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ABSTRACT

Particles in microfluidic channels experience two dominant lift forces in the direction transverse to the flow—the shear gradient lift force
and the wall lift force. These forces contribute to the lift experienced by the particle and cause their cross stream migration until they attain
an equilibrium position where the net lift force in the transverse direction is zero. Stratified coflow of two liquids with different viscosi-
ties is a stable flow-regime observed under some operating conditions. The presence of the second fluid alters the shear gradient induced
lift force and the wall force acting on the particle at each point, changing the final equilibrium position. These positions can be tuned and
controlled by altering the viscosity or the flow rates of the two fluids so that the particles focus in one fluid. A numerical method based
on the combined Immersed Boundary-Lattice Boltzmann Method is used to study inertial focusing of neutrally buoyant particles in strati-
fied Couette flows and pressure driven flows. We analyze how different factors such as the Reynolds number, flow rate ratio, viscosity ratio
of the fluids, and particle size affect the particle migration in two-dimensional (2D) and three-dimensional (3D) geometries. Our study
shows that in Couette flows, the particle focuses in the low viscosity fluid when the interface is at the center. We also found that a crit-
ical viscosity ratio exists beyond which particle focusing in low viscous fluid is guaranteed, for a given flow rate ratio in pressure driven
flows.
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I. INTRODUCTION

Inertial focusing has emerged as a novel method to manipulate
particles in microchannels. When a random distribution of parti-
cles enters and flows through a channel, they can migrate across
streamlines and focus at certain fixed positions. This is induced by
the inertial forces that act on the particle in the fluid and is called
inertial focusing. It was first experimentally observed by Segré and
Silberberg1 in their experiments in circular pipes. They found that
the particles focused at a radial position, which was 0.6 times the
pipe radius from the center. Similar experiments using square and
rectangular channels have revealed unique focusing positions across
the cross sections.2

There are primarily two forces that control the focusing posi-
tions in channels. The first is the shear gradient lift force, which
arises due to the asymmetry in the relative velocity between the fluid
and the particle on either side of the particle. This asymmetry occurs
when the velocity profile is curved as in a pressure driven flow. The
shear gradient lift force acts in the direction that can reduce the

asymmetry in the relative velocity, which in most cases is toward
the wall. The other prominent force that acts on the particle is a
wall repulsion force, which is due to a pressure increase between
the particle and the wall, causing the particle to move away from
the wall.2 At the focusing positions, which we observe experimen-
tally, these two forces nullify each other. Inertial focusing can be
exploited to develop applications in diverse fields such as membrane
free filtration3 and separation of cells.4

Earlier works have investigated the effects of factors such as the
Reynolds number and particle size on the focusing position. Di Carlo
et al.5 showed that for a comparatively larger particle size to width
ratio of 0.22, particles equilibrate along the axes for the Reynolds
numbers in the range of 20–80 for a square channel. This was in
contrast to the work of Prohm and Stark6 who showed that parti-
cles equilibrate along the diagonals for Reynolds number ranges of
10–80. This contradiction may be attributed to the difference in par-
ticle sizes studied or the sensitivity of the system to operating con-
ditions. For a higher range of Reynolds numbers, Miura et al.7 and
Nakagawa et al.8 showed that there exists a critical Reynolds number
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for a system beyond which a transition from axially stable positions
to diagonally stable positions occurs. Chun and Ladd9 have con-
firmed the existence of stable diagonal equilibrium positions at very
high Reynolds numbers through their simulations. Bhagat et al.10

have shown that particles equilibrate along the longer dimension
for rectangular channels. These studies on single phase flows show
that the equilibrium positions can be changed by controlling the
Reynolds number and particle size.

Particle focusing in single phase systems has also been stud-
ied numerically extensively. Feng et al.11 used finite element anal-
ysis to study the motion of particles in shear flows and pressure
driven flows, and Di Carlo et al.5 studied particle motion in a three
dimensional square channel using the same framework. Shamloo
and Mashhadian12 also used finite element analysis to study the
effect of angular velocity, particle density, and particle diameter on
the focusing behavior in serpentine channels on a centrifugal plat-
form. Inamuro et al.13 studied the motion of a line of neutrally
buoyant circular cylinders using a stress tensor integration method
to compute the forces acting on the particle arising from the fluid-
particle interaction, using an LBM (Lattice BoltzmannMethod) sim-
ulation. Verberg and Ladd14 used LBM to simulate particle laden
flows using a bounce back rule at the particle boundary to enforce
no-slip. They approximated the particle surface using a stairway
approximation and later extended it for higher Reynolds numbers.9

LBM coupled with the bounce back rule was also used recently to
study the effect of the particle concentration and Reynolds num-
ber by Liu and Wu.15 Hu and Guo16 investigated the motion of a
neutrally buoyant particle taking into consideration thermal effects,
using an iterative predictive and correction approach around the
particle boundary using LBM. To couple the particle motion with
fluid dynamics, IBM (Immersed Boundary Method) has been popu-
larly used in conjunction with LBM.17–19 IBM allows us to represent
particles of arbitrary shape without any approximation. The elegant
coupling between the LBM and IBM and the ease of paralleliza-
tion of LBM have made the IB-LBM (Immersed Boundary-Lattice
Boltzmann Method) a popular technique for solving particle laden
flows.

For a given geometry and operating conditions, the focusing
positions are fixed for single phase flows. Changing the shape of
the velocity profile in a channel alters the forces acting on the parti-
cles and allows us to tune the equilibrium position of the particles.
One way to achieve this is to introduce stratified flow in a chan-
nel. Here, two fluids flow alongside each other and the symmetric
parabolic Hagen-Poiseuille flow profile gets modified. The velocity
profile is determined by the viscosity of the two fluids involved and
their flow rates. Hence, when the geometry of the system is fixed, the
viscosity ratio and the flow rates of the two liquids in stratified flow
allow us an extra degree of freedom to control the focusing posi-
tions. In the Couette flow, the velocity profile is linear and hence
shear gradient is absent. But the introduction of viscosity stratifi-
cation can alter the centerline focusing positions exhibited in sin-
gle phase flows. In stratified pressure driven flows, the flow rates
of the two liquids influence the focusing behavior along with the
viscosity ratio of the two liquids. Lee et al.20 in their experimen-
tal work have demonstrated interfacial focusing behavior for high
viscosity ratios of fluids and low particle sizes. Gossett et al.21 have
shown experimentally the tendency of particles to migrate from one
fluid to another depending on operating conditions. The transfer of

particles occurs only when all the stable equilibrium positions of the
system lie in the receiving fluid. The motivation for this work is to
quantitatively understand the role of parameters such as the viscos-
ity ratio, the flow-rate ratio, and the Reynolds number in controlling
the equilibrium positions. This will help design point of care diag-
nostic systems and membrane-less filtration systems whose opera-
tions are based on transfer of particles or cells from one fluid to
another. A specific application of this is in removing particles or cells
from a fluid without using a membrane. Eliminating a membrane in
the process helps overcome the problem of fouling and lowers the
hydrodynamic resistance in the system. Particle focusing in strati-
fied flows has not been investigated theoretically. This motivates us
to numerically analyze the effect of the abovementioned factors in a
stratified flow system.

As a first step in this work, we neglect the effects of interfa-
cial tension and represent the system as a single-phase system with
a sharp viscosity stratification. The system has two different vis-
cosity values on either side of a predefined interface. The particle
is assumed to be neutrally buoyant. The densities of the two flu-
ids are assumed to be equal. For the current study, we limit the
range of the Reynolds number to the order of 10 as this is the range
in which microfluidic separation devices operate. The lattice Boltz-
mann method is adopted to determine the flow field as it is ideally
suited for the length scales associated with microfluidics.22 It may
be unstable at very high Reynolds numbers or for low viscosity fluid
flows, but it is suitable for the low Reynolds number regime we con-
sider for our simulations. This is coupled with the immersed bound-
ary method to numerically simulate particle fluid interaction in the
two flow systems.

The paper is organized as follows. Section II describes the algo-
rithm and the numerical methods used for simulations. Section III
details the geometry of the systems analyzed in this work. Section IV
explains the validations done for the code developed using results
from previous studies. Section V contains the results obtained from
the simulations carried out for stratified Couette and pressure driven
flows. Here, both two-dimensional (2D) and three-dimensional
(3D) flows are simulated. Section VI summarizes the main
results.

II. NUMERICAL METHOD ADOPTED

A. IB-LBM

The fluid flow is described using the equation of continuity and
the Navier Stokes equation as given in the following set of equations:

∇ ⋅ u ≙ 0, (1)

ρ(∂u
∂t

+ u ⋅∇u) ≙ −∇p + μ∇2
u + f . (2)

Here, all variables have standard significance and f describes the
external forces acting in the fluid, which would be described in
Sec. II B. These equations are solved using the lattice Boltzmann
method, while the immersed boundarymethod couples the fluid and
particle dynamics. In IBM, we assume the particle surface to be a
membrane with a finite density, filled with liquid inside it. The par-
ticle boundary is represented using a set of N Lagrangian points,
which do not necessarily lie on the Eulerian grids in which the fluid
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FIG. 1. Illustration of particle in fluid domain. The fluid flow is solved at the Eulerian
grid points, while the forces and velocities on the particle surface are determined
at the Lagrangian points.

variables are solved. The particle boundary Γ lies in the fluid domain
Ω, as shown in Fig. 1.

The fluid velocity values at the Lagrangian points are unknown
to begin with. These are obtained by interpolation from the known
velocities at the Eulerian points using

U(s, t) ≙ ∫
Ω

u(x, t)δ(x − X(s, t))dx, (3)

where U(s, t) represents the Lagrangian velocity, u(x, t) represents
the Eulerian velocity, and δ is the Dirac-delta function. The inter-
polated fluid velocity is not necessarily equal to the particle velocity.
The no-slip boundary condition requires the fluid and particle veloc-
ities to be equal at the Lagrangian points. To ensure this, we assume
the particle exerts external correction forces Fcorr(s, t) at the bound-
ary. These forces are then distributed on to the Eulerian nodes using
the formula

f
corr(x, t) ≙ ∫

Γ

F
corr(s, t)δ(x − X(s, t))ds. (4)

The velocity of the fluid is then modified using these forces. The
discretized forms of Eqs. (3) and (4) are used in the IB-LBM for-
mulation. We next describe the lattice Boltzmann method and the
numerical algorithm adopted in this work.

B. Lattice Boltzmann method

The lattice Boltzmann method uses a discretized version of the
Boltzmann equation, which describes the evolution of a particle den-
sity function f (x, c, t) at position x with velocity c at time t. In the
discretized form, we consider a restricted set of velocity vectors. The
set of velocity vectors are defined by the model chosen, which is
represented as DdQq, where d represents the dimensionality of the
system and q represents the number of discrete velocity vectors. As
the number of velocity vectors considered increases, the accuracy of
the solution increases, but this is at a higher cost of computation.

For this work, we define 2D domains using the D2Q9 model and 3D
domains using the D3Q19 model. Since we consider only the lami-
nar flow regime for our discussions, these velocity sets are sufficient
to capture the relevant physical phenomena in a computationally
efficient way. The D2Q9model is represented using the velocity vec-
tors ci = (0, 0), (±1, 0), (0, ±1), and (±1, ±1) for i = 0, 1, 2, . . ., 9, and
the D3Q19 model is represented by the velocity vectors ci = (0, 0, 0),
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), (±1, ±1, 0), (±1, 0, ±1), and (0, ±1,±1) for i = 0, 1, 2, . . ., 19.

Here, fi(x, t) represents the density distribution function of a
particle at xmoving with velocity ci at time t. The discretized lattice
Boltzmann equation is then represented as

fi(x + ciΔt, t + Δt) ≙ fi(x, t) − Δt

τ
(fi(x, t) − f eqi (x, t)), (5)

where τ is the relaxation time, which determines the rate of approach
to the equilibrium distribution f

eq
i . The equilibrium distribution

function f
eq
i is given by

f
eq
i (x, t) ≙ wiρ(1 + u ⋅ ci

c2s
+
(u ⋅ ci)2
2c4s

− u ⋅ u
2c2s
). (6)

Here, ρ and u are the density and velocity values at position x and
time t. wi are weights defined as wo = 4/9, w1-4 = 1/9, and w5-8 = 1/36
for the D2Q9 velocity set and wo = 1/3, w1-6 = 1/18, w7-18 = 1/36 for
the D3Q19 velocity set. cs represents the speed of sound in lattice
units and has a value 1√

3
.

A Chapman-Enskog analysis shows that the equation of con-
tinuity and the Navier-Stokes equations can be recovered from the
lattice Boltzmann equation. The macroscopic variables ρ, u and the
pressure (p) are obtained using

ρ(x, t) ≙ ∑
i

fi(x, t), (7)

ρu(x, t) ≙ ∑
i

fi(x, t)ci, (8)

p ≙ ρc2s . (9)

The kinematic viscosity (ϑ) of the system is related to the relaxation
time (τ) as

ϑ ≙ c2s(τ − Δt

2
). (10)

As a first step to analyze the stratified flows, we neglect interfacial
tension. This allows us to represent the stratified flow as a single
phase system with two different viscosity values on either side of the
interface.We change the relaxation time parameter (τ) on either side
of a predefined interface location to incorporate this effect. Forces
acting on the fluid are included in the lattice Boltzmann equation.
Since we are using IBM coupled with LBM, correction forces acting
on the fluid arise as explained in Sec. II A. The final form of the equa-
tion including these correction forces and any external force acting
on the system is given by the following equation:

fi(x + ciΔt, t + Δt) ≙ fi(x, t) − Δt

τ
(fi(x, t) − f eqi (x, t))

+F
corr
i (x, t)Δt + F

ext
i (x, t)Δt, (11)
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where Fcorr
i and Fext

i are the lattice force terms for the correction
forces f corr and external forces f ext defined as

F
corr
i ≙ wi

ci ⋅ f corr
c2s

, (12)

F
ext
i ≙ wi

ci ⋅ f ext
c2s

. (13)

The lattice Boltzmann method is implemented in two steps: (a) col-
lision step and (b) streaming step. During the collision step, the
values obtained from the RHS of Eq. (5) are stored in an intermediate
variable f ∗i ,

f
∗
i (x, t) ≙ fi(x, t) − Δt

τ
(fi(x, t) − f eqi (x, t)). (14)

The obtained variables are streamed, i.e., the values are then spread
on to adjacent grids depending on the value of ci using

f
′
i (x + ciΔt, t) ≙ f ∗i (x, t). (15)

After the populations are streamed, the force terms are incorporated,

fi(x, t + Δt) ≙ f ′i (x, t) + F
corr
i (x, t)Δt + F

ext
i (x, t)Δt. (16)

The simulation parameters are chosen so that we recover the nondi-
mensional parameters as described in Subsection 1 of the Appendix.
The method also employs the bounce back approach and wet
node approach to implement the no-slip boundary conditions, as
described in Subsection 2 of the Appendix. Further details about the
method can be found in the work of Krüger et al.23

C. Implicit velocity correction

There are several approaches available in the literature to
implement IB-LBM. The differences lie in how the forces that ensure
no-slip at the boundary are evaluated. Peskin24 originally used a
force correction method assuming the Lagrangian points as links
that exert a spring type restoration force after the points are dis-
placed by the interpolated velocity. Later, the direct forcing approach
was introduced in which the force was proportional to the difference
between the interpolated velocity and the actual particle velocity.
However, these methods do not always satisfy the no slip condition
at the particle boundary. Later, the direct forcing method was modi-
fied as themultidirect forcingmethod.19 An implicit force correction
method was developed,18 which determines the force values exactly.
We adopt this method as it is more accurate and computationally
faster.

In this method, the fluid velocity is modified using an initially
unknown correction δu as

u ≙ u
∗
+ δu. (17)

Here, u∗ is the velocity obtained using Eq. (8) from the particle den-
sity functions after adding the Fext

i term but prior to adding the Fcorr
i

term. The velocity correction at the Eulerian points is interpolated
from the velocity corrections at the Lagrangian points δU using an
expression analogous to Eq. (4). These corrections are found using
the following discrete form:

δu(x, t) ≙∑
k

δU(Xk, t)W(x − Xk)Δs. (18)

Here, x and Xk represent the Eulerian grid point and kth Lagrangian
point, respectively, and Δs is the arclength between two Lagrangian
points. W(r) is a discretized form of the Dirac delta function25

defined as

W(r) ≙ 1

ΔxΔyΔz
w( x

Δx
)w( y

Δy
)w( z

Δz
), w(r) ≙ {1 − ∣r∣, ∣r∣ ≤ 1

0, ∣r∣ > 1 .
(19)

The forces acting on the fluid are related to these corrections as

f
corr
≙ ρ

δu

δt
. (20)

To satisfy the no slip condition, the interpolated velocity after cor-
rection must be set equal to the particle velocity at its boundary
(Uk), so

Uk(Xk, t) ≙∑
x

u(x, t)W(x − Xk)(Δx)d. (21)

Here, d represents the dimensionality of the system. From Eqs. (17)
and (18), we obtain

Uk(Xk, t) ≙∑
x

u
∗(x, t)W(x − Xk)(Δx)d +∑

x

∑
l

δU(Xk, t)
×W(x − Xk)(Δs)W(x − Xl)(Δx)d. (22)

Equation (22) is rearranged as a linear system of equations,

Ay ≙ b,

Akl ≙∑
x

W(x − Xk)(Δs)W(x − Xl)(Δx)d,
yk ≙ δU(Xk, t),

bk ≙ Uk(Xk, t) −∑
x

u
∗(x, t)W(x − Xk)(Δx)d.

(23)

A is a N × N matrix and y and b are N × 1 vectors. We first deter-
mine δU using the above system of equations. We then find the
corresponding velocity corrections δu and force values f corr at the
Eulerian points from Eqs. (18) and (20), respectively. These force
terms are then added to the LB equation to correct the fi values
as per Eq. (16). The macroscopic variables are recomputed using
Eqs. (7)–(9).

D. Determination of focusing positions

Two methods can be employed to determine the focusing posi-
tions. The first involves tracking the particle dynamically by consid-
ering the particle motion. The second involves computing a lift force
plot. We now describe both the methods in detail.

1. Particle motion

We have discussed how the force on the fluid is determined.
The particle is acted upon by the negative of the forces exerted on to
the fluid. We use Newton’s equations of translational and rotational
motion of particle to describe its motion,

MB
dUB

dt
≙ ∮

∂s
σ̃ ⋅ nds + (ρB − ρf )VBg, (24)

IB
dωB

dt
≙ ∮

∂s
(Xk − XB) × (σ̃.n)ds, (25)
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Uk ≙ UB + ωB × (Xk − XB). (26)

Here,MB and IB are the mass and moment of inertia of the particle.
UB and ωB are the translational and angular velocities of the center
of mass of the particle. σ̃ is the fluid stress tensor and n indicates
the direction of the outward normal from the surface of the particle.
ρB and ρf are the density values of the particle and the fluid, respec-
tively. VB and XB are the volume of the particle and the position of
the particle center. The external force acting on the particle (gravity)
is incorporated in the g term. Following Feng andMichaelides,26 the
equations of motion are discretized as

U
n+1
B ≙ (1 + ρf

ρB
)Un

B − ρf

ρB
U

n−1
B +

(−∑k Fk
corrδV)δt

MB
+(1 − ρf

ρB
)gδt,
(27)

ω
n+1
B ≙ (1 + ρf

ρB
)ωn

B − ρf

ρB
ω
n−1
B + I

−1
B ∑

k

(Xk − XB) × (−Fk
corr)δV ,

(28)
where superscript “n” represents the n-th time instant value. The
particle position is then updated using

X
n+1
B ≙ X

n
B +U

n+1
B Δt. (29)

Following these steps gives us the trajectory of the particle over a
period of time. The positions of the particle at steady state in the
lateral direction would give us the equilibrium positions of the given
system.

2. Lift force curve

An alternate method to find the equilibrium positions is to con-
struct a lift-force curve that gives the lift force acting on the particle
at different positions along the lateral direction. The points where
the force is zero denote the equilibrium positions for the given sys-
tem. To construct the lift-force curve, the simulation is conducted
by restricting the movement of the particle in the lateral direction.
The force acting on the particle in the lateral direction is found once
the simulation converges. This procedure is repeated for different
positions along the lateral direction to obtain the complete lift force
curve.

E. Algorithm

To summarize, the algorithm to determine the focusing posi-
tions consists of the following steps:

1. Initialize the density distribution function fi(x, t) and the
particle variables XB, UB, and ωB.

2. Update the translational and angular velocities of the center
of mass of the particle, UB and ωB, using Eqs. (27) and (28).

3. Update the position of the center of the particle, XB, using
Eq. (29). The positions of the Lagrangian points are updated
accordingly.

4. Find the particle velocity at the Lagrangian points using
Eq. (26).

5. Carry out the collision (14) and streaming (15) steps to find
f ′i (x, t). The external force term is added to f ′i (x, t) as per
Eq. (16).

6. Find the intermediate velocities prior to correction, u∗, using
Eq. (8).

7. Solve the system of linear equations (23) to obtain the
Lagrangian velocity corrections, δU .

8. Find the Eulerian velocity corrections, δu, by interpolating
δU using (18). Find the corresponding correction forces f corr

at the Eulerian points using Eq. (20).
9. Correct the f ′i (x, t) values, as per Eq. (16) using the correction

forces determined.
10. Find the macroscopic fluid density and velocities using

Eqs. (7) and (8).
11. Find the new equilibrium function, f

eq
i (x, t), using Eq. (6).

12. Go back to step 2 and iterate until convergence.

To find the lift force curve, the particle motion in the lateral
direction is not performed.When the simulation converges, the total
lateral force is determined. This is then carried out for different posi-
tions in the lateral direction. The simulations are performed using a
MATLAB code run on a 3.6 GHz CPU (Intel Core i7-6700) with
32 GB RAM. The evaluation of the lift force for each operating
condition took approximately 15 h.

III. SIMULATION MODEL

In this work, inertial focusing in Couette flows and pressure
driven flows is analyzed. A schematic of the system of a particle in
a Couette flow is represented in Fig. 2. The height of the channel
was specified as H lattice units, while the diameter of the particle
was specified as a lattice units. The shear was introduced by mov-
ing the top wall with a velocity Uw, while the bottom wall was kept
stationary. Wet node boundary conditions were used on the walls23

to impose no slip. L lattice units were used along the axial (flow)

FIG. 2. Schematic of the system being studied for particle
focusing in a 2D Couette flow.
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FIG. 3. Schematic of the system being studied for particle
focusing in a 2D pressure driven flow.

direction. To simulate an infinitely long channel, periodic conditions
were imposed in that direction. The interface position where the two
liquids are in contact was defined explicitly as h, and two different
relaxation time constants were specified on either side of the inter-
face to incorporate the difference in viscosity (μ) of the two fluids.
The parameters related to the top fluid were described using sub-
script 2 and those related to the bottom fluid were described using
subscript 1. The Reynolds number (Re) of the system was described
as Re ≙ UwH

ϑ2
, where ϑ2 is the kinematic viscosity of the upper fluid.

Figure 3 depicts the geometry of the system for 2D pressure
driven flows. Here, both the walls were kept stationary. For 3D simu-
lations, a third dimension extending toW lattice units perpendicular
to the plane of the paper was introduced. A constant force density
was applied throughout the domain in the axial direction to repre-
sent the pressure drop. The Reynolds number is defined as Re ≙

q2
ϑ2
,

where q2 is the flow rate per unit width of the top fluid for 2D sys-
tems, and as Re ≙

q2
Hϑ2

for 3D systems, where q2 is the flow rate of the

top fluid.

IV. VALIDATION OF CODE

A. Particle in a Couette flow

To validate the IB-LBM code developed, the 2D single phase
Couette flow is simulated and our results are compared with those
reported by Feng and Michaelides17 who also used a similar IB-
LBM approach. They used a constant velocity (Uw/2) on the top
wall, while a velocity of (−Uw/2) was imposed on the bottom
wall. The parameters in lattice Boltzmann units used for the sim-
ulation are H = 80, τ = 0.6, a/H = 0.25, and Uw = 1/60. Since
shear gradient is absent for this flow, the particle experiences only
the symmetric counteracting wall forces from either side. Hence,
the equilibrium position is at the centerline of the channel. The
trajectory of a particle is traced and compared with the results
reported by Feng and Michaelides17 for Re = 40, a/H = 0.25. The
two trajectories are found to be in good agreement, as seen in
Fig. 4. The slight discrepancy observed is attributed to the finer
grid used by Feng and Michaelides17 in the axial direction, reduc-
ing particle-particle interaction arising due to the periodic boundary
conditions.

B. Equivalence of the lift force curve and the
trajectory of particle approaches

The final positions of the particle in its trajectories must cor-
respond to the stable equilibrium positions in the lift force curve.

Figure 5(a) shows the trajectories for a particle in a pressure driven
single phase flow for different initial lateral positions obtained using
our algorithm. The trajectories converge at two positions y = 0.29H
and y = 0.71H depending on the initial position. Figure 5(b) is the lift
force curve for the same system with the force normalized by ρU2a2,
where U is the maximum undisturbed velocity. The lift force curve
shows an unstable equilibrium position and two stable equilibrium
positions on either side of it. The stable equilibrium position closer
to the top wall is denoted as S2 and the position closer to the bot-
tom wall is denoted as S1. For initial positions of the particle above
the unstable equilibrium position and below S2, the particle is acted
on by a net lift force in the positive y direction, and hence, it will
focus at S2. Likewise, if the initial position of the particle lies below
the unstable position and above S1, the particle is acted on by a net
lift force in the negative y direction and is focused at S1. So, the final
focusing position depends on the initial position of the particle. We
were able to show that the stable positions obtained by the lift force
curve are identical with the equilibrium positions obtained by the
particle trajectories. Henceforth, we would be adopting the lift force
curve approach to determine the stable equilibrium positions of the
particle.

C. Particle in a pressure driven flow

The code developed for the 2D stratified flow is validated for
a single phase pressure driven flow by using equal viscosity values

FIG. 4. Trajectory of a particle in a Couette flow over time (Re = 40, a/H = 0.25).
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FIG. 5. (a) Trajectories of a particle in a pressure driven flow for different initial positions for Re = 40 and a/H = 0.25. (b) Lift force curve for the same system (red filled circle:
stable equilibrium position; red hollow circle: unstable equilibrium position). The equilibrium positions obtained by the two methods are identical.

on either side of the interface. Inamuro et al.13 performed similar
simulations using the lattice Boltzmann method. Simulations were
conducted keeping the Reynolds number and lattice parameters the
same as in their work: L = 200, H = 200, τ = 0.757, a/H = 0.25, and Re
= 191.48. The stable equilibrium positions predicted by the lift force
curve for the given parameters (Fig. 6) are 0.27 and 0.73. The first
point is in good agreement with the equilibrium position of 0.2706
reported by Inamuro et al.13

V. RESULTS AND DISCUSSION

Having validated the code developed for 2D flows with the lit-
erature, we now proceed to describe particle focusing in stratified
flows.

FIG. 6. Lift force curve for the particle in a pressure driven flow for Re = 191.48 and
a/H = 0.25. (Red filled circle: stable equilibrium position; red hollow circle: unstable
equilibrium position.)

A. 2D stratified Couette flow

We analyze the effect of different parameters such as the parti-
cle size, Reynolds number, and viscosity ratio on particle migration
in a stratified Couette flow. The viscosity of the top fluid (ν2) is fixed
as 0.1 in lattice units, and the viscosity of the bottom fluid is varied to
analyze the effect of different viscosity ratios. To find the equilibrium
positions, the lift force curve is determined in each case. Figures 7(a)
and 7(b) show the lift curves for two different viscosity ratios, 0.25
and 4. The lift force curve exhibits an extremum near the interface,
which is caused by a change in the velocity gradient at the interface.
The lift force in the less viscous fluid is similar to that seen in the
single phase Couette flow. The position where the lift curve becomes
zero gives us the equilibrium position.

1. Effect of viscosity ratio

Figure 8 shows the effect of the viscosity ratio on the focusing
positions for a fixed Re and particle size when the interface is at the
center of the channel. The equilibrium position is always at the cen-
ter for a viscosity ratio of unity for all parameters, as it represents
a single phase flow. The shift in the equilibrium positions for other
viscosity ratios is caused by the asymmetry introduced in the system
due to the viscosity stratification. This becomes more prominent as
the viscosity ratio deviates more from unity.When the viscosity ratio
is less than one, the focusing position lies in the top fluid, while it lies
in the bottom fluid when the viscosity ratio is more than one. This
indicates that in all cases, the particle focuses in the less viscous fluid
when the interface is located midway between the plates.

2. Effect of interface position

We next analyze the effect of the interface position on the equi-
librium position. This is shown in Fig. 9. For a given viscosity ratio,
when the interface is closer to the moving wall, the equilibrium posi-
tions are found closer to the moving wall. If the interface position
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FIG. 7. Lift force curves for stratified flows (Re = 10, a/H = 0.2, h = 0.5). (a) μ2/μ1 = 0.25 and (b) μ2/μ1 = 4. The equilibrium positions obtained are 0.68 and 0.31, respectively.
(Red circle: equilibrium position; blue dashed line: interface position).

moves away from the moving wall, the equilibrium positions also
move away from the moving wall.

3. Effect of particle size

The effect of the particle size on the equilibrium positions in the
shear flow is shown in Fig. 10. We observe that the smaller particle
focuses closer to the nearer wall for any μ2/μ1. This result is also in
line with what was reported by Gossett et al.21 The analytical expres-

sion for the wall lift force is FLW ∝
ρU2a6

H4 .2 This implies that the wall
repulsion force is lower for a smaller particle, explaining why the
smaller particle is focused closer to the wall.

FIG. 8. Effect of the viscosity ratio on equilibrium positions (Re = 10, a/H = 0.2,
and h = 0.5) (red circle: equilibrium positions; blue dashed line: interface).

4. Effect of Reynolds number

The Reynolds number did not have a significant effect on the
focusing positions in the case of the stratified shear flow. In Fig. 11,
we see that the equilibrium positions are almost independent of Re
for each viscosity ratio. The equilibrium positions do not get affected
even for a Reynolds number value of 100, as we can see from Table I.
This is attributed to the fact that the velocity profile is piecewise
linear, and hence, no shear gradient force exists in the system.

B. 2D stratified pressure driven flow

In a pressure driven stratified flow, the pressure gradient and
the interface position uniquely determine the system for a particular

FIG. 9. Effect of the viscosity ratio on equilibrium positions for different interface
locations (Re = 10, a/H = 0.2).
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FIG. 10. Effect of the viscosity ratio on equilibrium positions for two particle sizes
(Re = 10 and h = 0.5) (blue dashed line: interface).

viscosity ratio of the two fluids. Experimentally, the flow rate of the
two liquids determines the pressure drop and the interface position.
The velocity profile of stratified flows in 2D and 3D channels can be
determined analytically.27 The interface position and pressure drop
of the system used in our simulations are chosen to be consistent
with the flow rate ratios and the Reynolds number obtained from
the analytical solution.

We present our results in terms of parameters that can be
tuned directly such as the flow rate ratio, the viscosity ratio, and
the Reynolds number. Here, we discuss how the equilibrium posi-
tions change with the viscosity ratio and flow rate ratios of the two
liquids. The flow rate ratio of the top fluid to the bottom fluid is

FIG. 11. Effect of the viscosity ratio on equilibrium positions for different Reynolds
numbers (a/H = 0.2 and h = 0.5) (blue dashed line: interface).

TABLE I. Equilibrium positions for Re = 10 and Re = 100 for different viscosity ratios.

μ2

μ1

Equilibrium position Equilibrium position
for Re = 10 for Re = 100

0.25 0.680 0.691
0.33 0.660 0.671
0.5 0.623 0.636
0.67 0.586 0.61

defined as qr = (
q2
q1
). In all simulations, the viscosity of the top fluid

is fixed as 0.2 in lattice units, while the viscosity of the bottom fluid
is varied to change the viscosity ratio. We construct the lift force
curve and find the locations where the lift force becomes zero to find
the equilibrium positions. Figures 12(a) and 12(b) show the lift force
curves for two different viscosity ratios, 0.5 and 2 when qr = 1. The
lift curve of stratified flows is skewed unlike the lift curve obtained
for single phase systems. We observe that when we introduce vis-
cosity stratification, the symmetry of the system is broken and hence
we obtain asymmetric stable equilibrium positions. These equilib-
rium positions are determined by the viscosity ratio and the flow rate
ratio qr . For the current analysis, we examine how they are affected
by the viscosity ratio of the system for three different flow rate ratio
values.

Figures 13(a)–13(c) show the effect of the viscosity ratio on
the equilibrium positions for different qr when Re = 10. As the vis-
cosity of the bottom fluid is decreased (i.e., as the viscosity ratio
is increased), all the equilibrium positions, both stable and unsta-
ble, move toward the bottom fluid for all values of qr . We again
denote the stable equilibrium positions as S1 and S2. The top fluid is
assumed as a carrier fluid, which contains particles, and we deter-
mine conditions when the particles get transferred to the bottom
fluid, which is the receiver fluid. The final position of a particle
depends on its initial position, as explained in Sec. IV B. We observe
that for all cases, S1 lies in the bottom fluid. If both S2 and S1 lie
in the bottom fluid, this would imply that the final focusing posi-
tion would be in the bottom fluid irrespective of the position in
which the particle enters the system. Hence, we are interested in
the location of S2 and the unstable equilibrium position as qr is
decreased, as these decide in which fluid the particles would finally
focus. Specifically, we want to determine the critical viscosity ratio
above which all focusing positions are in the bottom fluid for a
given qr .

For the case when qr = 1, both S2 and the unstable equilibrium
position lie in the top fluid for the range of viscosity ratios from
0.25 to 1, as shown in Fig. 13(a). For this range of viscosity ratios,
if the initial position of the particle is between the unstable position
and the interface, the particle would migrate to the bottom fluid and
focus at S1. If the particle enters above the unstable position, the
particle would focus at S2 and remain in the top fluid. For this com-
bination of qr and viscosity ratio, some particles may move to the
bottom fluid, while some remain in the top fluid depending on their
initial positions. So, we are not guaranteed perfect transfer of par-
ticles from the top fluid to the bottom fluid. For qr = 1, when the
viscosity ratio is more than unity (i.e., when the bottom fluid has a
lower viscosity), the unstable position lies in the bottom fluid and S2
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FIG. 12. Lift force curves for stratified
pressure driven flows (Re = 10, a/H
= 0.2, qr = 1): (a) μ2/μ1 = 0.5 and
(b) μ2/μ1 = 2. The equilibrium positions
obtained are (0.32, 0.58, 0.75) and (0.24,
0.41, 0.67), respectively. (Red filled cir-
cle: stable equilibrium position, red hol-
low circle: unstable equilibrium position,
blue dashed line: interface position).

lies in the top fluid. Hence, for this range of viscosity ratios, none of
the particles migrate to the bottom fluid.

In Fig. 13(b), the unstable position lies in the bottom fluid for
all viscosity ratios when qr is 0.5. For all viscosity ratios below 4, S2
lies in the top fluid, which implies that the particles entering the top
fluid would continue to remain in the top fluid at equilibrium. S2
crosses the interface from the top fluid to the bottom beyond a vis-
cosity ratio value of 4. Since both the stable equilibrium positions lie
in the bottom fluid for this ratio, all the particles entering the chan-
nel would focus in the bottom fluid. When qr is decreased to 0.33,

the crossover of S2 across the interface occurs when the viscosity
ratio is 2 [Fig. 13(c)]. This implies that for all viscosity ratios above
2, migration of particles from the top fluid to the bottom fluid is
guaranteed.

When we have a stratified flow of two fluids with one of them
carrying particles, we see that there can be no transfer, imper-
fect transfer, or complete transfer of particles depending on the
flow rate ratio (qr) and the viscosity ratio. When qr is unity, we
achieve an imperfect transfer of particles, while when qr is 0.5 or
0.33 complete particle transfer occurs after a certain viscosity ratio.

FIG. 13. Effect of the viscosity ratio on
the equilibrium positions for (a) qr = 1,
(b) qr = 0.5, and (c) qr = 0.33 (Re = 10,
a/H = 0.2) (red filled circle: stable equilib-
rium positions, red hollow circle: unstable
equilibrium positions, blue dashed line:
interface position).
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This analysis shows that decreasing qr decreases the limiting vis-
cosity ratio above which the crossover of particles is guaranteed.
Physically, this implies that for this to occur, qr must be less than
1, i.e., the bottom fluid or the receiving fluid must have a higher
flow rate than the top fluid, which is the carrier fluid. This implies
that physically the viscosity of the receiving fluid must be lower than
the carrier fluid, as we observe that the crossover occurs when the
viscosity ratio is more than one. Our analysis shows that by manipu-
lating qr for a specific viscosity ratio of the two fluids, we can achieve
complete crossover of particles from the carrier fluid to the receiv-
ing fluid. This has practical implications in developing membrane-
less devices for the transfer of particles or cells from one fluid to
another.

C. 3D stratified pressure driven flow

To understand the effect of confinement in rectangular
microchannels, we extend our analysis by performing 3D simula-
tions of stratified pressure driven flows. The viscosity of the top fluid
is fixed as 0.1 in lattice units, and the viscosity of the bottom fluid is
varied to change the viscosity ratio. The flow rate ratio is defined as
qr = (

q2
q1
), and the aspect ratio is set as unity. To determine focusing

positions, we obtain force profiles as reported by Prohm and Stark.6

The plots are obtained following the methodology of the lift force
curves of 2D flows. The particle motion in the x and y directions is
restricted, and the forces in the lateral direction acting on the particle
at steady state are determined at different locations across the cross
section of the channel. These forces are then interpolated to obtain
the possible trajectories a free particle would follow, and the equilib-
rium positions are found where the force vanishes. As the channel
is 3D, we encounter saddle positions along with stable equilibrium
positions. We would have two stable equilibrium positions in each
case. As in the case of the 2D Poiseuille flow, we assume that the top
fluid is a carrier fluid containing particles, while the bottom fluid is

the receiver fluid. One of the stable equilibrium points always lies in
the bottom fluid. We obtain a complete transfer of particles when
both the stable equilibrium points lie below the interface separating
the two liquids. Invoking the symmetry of the system about the y
axis, the force profiles are simulated for only one half of the channel
to reduce the computational effort.

Figure 14 shows how the stable equilibrium positions (depicted
as green filled squares) change for varying values of μ2/μ1 for
qr = 0.33 and Re = 10. For the viscosity ratio of 1.5, the upper sta-
ble equilibrium position lies above the interface, which implies that
all particles entering the system in the top fluid may not get trans-
ferred to the bottom fluid. But when the viscosity ratio is increased
to 2, the upper stable equilibrium position and the interface move
closer to each other. When the viscosity ratio is further increased
to 3, both the stable equilibrium positions lie in the bottom fluid,
which implies that all the particles entering in the top fluid would
get focused in the bottom fluid. It would mean that for the consid-
ered combination of qr and the Reynolds number, a viscosity ratio
around 2 is the critical viscosity ratio above which particle transfer
is ensured. This is consistent with the conclusion drawn from 2D
pressure driven flows where we saw that for a fixed qr there exists a
limiting viscosity ratio above which particle migration is guaranteed
from the top fluid to the bottom fluid.

We can see a similar trend when the viscosity ratio is fixed and
qr is decreased. Figure 15 shows how the stable equilibrium positions
change by varying values of qr for μ2/μ1 = 3 and Re = 10. For qr = 1,
the upper stable equilibrium position lies in the top fluid. When qr
is set to 0.5, the upper stable equilibrium position and the interface
move closer to each other. However, the upper stable equilibrium
position continues to remain in the top fluid. It crosses the interface
and moves to the bottom fluid when qr is 0.33. In this case, since
both the stable equilibrium positions lie in the bottom fluid, we are
guaranteed that the particles in the top fluid would cross the inter-
face and focus in the bottom fluid. For a fixed viscosity ratio, particle

FIG. 14. Force profiles of 3D Poiseuille
flows showing the effect of the viscosity
ratio on the stable equilibrium positions
for (a) μ2/μ1 = 1.5, (b) μ2/μ1 = 2, and (c)
μ2/μ1 = 3 (Re = 10, qr = 0.33, a/H = 0.2)
(green squares: stable equilibrium posi-
tion, red circle: saddle equilibrium posi-
tion, blue dashed line: interface position,
gray curves: trajectories followed by the
particle).
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FIG. 15. Force profiles of 3D Poiseuille
flows showing the effect of the flow rate
on the stable equilibrium positions for
(a) qr = 1, (b) qr = 0.5, and (c) qr = 0.33
(Re = 10, μ2/μ1 = 3, a/H = 0.2) (green
squares: stable equilibrium position, red
circle: saddle equilibrium position, blue
dashed line: interface position, gray
curves: trajectories followed by the par-
ticle).

migration across the fluids occurs when qr is decreased, i.e., when
the flow rate of the bottom or the receiving fluid is increased. Hence,
a flow rate of the bottom fluid or the receiving fluid greater than a
threshold value is necessary for particle transfer. This again is con-
sistent with the results obtained from our analysis of 2D pressure
driven stratified flows.

VI. CONCLUSIONS

Particle focusing in stratified Couette and pressure driven flows
is analyzed theoretically using a numerical method. 2D and 3D sim-
ulations are performed by employing an IB-LBM algorithm. For
Couette flows, it is found that the particle would focus on the
lower viscosity fluid when the interface is at the center and that the
Reynolds number of the system does not affect the focusing posi-
tions. It is also found that smaller particles move toward the nearer
wall. For stratified pressure driven flows, the presence of a limiting
viscosity over which particle transfer occurs toward the lower vis-
cosity fluid is established. The limiting viscosity ratio is found to
decrease as the flow rate of the lower viscosity fluid is increased, i.e.,
when the flow rate ratio is decreased. Force profiles are constructed
to determine equilibrium positions in 3D flows.

In this work, we assumed the fluid to be single phase with a
sharp viscosity stratification. Despite this assumption of no inter-
facial forces, the developed model was able to describe how parti-
cle focusing would depend qualitatively on experimentally tunable
parameters such as the flow rate ratio, viscosity ratio, and Reynolds
number. Future work in this area could also include the interfacial
forces by employing a multiphase model.

APPENDIX: SCALING AND BOUNDARY CONDITIONS
EMPLOYED IN THE LATTICE BOLTZMANN
SIMULATIONS

The parameter selection and boundary conditions in LBM are
as described in the work of Krüger et al.23

1. Parameter selection in LBM

The lattice parameters are related to the physical parameters
using conversion factors. The conversion factors for the grid size,
time step, and density are obtained as

Cx ≙
Δxp

Δxlbm
, (A1)

Ct ≙
Δtp

Δtlbm
, (A2)

Cρ ≙
ρp

ρlbm
. (A3)

Here, the quantities with the subscript p indicate the physical param-
eter values and the quantities with the subscript lbm represent the
lattice parameters. We keep Δxlbm, Δtlbm, and ρlbm equal to unity.
Hence, these conversion factors would be equal to the physical val-
ues of the grid size, time step, and density. Therefore, Nx grids along
a direction span a length of Nx

∗Δxlbm in lattice scale, and since Δxlbm
= 1, Nx represents the length in lattice units.

Cx, Ct , and Cρ form a basis from which conversion factors of
other physical quantities are obtained using a dimensional analysis.
For example, the conversion factor of the force is related to the basic
conversion factors as Cf ≙ CρCx

4/Ct
2 and the conversion factor for

the kinematic viscosity would be Cϑ ≙ Cx
2/Ct .

When a system is simulated and described only using nondi-
mensional parameters, it is sufficient to make sure that the com-
bination of the lattice parameters also produces the same nondi-
mensional parameter values. For example, if we are simulating a
system with a given Reynolds number, it is sufficient to ensure
that the Reynolds number is related to the lattice parameters as

Phys. Fluids 31, 102006 (2019); doi: 10.1063/1.5111419 31, 102006-12

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

Relbm ≙
HlbmUlbm

ϑlbm
. This results in

Relbm ≙
HlbmUlbm

ϑlbm
≙
Hp ∗Up ∗ Cϑ

Cx ∗ Cu ∗ ϑp ≙
HpUp

ϑp
∗ Cϑ

Cx
2

Ct

≙
HpUp

ϑp
≙ Rep.

(A4)

Defining the Reynolds numbers in terms of the lattice parameter
is equivalent to defining a physical system with the same Reynolds
number. This is to be true for all nondimensional parameters.
Hence, the simulation parameters in LBM space are chosen so that
the combination of parametersmatches with the set nondimensional
number.

2. Boundary conditions in LBM

Here, we describe the boundary conditions used in 2D sim-
ulations for the D2Q9 velocity set. The particle density functions
fi at the boundary that has a velocity component transverse to it
would be unknown. For example, the values of f4, f7, and f8 would be
unknown in the top boundary, and the values of f2, f5, and f6 would
be unknown in the bottom boundary. Special rules like the bounce
back condition or the wet node condition are employed to find them.

a. Bounce back condition

The bounce back condition assumes the simulation boundary
to be at a half grid distance away from the physical wall. Here,
the unknown particle density function values are found using the
relation

f̄i(xb, t + Δt) ≙ f ∗i (xb, t) − 2wiρw
ci ⋅ uw
cs2

, (A5)

where ρw and uw are the density and the velocity at the wall, respec-
tively. f̄i indicates the density function associated with the velocity
opposite to that of fi, i.e., cī ≙ −ci. The unknown fi at the top
boundary are obtained as

f4(xb, t + Δt) ≙ f ∗2 (xb, t) − 2w2ρw
uwy

cs2
,

f7(xb, t + Δt) ≙ f ∗5 (xb, t) − 2w5ρw
(uwx + uwy)

cs2
,

f8(xb, t + Δt) ≙ f ∗6 (xb, t) − 2w6ρw
(−uwx + uwy)

cs2
.

(A6)

The unknown fi at the bottom boundary are obtained as

f2(xb, t + Δt) ≙ f ∗4 (xb, t) + 2w4ρw
uwy

cs2
,

f5(xb, t + Δt) ≙ f ∗7 (xb, t) + 2w7ρw
(uwx + uwy)

cs2
,

f6(xb, t + Δt) ≙ f ∗8 (xb, t) + 2w8ρw
(−uwx + uwy)

cs2
.

(A7)

b. Wet node boundary condition

The wet node boundary condition assumes the simulation
boundary to be exactly at the physical wall unlike the bounce back
condition. Here, the unknown populations are found using two
steps—(a) the unknown density at the wall ρw is found using the
set wall velocity uw and known particle density functions, fi, and

(b) unknown fi are found from the known fi and ρw. At the top
boundary, the following steps are carried out:

ρw ≙
1

1 + uwy
∥ f0 + f1 + f3 + 2(f2 + f5 + f6)∥, (A8)

f4 ≙ f2 − 2

3
ρwuwy,

f7 ≙ f5 +
1

2
( f1 − f3) − 1

2
ρwuwx − 1

6
ρwuwy,

f8 ≙ f6 − 1

2
( f1 − f3) + 1

2
ρwuwx − 1

6
ρwuwy.

(A9)

Also, at the bottom boundary, we implement

ρw ≙
1

1 − uwy ∥ f0 + f1 + f3 + 2( f4 + f7 + f8)∥, (A10)

f2 ≙ f4 +
2

3
ρwuwy,

f5 ≙ f7 − 1

2
( f1 − f3) + 1

2
ρwuwx +

1

6
ρwuwy,

f6 ≙ f8 +
1

2
( f1 − f3) − 1

2
ρwuwx +

1

6
ρwuwy.

(A11)

Here, uwx and uwy are the x component and the y component of the
velocity at the wall and all fi represents the particle density function
values at the boundary.
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