations (37) and (38) can be easily integrated to yield

2

¥ .
Tolr) = "j'gT,-n(F‘i), (39)

T.(r) = %T (). (40)

Here, the stresses at the inner surface are assumed to be known. Substituting for 7,4(r)
and T,. (r) in (39) and (40), we get two equations in terms of (r g, ¢ z, w z ). Thus, treating
these derivatives as variables, Equations (39), (40) are solved simultaneously for ¢ ; and
w interms of r . Then, r ; is obtained by solving the second-order ordinary differential
equation of the form
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DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 613

S(nRrr)ree +f2(nRrr) =0, (41)

obtained from (36) by substituting the solutions obtained for ¢ z and w z, along with the
mixed boundary condition!

r(Rl) = ria Trr (7",,) = Pu- (42)

Equation (41) along with the boundary condition (42) is solved numerically. Ensuring
that f1(r, R, r » ) # 0, we begin by solving the initial-value problem (IVP)

Frr = ‘:fi
El f‘l ’
for some particular value of ry. Then, we evaluate the boundary condition 7}, (r(R,)).

Unless it happens that the value for this equals P,, we take a different value for #} and solve
the resulting IVP, Thus, the error

r(R;) = ri, rr(R;) :'”;b (43)

e(rg) =P, — P2 (rp) =0, (44)

where P is the value of T, computed at R = R, = 1, is a function of our choice for the
initial slope. Now, the problem is to solve the non-linear equation (44) for r . This non-linear
equation is solved using the bisection technique in which zero is approximated to be 1077,

The IVP (43) can be solved using a variety of techniques, each with its attendant
advantages and disadvantages. Here, we convert the second-order ODE to a system of two
first-order ODEs by a simple change of variables:

u=r, vV=rg. (45)

The differential equations relating these functions are

ug = v, vp = _—fz— = g(R,u,v), (46)
N
with the initial condition
u(R,-)=r,—, V(R,-)=r,£. (47)

This system of first-order ODEs is integrated numerically using ODE45 in Matlab.

5.1. Solution Scheme for Piecewise Constant Variation

For this case, the variation of the material parameter is discontinuous. Hence, the governing
equation (41} has to be solved in each sub-domain where the parameter varies continuously
and at the interface we require t, = —t_,,, where n (= e,, for the assumed form of
deformation and inhomogeneity) is the normal to the interface and the deformation field is
assumed to be continuous at the interface. Here, in other words, we assume that there is no
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614 U.SARAVANAN and K. R. RAJAGOPAL

de-bonding at the interface. This translates into requiring 7,, , T, and 7,. apart from 7 to be
continuous across the interface. Equations (39) and (40) ensure the continuity of 7,4 and 7,
respectively. However, the continuity of 7,, has to be enforced. Towards this purpose, let

R, R,, ..., R, denote the locations where the material parameter is discontinuous. We begin
by solving the IVP '
YRR ___:I?_) r(Ri):ria r,R(Ri)::r;e: (48)
N
over the domain R; < R < Ry, guessing a value for r} . Ndw, the values of #(R]) = r|

and r 4 (R7) = rg, are known. Then, the value of r x (R}') = rj is obtained by solving the

equation
T (ry R g, ) = T (0, RY 1y ) (49)

which is non-linear, in general, using the bisection algorithm. Note here that ;" = r|, and
the only unknown is r} . Having obtained ry, , we solve the [VP

YRR :_[Z, r(RY) =rf, ra(RY) =rf (50)

N

over the domain R; < R < R,. This process is continued until the boundary of the body (i.e.
R = R,) is reached. Now, from the values of ¥ (R,) and r ¢ (R, ), P2*™ and the error e are
computed. Unless the computed error is within the tolerance, we iterate guessing a new value
for r,’é , using the same iterative scheme outlined above.

To be able to discuss solutions to a specific BVE we have to decide what the appropriate
boundary conditions are. For instance, we could ask if a deformation such as that being
considered is possible, given say a purely radial stress applied at the inner radius of an annular
cylinder. Then, we could compute the traction that ought to be applied at the outer surface
to acheive the sought deformation. Before discussing specific BVPs, we shall document the
forms that the equilibrium equation takes for the specific stored energy that we discussed
earlier.

5.2. Solution Using the Blatz—Ko Form of the Stored Energy Function

When T is given by (13), Equations (39) and (40) simplify to

aGor +awr = as, (51)
bidpr +bawr = bs, (52)
where
R L(RA)? + K? LQAR? + kB C1r R P
ay = TR +/12W,a‘z T T B T T (53)
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DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 615

(RQ)* + B2 b = Car P
",R(pz » U3 R '

by = ray, by =pirg +u; (54)

with ¢; = r?T,o(r;) and ¢, = ;T (1), 7 = p1(R) * p2(R), p = p1(R) * (1 — po(R)). A
straightforward algebraic simplification yields

g1 = aby — arhy = Uy +piul v dy + p3t v ey (55)

Ay 2 2 2
Where dl — (R +~K +:¢%2+(RQ)2) > 0’ e =

if g, = 0. At a given location R (say R, ), we can determine the value(s) of %1 when this can

happen by evaluating
1 ~d?+ ,/d} — 4rri e

— = : . 56
ur 2e? (56)

2 . «
T(%)T)? > (. Now, we are interested in finding

It can be easily verified that ;—:1 < 0.1, (R) > 0and 0 < uy(R) <1, then %-; > (), resulting
in a by — asby # 0. Since, in this study we assume x;(R) > 0 and 0 < p(R) < 1, there
exists a solution for the system of Equations (51) and (52), solving which we obtain

b =2 wp =5, (57)
&1 &
where
rk o, #

= o — = *on d 58
g2 byaz — azbs Cl‘Pﬂer +Rr(p 2 (58)

rr? *
g = bia — asbl‘-'—‘ CQ‘P#;T'R + Iglrzgods’ (59)

with dy = c1[(R)? + B2] + c2[QAR? + KB), ds = 2[(RA)? + K?] + ¢ [QAR? + Kf3].
Next, we need to find ¢ gz and w gg . Towards this end we note that

. , K24+ (RA)? R [i? [
dig = f—% {ﬂz + (RQ)? - "———L——)—] +2— {~—— + er} , (60)
) r o2 | r
‘ 2usR?
= ul.(2uirr? ad 5 dy + ——1, 61
ny /~‘1,R( HaPr g + o 1) + Ha g (ﬂl 1+ r(r,;g(p)z) (61)
*2
* ltl R R * *
hy = ﬂlzr,%e + r(pQQrEQ (2 - ":) +uipsd g, (62)
. (u3R)?
n o= uilrrg — rr;eth’ (63)
gir = 2mrgg +m +h, (64)
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S
]
I

1y =
g2 =
Gre =

d3,R =

The radial component of the balance of linear momentum (36) can be written as

7, :
To compute we start by defining
dR
n3  gam N3
x; = 2|{— - Q-2 —= 11,
] _<g1 g ) (g1 - &s—)}
ny g3P11 Ny
X2 = 2\ == -kl —m ||
) _(gl g} ) (gl““&g‘)}
1 my +h
»n = —[(m3+h3)Q—l(m2+h2)]———~—( - 5 1)(839-/{&),
& 81
1 m —i—h
ve = llma et — slm k)] = P ),

2RQ[C19+CQA]

s
ﬂlR l‘P""‘+ Rz(: )
H r+Rrg { Ly *.(.1.2_
rR(p (Rr)2 |:Cl(p:ulr,R +/u2 ¢ 3
Clgpﬂ]rR

2ngr g + my + hy,

n n ’
2 (—2- — 152) ¥ RR + - '-E'(ml + h}),
&1 g & g

1
2RA {Clﬂ + CQ}.],

2

rry ds
UiRCop— R +lzRR(p
Copuy Fﬁ___’”_} H3 - _Hads [raRR+7]
PR R T Rrp P p(Rr)2V R ’
r
cgtp'u;e r

2n3r gr + my + hs,

ny  mgs ms+hs g3
2\ — ——=)rm + my +h
(gl g% ) e &1 8%( ' )

dTrr r,R .
R + T(T/r — Toe) = 0.

1

Downloaded from mms.sagepub.com at Universitats-Landesbibliothek on December 13, 2013

(65)

(66)

(67)

(68)

(69)
(70)
(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)



DEFORMATION OF INHOMOGENEOUS COMPRESSIBLE CYLINDER 617

Then, we immediately obtain

Sig = Xirge +y1, (82)
Sor = Xorgr +yo, (83)

and hence it follows that

rr. rR "‘R

2 [ (R% 1x, + Eax. 2 (hre2
Bt :___{( &1xy qm)_Br.rl}r.RR +RE RN+ Evl (89)

®
Noting that
rr
b = L (v e =T, (85)
du, 24 s ‘. -2,
TR R 5
and defining
M, = HigMm + {2038 111(J3)[J32/13 - (Jmld - 3—2/‘3)]
( 2/15 -2;13)}, (87)
my = m, + (#1,R,U2 +prpiar )Brr — (p1r (1 — p2) — prpear )BY,  (88)
we compute

1 d m _
Tk = — 3 ma+ |1t — T, | s + 2unptararan — (1= u2)Brk b (89)
J5 dJ;

Consequently, Equation (77) simplifies to

fi f2
— = = 90
JdrRR +JJ ) (90)

where

du,, r
.fl - (P<ﬂ1 dJ3'~Trr>R

s g

1 .
+24 {ugr,k + o ;—'(szﬂﬁ + fzxz)} } ) 9n
R

j m
L = my+ (,ul (dlflg, - T,.,.) (r,R - :) TRP

I” R
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1- 2
_QM[R(EI' + REw1) + Laval, ®2)
r
I, = /11%& [12(Br — Bap) — (1 — u2) (B, — Bl ©)
f2 = 11 + 12- (94)

We can immediately simplify (90) to the form

ﬁ(’gR7r,R)r,RR +f‘2(r1Rar,R) :0) (95)

which, as expected, has the same form as (41).

Before proceeding further, we record the forms of f; and f; for a few special cases. First,
if 15(R) = 1, then

(24 r
i =9 (2#1#3]3 Bratt) Trr) z T 2uirg, (96)
r —(2n: F\ F
fZ = ,ul(Brr - Bﬁﬂ)i + (2/&1#3.]3 (23 +D) - Trr) (r,R - ”’) YR(p
r R/ R
g (<5 B ) 20 In(y) s g Jy . (97)

Since we would like to consider inflation, extension and torsion of an annular or solid
cylinder, 8 = 1, k = T.. (r;) = 0 and T,4(r;) = 0. Consequently, ¢(R) = 0, w(R) = 0. For
this case

dty, r 1-
h =9 (.ul le3 - Trr> z + 2 {#zr,k + (—F}e&l} ) (98)
Il = my+ -—-——-d‘um -T (r - r—) Lx®
2 4 My de rr R R R b
2
_ R 2 _ (I\?_ 2| _(1— 1 _(R
e izl G o] - [5-(3)])
H1 2 1
T/‘r = J_ Mom +:u'2’,R - (1 —#Z)T : (99)
3 F'r

We note that numerical computation of the above is not possible at R = 0. Hence, we
compute the above quantities analytically and use them in the numerical scheme. Towards
this end we find the following limits useful:

lim f—(——)-

R
jm —5 = rg(0) #0, (100)
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Rr‘R —r

lim =5 = 0.5r4 (0), (101)
. ”2 - (I")R R)Z V' RR (O)
) oe
. (raR)? —r?
,%1_{% - *re (0). (103)
It then immediately follows that
Jy = Arz(0), (104)
1
L = u(0) [;42(0) + (1 —-,ug(()))m] rx(0) 7 re (0), (105)
A R
dptm
l = ma(0)+0.52 {m(()) d“J (0) - T, (R =0)] re(0)rze (0),  (106)
3
: , d gt
./1 = /~(ﬂ1(0) (0) - Trr (R = O))’:R (0)
dJ;g
» (1 —p2(0))
+20(0) 1O 0) + LR, (107)
Hence, Equation (41) at R = 0 takes the form
. 1
—17'14(0) = 3 /‘1(0) ﬂQ(O) + (1 —:uz(o))r} (0)
dptm
+ 0.54 {#1(0) d”J 0)-T,(R= 0)} } rr(0)rzr (0).  (108)
3
Hence, at R = 0, the above expression is used to obtain r g (0). If the material

parameters are constant, then my = 0. In that case for (108) to hold for any arbitrary choice
of? r » (0) and/or 4, r gg (0) = 0.

Before, proceeding further we note that we were unable to show a priori that f; # (.

6. GLOBAL QUANTIFIERS
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However, when this condition was checked numerically, for all the cases considered here

N #0.

In this and the following section, we provide more evidence to support the thesis of Saravanan
and Rajagopal [20] that great care has to be exercised in approximating inhomogeneous
bodies as homogeneous bodies, however mild their inhomogeneities. Let us consider the
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inflation and axial extension, and torsion of an annular or solid right circular cylinder. Thus,
f =1,k = ¢ =w = 0. Suppose , we consider the Blatz-Ko model with 5 = 1. In this
case the stored energy is a function of only the first and third invariants of C. For this case,
we obtain the foliowing expressions.

The axial load, £ defined through

L= 27r/ ' T.. rdr, (109)

simplifies to
L= w/ (2xT8 — T8 —Terdr+w(r2« T, (r,) — r} x T, (1)), (110)

when the stresses are a function of only r. For the present case (110) reduces to

2 [* 2 2 ry? 2
c-L== w2 ——rR~(—) — (rQ)? | RdR, (111)
A Jx : R
where L, = w(r2 « T, (r,) — r2 x T, (r:)).
Next, the expression for torque, 7 is given by
T—-—Q*rr/ To-r2dr, (112)

which 1n the present case reduces to

R,
T 47@/ W,Rr2 dR. (113)
R/
The moment
h Yo
M =/ / Toordrdz (114)
1] ri
reduces to
M = % I:(rr?Trr (ro) —rizTrr (ri)) +/ | (Tlf - Tﬁeﬁ)rdr:l ’ (115)

per unit length of the cylinder in the current configuration, when the stress is a function of »
only. In the present case it can be written as

R” b
MM, = %/R W [f% - ('1%)2 - (rQ)Q] RdR, (116)

where M, = 0.5 % (r2 = T, (r,) — r2 x T, (1))
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Finally, even though this is not a global quantity, the radial component of normal stress at
r; is an often inferred experimental quantity, and this stress, which we denote by P, is given
by

& d
P= T ()= -1 () = [ (T3 ~T5) %, (117)
which reduces to
2 R ry? 2 2| R
,P—'“Trr(ra)“{‘;l‘/Ri W] [(E) +(VQ) _r,le;Tg—dR' (118)

Of course, we could obtain P directly as — 7, (r;).

Having obtained these general expressions we now illustrate the role of the
inhomogeneity within the context of the special stored energy functions introduced in Section
3 and the various forms of inhomogeneities introduced in Section 4. First we study the special
form of the Blatz-Ko stored energy function (14). Let (41).,, denote the constant value of
the material parameter 4, for the homogenized approximation for the inhomogeneous body
of the same type. Then, we determine the value of ()., through a correlation with the
experiment, such that both the homogeneous and inhomogeneous body require the same
boundary traction to engender a given stretch or inflation. We propose to correlate with
various experiments to obtain ( ,ul)ex,, and compare their values. Towards this purpose we
begin by considering the classical uniaxial extension experiment.

6.1. Case 1: Uniaxial Extension

Here we consider the uniaxial extension of an annular or solid right circular cylinder, i.e.
Q=T, (r;) =T, (r,) =0. For this case, (111) reduces to

ALY " 2 _ 2 r\?
o = /R ;zl(R){Ql —r,R—(E) RdR

2(”3)all;)—ﬁxl
(#1)exp {12_1 o, >] (RS - RY),

R, p r
Jo m(R)242 — r — (£)*]RdR
(:ul )(H])

T ' (119)
{12 S T +U} (R2 — R?)

Before proceeding further a few comments are in order. While the homogeneous cylin-
der for this case permits a homogeneous deformation, the inhomogeneous cylinder, in gen-
eral does not. However, when y; is constant the deformation is homogeneous. This is
consistent with the observation of Saravanan [24] who found necessary conditions for an
inhomogeneous body to sustain homogeneous deformations. The value of ( u; )% =5 depends

exp
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on how x,(R) and z3(R) vary about the same mean and also on the value of ()5 ~""
and 4. This clearly indicates that the inhomogeneous Blatz-Ko body in general cannot
be approximated by a homogeneous Blatz-Ko body. However, if u3 is constant such an
approximation is possible, for this BVP Figure 1 plots the variation of (x,)0, Ext with R;
when p3 is assumed to be constant and g, (R) varies linearly and is piecewise constant,
respectively. Thus, depending on the geometry of the body we could conclude the value
for (p41)a, = varies by as much as 40 %. We note that for this case ( yl)“p Ex does not vary
with /. Figure 2 depicts the variation of ()4 ** with 2 when 1, (R) is constant and s¢3(R)

varies exponentially and as a piecewise constant. For this case, we assume (u3)A5 5 =

exp

e = 0.5 (equivalently a mean Poisson ratio of 0.25 and varying from 0.33 to 0.15).

6.2, Case 2: Pure Twist

Next we consider the twisting of an annular or solid cylinder. A suitable axial load and T}, (r;)
is applied such thatr; = R;, A = 1. Also, T}, (r,) = 0. Then, we correlate the torque required
to engender a given twist (£2), to obtain

) [ — v
5 - [ mertar= ) [ Rk
R, P
" 4y (R)Rr2 dR
(aul )e\’p Tt = fRI - ) ( 120)

fR}T" Rr*2dR

from (113). It should be recognized that the #(R) obtained for the inhomogeneous cylinder
will be different from that obtained for the homogeneous cylinder (»*(R)) and will depend
on the parameters x3 and 2.

For the same experiment, instead of correlating the torque required to engender a given
twist, we can correlate the radial component of the normal stress required to ensure r; = R;
for a given twist to yield

R r\? . R
0.5P = /R s (R) [(E) +(rQ)2~r};]ﬁdR

= (e [ [(E)HQ) —u]——ﬂﬂ?

fR LR ;;— 2+ (r2)? —rR]%dR
Jo 1502 + ()% = r 2] 25 dR

(#1)5& T

(121)

from (118). Similarly, we can correlate the axial load required to maintain A = 1, for a given
twist (€2). Then
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(L)~ L) _ /RR (R {2._,3? _ (i)z-(rﬂf}kd&

2T ?
R, -~ 2
= (/"l)exp / 2 — )"3? — <_E) _ (r*Q)Q RdR,
R;
R
“(R) (2 -1k~ (5)? - (r?* RdAR
(1 g:p—rw: — fR,- 51( )[ R (R) ( )} 12

fR'_ [2 —ry - (3;—)2 - (r*Q)Q] RdR

from (111). Here we have assumed the correlation of 7,, (r;) to ensure L, to be same
for both the homogeneous and inhomogeneous body. We emphasize again that both the
inhomogeneous body and its homogeneous counterpart are subjected to the same boundary
deformation and we are examining the appropriateness of the approximation by comparing
the experimentally measurable quantities, like the axial load, torque, etc., required to maintain
the prescribed boundary deformation.

Figures 3 and 4 capture the variation of ()., With Q for various variations of x(R)
about a mean value of 1. In these figures u; = 0.5, a constant. The results clearly suggest
that, for at least some types of inhomogeneities, the stored energy for the homogeneous body
that belong to the same class as the inhomogeneous body cannot describe the response of the
body accurately.

Even though the variation of ()., With € is less than 10 %, it is important to notice
that the maximum deviation from the mean occurs for small values of 2. For this class of
deformations, when the inhomogeneity is periodic, say sinusoidal, increasing the frequency
while keeping the amplitude fixed does not result in the homogenization becoming better.
This is consistent with the observation of Saravanan and Rajagopal [21] for the Mooney
solid.

6.3. Case 3: Pure Inflation

Finally, we consider the inflation of an annular right circular cylinder, held at a constant length,
ie. Q=T, (r,) =0,4 = 1. For this problem

R" 2 R
_ N 2| &
0.5P = /R yl(R){ R) r,R}erR

(m)&™ = —=x — (123)
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from (118). As in the previous case, we can correlate the axial load required to maintain
A =1 for a given r;. Then

(Lr) ~L,(n)) _ ﬁ&mmﬂ,ﬁg_(g1RM,

27

i

R" r* 2
= (:u'l)exp / [2 - r,‘l‘e2 - (_) :i RdR7
R ’ R

[ mR)2 ~rk — (5)*RdR

R

R, R
fR, 2~ FR — (F)ﬂRdR

Ax—Inf
( 2

M1 )exy (124)

Figures 5 and 6 capture the variation ()., obtained for this case with the value of
ri/R;. We find that for this case the value of ()., could vary by as much as 30%
and the maximum deviation from the mean occurs for small values of ; /R;. Thus, small
deformations do not necessarily ensure robustness of the homogenization. Further, for this
class of deformations, if the inhomogeéneity is periodic, then increasing the frequency, while
keeping the amplitude fixed, does not always resuit in the homogeneous approximation
becoming better.

Figures 7-9 capture the variation of (u1)., with R, for the various correlations
considered above, for a given g, (R). We have once again assumed u3 to be a constant. Here
A =12,0=01,r = 1.3« R; for the respective cases.

We immediately recognize that the value of (£} )eyp

(1) depends on the thickness of the cylinder;
(2) depends on the specific experiment used for the correlation.

Such characteristics are not desirable. Further, if the inhomogeneous Blatz—Ko body
is made up of layers of homogeneous Blatz—Ko bodies with different material moduli ()
varying about a mean, then one might believe that it could be modelled by a homogeneous
Blatz-Ko body. The above results show that not to be the case. We find that increasing the
frequency (k), keeping the amplitude () fixed need not always result in the homogenization
being better, as in the case of a Mooney solid.

Instead of homogenizing in the above manner, we can mathematically seek the constant
value of the material parameter u, associated with the homogeneous approximation for the
inhomogeneous body belonging to the same class, such that the total stored energy in the
inhomogeneous and homogeneous body are the same. Then, if we denote by (1 )y this
constant parameter associated with the homogenized body, we find that it is given by

fa (R +, — 4)dR
R, *\—2 1. *
fi (U5)720 +Jf — ) dR

(BU)mn = (125)

where J* denotes the invariant found from the solution of the identical BVP for the
corresponding homogeneous body. Let (u1)<) . (11)55 . (u1)5; denote the values of

mth 2 mih 2 mih
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(#1)mn corresponding to the three BVPs studied earlier The variation of (gq)ms Vs R;
is plotted in Figures 10-12. We have assumed x5 to be a constant and A = 1.2, Q = 0.1,
r; = 1.3 * R; for the respective cases. Also, in these figures we have plotted the extreme
values of 4, obtained, for the sake of comparison. It is evident that similar to ().,
(t1)my also depends on §2 and r;, indicating that the inhomogeneous body cannot be
approximated by a homogeneous body with a stored energy function belonging to the same
class.

Itis not surprising that (u; )<, = (g1 )mean because when both the homogeneous and the
inhomogeneous body allow for the same homogeneous deformation then it can be easily seen
that (41 )mn = (1) mean - This results in the under- or overestimation of the axial load by as
much as 50 %. It could be inferred from these figures that one cannot definitely say whether
(1) mm underestimates or overestimates the required traction as this depends on the type of
inhomogeneity under consideration (for example, if £, monotonically increases or decreases)
and the BVP In any case, even for a given inhomogeneity, (f1)ms (as also (41 )ey, ) varies
by as much as 1800 % depending on the BVP.

7. STRESS DISTRIBUTION

We now turn our attention to the differences between the stress distribution in the
inhomogeneous solid and its homogeneous counterpart. It is not surprising that the stress
distribution in the inhomogeneous body is quantitatively different from its homogeneous
approximation. However, one would expect the qualitative aspects like the gradient of the
stress or the sense of the stress to be preserved. Unfortunately, such is not the case and this
was illustrated in the case of incompressible bodies by Saravanan and Rajagopal ([20, 21]).
We also encounter a similar situation in the case of compressible bodies. This difference can
have profound implications concerning the failure of the inhomogeneous body, calculations
based on the homogeneous body proving to be useless or misleading.

Figures 1315 show the stress distribution and #(R) for various inhomogeneous bodies
subjected to pure twist (case 2). Figures 16:and 17 provide the same for pure inflation (case 3).
It can be easily seen from Figures 14a, 16b and 19 that the homogeneous approximation does
not even predict the sense of stress correctly (compressive versus tensile) for these simple
deformations.

Interestingly, for all the richness in the stress distribution, #(R) is nearly identical for all
types of inhomogeneities as seen from Figures 15a and 17a. However, Figures 15b and 17b
show that the derivative of r in these problems is quite different. This also highlights the
accuracy that the theory demands in the experimental observation to arrive at a robust stored
energy- function for an inhomogeneous body.

Figures 18-20 show how rj and the transmural stress distribution vary when an
inhomogeneous solid cylinder is uniaxially stretched. Here u; alone is a function of R. Thus,
the deformation of the cylinder is inhomogeneous. Also, note that 7,, # 0, Tyg # 0 in the case
of an inhomogeneous cylinder. Figure 18a illustrates the accuracy required in experiments
that track markers, an approach common in the testing of soft biological tissues, so that one
could decide whether the deformation is homogeneous or otherwise.
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8. RESPONSE OF HOMOGENEOUS BLATZ-KO BODY

Here, we first consider the response of a thin cylinder to inflation at constant axial load and
constant length as shown in Figure 21a. Clearly, the difference between these two responses
increases as the radial inflation increases, even in the case of a thin cylinder. Figure 21b shows
the torque versus twist response of a solid cylinder at constant load and constant stretch. It
can be seen from the figure that changing the value of u has little effect on the solution. It
can be observed that the radial component of the normal stress required to inflate the cylinder
is less when unstretched in comparison to when unloaded irrespective of the value of s».
On the other hand, the torque required to engender a given twist is more at constant stretch
(4 = 1) in comparison to constant axial load (£ = 0).

Next, we study the deformation corresponding to pure longitudinal shear, i.e. [S, &, 4,
O, Ty (r), Tp- (1), Poy ri1=1[1,0,1,0,0,0,0.1, R;]. Figures 22 and 23 capture the response
of various classes of homogeneous bodies subjected to such a boundary condition. It can be
seen from Figure 22a that, as observed by Polignone and Horgan [10], when uy = 1,7 = R
is the solution to this problem. However, for other values of x, one might be tempted to
approximate the solution by r = R by virtue of 22a. This is not a good approximation as the
computed stresses will be erroneous as indicated by Figures 22b and 23, i.e. the stresses 7,
and T,y are non-zero.
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NOTE

1. Though it may be mathematically convenient to specify r g (R;) we specify the radial component of
the normal stress at the outer surface, since in most instances we are interested in that value of r r(R;)
which results in P, = 0. We could easily determine 7. (r:) from which we can obtain r; for a given
value of the radial component of the normal stress at the inner surface, if desired. Moreover, when p,
< 1, T,.»(r:) is non-monotonic, resulting in the possibility of more than one solution.

2. Corresponding to each choice of 7 z(0) there exists a value of 77 (1,) and for each choice of X there

exists an axial load. Thus, if the required radial component of normal stress is applied at r., the value
7 r(0) can be calculated.
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