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—— Abstract

Distribution testing deals with what information can be deduced about an unknown distribution
over {1,...,n}, where the algorithm is only allowed to obtain a relatively small number of
independent samples from the distribution. In the extended conditional sampling model, the
algorithm is also allowed to obtain samples from the restriction of the original distribution on
subsets of {1,...,n}.

In 2015, Canonne, Diakonikolas, Gouleakis and Rubinfeld unified several previous results,
and showed that for any property of distributions satisfying a “decomposability” criterion, there
exists an algorithm (in the basic model) that can distinguish with high probability distributions

satisfying the property from distributions that are far from it in variation distance.

We present here a more efficient yet simpler algorithm for the basic model, as well as very
efficient algorithms for the conditional model, which until now was not investigated under the
umbrella of decomposable properties. Additionally, we provide an algorithm for the conditional
model that handles a much larger class of properties.

Our core mechanism is a way of efficiently producing an interval-partition of {1,...,n} that
satisfies a “fine-grain” quality. We show that with such a partition at hand we can directly move
forward with testing individual intervals, instead of first searching for the “correct” partition of

{1,...,n}.
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1 Introduction

1.1 Historical background

In most computational problems that arise from modeling real-world situations, we are
required to analyze large amounts of data to decide if it satisfies a fixed property. The
amount of data involved is usually too large for reading it in its entirety, both with respect
to time and storage. In such situations, it is natural to ask for algorithms that can sample
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points from the data and obtain a significant estimate for the property of interest. The area
of property testing addresses this issue by studying algorithms that look at a small part of
the data, and then decide if the object that generated the data has the property or is far
(according to some metric) from having the property.

There has been a long line of research, especially in statistics, where the underlying object
from which we obtain the data is modeled as a probability distribution. Here the algorithm
is only allowed to ask for independent samples from the distribution, and has to base its
decision on them. If the support of the underlying probability distribution is large, it is not
practical to approximate the entire distribution. Thus, it is natural to study this problem in
the context of property testing.

The specific sub-area of property testing that is dedicated to the study of distributions is
called distribution testing. There, the input is a probability distribution (in this paper the
domain is the set {1,2,...,n}) and the objective is to distinguish whether the distribution
has a certain property, such as uniformity or monotonicity, or is far in ¢; distance from it.
See [7] for a survey about the realm of distribution testing.

Testing properties of distributions was studied by Batu et al. in [5], where they gave
a sublinear query algorithm for testing closeness of distributions supported over the set
{1,2,...,n}. They extended the idea of collision counting, which was implicitly used for
uniformity testing in the work of Goldreich and Ron ([15]). Consequently, various properties
of probability distributions were studied, like testing identity with a known distribution
([4, 19, 2, 12]), testing independence of a distribution over a product space ([4, 2]), and
testing k-wise independence ([3]).

In recent years, distribution testing has been extended beyond the classical model. A new
model called the conditional sampling model was introduced. It first appeared independently
in [9] and [10]. In the conditional sampling model, the algorithm queries the input distribution
w with a set S C {1,2,...,n}, and gets an index sampled according to p conditioned on the
set S. Notice that if S = {1,2,...,n}, then this is exactly like in the standard model. The
conditional sampling model allows adaptive querying of u, since we can choose the set S
based on the indexes sampled until now. Chakraborty et al. ([10]) and Canonne et al. ([9])
showed that testing uniformity can be done with a number of queries not depending on
n (the latter presenting an optimal test), and investigated the testing of other properties
of distributions. In [10], it is also shown that uniformity can be tested with poly(logn)
conditional samples by a non-adaptive algorithm. In this work, we study distribution testing
in the standard (unconditional) sampling model, as well as in the conditional model.

A line of work which is central to our paper, is the testing of distributions for structure.
The objective is to test whether a given distribution has some structural properties like
being monotone ([6]), being a k-histogram ([16, 12]), or being log-concave ([2]). Canonne et
al. ([8]) unified these results to show that if a property of distributions has certain structural
characteristics, then membership in the property can be tested efficiently using samples from
the distribution. More precisely, they introduced the notion of L-decomposable distributions
as a way to unify various algorithms for testing distributions for structure. Informally,
an L-decomposable distribution p supported over {1,2,...,n} is one that has an interval
partition Z of {1,2,...,n} of size bounded by L, such that for every interval I, either the
weight of 1 on it is small or the distribution over the interval is close to uniform. A property
C of distributions is L-decomposable if every distribution p € C is L-decomposable (L is
allowed to depend on n). This generalizes various properties of distributions like being
monotone, unimodal, log-concave etc. In this setting, their result for a set of distributions
C supported over {1,2,...,n} translates to the following: if every distribution y from C is
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L-decomposable, then there is an efficient algorithm for testing whether a given distribution
belongs to the property C.

To achieve their results, Canonne et al. ([8]) show that if a distribution p supported
over [n] is L-decomposable, then it is O(L logn)-decomposable where the intervals are of
the form [j2° + 1, (j + 1)2¢]. This presents a natural approach of computing the interval
partition in a recursive manner, by bisecting an interval if it has a large probability weight
and is not close to uniform. Once they get an interval partition, they learn the “flattening”
of the distribution over this partition, and check if this distribution is close to the property
C. The term “flattening” refers to the distribution resulting from making p conditioned
on any interval of the partition to be uniform. When applied to a partition corresponding
to a decomposition of the distribution, the learned flattening is also close to the original
distribution. Because of this, in the case where there is a promise that p is L-decomposable,
the above can be viewed as a learning algorithm, where they obtain an explicit distribution
that is close to p. Without the promise it can be viewed as an agnostic learning algorithm.
For further elaboration of this connection see [11].

1.2 Results and techniques

In this paper, we extend the body of knowledge about testing L-decomposable properties. We
improve upon the previously known bound on the sample complexity, and give much better
bounds when conditional samples are allowed. Additionally, for the conditional model, we
provide a test for a broader family of properties, that we call atlas-characterizable properties.
Atlas-characterizable properties include the family of symmetric properties, of which a subset
is studied in [20] in the unconditional context, and [10] studies them in the conditional model.

Our approach differs from that of [8] in the manner in which we obtain the interval
partition. We show that a partition where most intervals that are not singletons have
small probability weight is sufficient to learn the distribution p, even though it is not the
original L-decomposition of u. We show that if a distribution p is L-decomposable, then the
“flattening” of p with respect to this partition is close to p. It turns out that such a partition
can be obtained in “one shot” without resorting to a recursive search procedure.

We obtain a partition as above using a method of partition pulling that we develop
here. Informally, a pulled partition is obtained by sampling indexes from pu, and taking the
partition induced by the samples in the following way: each sampled index is a singleton
interval, and the rest of the partition is composed of the maximal intervals between sampled
indexes. Apart from the obvious simplicity of this procedure, it also has the advantage of
providing a partition with a significantly smaller number of intervals, linear in L for a fixed
€, and with no dependency on n unless L itself depends on it. This makes our algorithm
more efficient in query complexity than the one of [8] in the unconditional sampling model,
and leads to a dramatically small sampling complexity in the (adaptive) conditional model.

Another feature of the partition pulling method is that it provides a partition with small
weight intervals also when the distribution is not L-decomposable. This allows us to use the
partition in a different manner later on, in the algorithm for testing atlas-characterizable
properties using conditional samples.

The main common ground between our approach for L-decomposable properties and
that of [8] is the method of testing by implicit learning, as defined formally in [13] (see
[18]). In particular, the results also provide a means to learn a distribution close to p if u
satisfies the tested property. We also provide a test under the conditional query model for the
extended class of atlas-characterizable properties that we define below, which generalizes both
decomposable and symmetric properties. A learning algorithm for this class is not provided;
only an “atlas” of the input distribution rather than the distribution itself is learned.
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Table 1 Summary of our results.

Non-adaptive conditional L - poly(logn,1/¢)

Result Known lower bound
L-decomposable (testing and learning)
Unconditional v'nL/poly(e) Q(v/n/é?) for L =1 [17]
Adaptive conditional L/poly(e) Q(L) for some fixed e [10]
Q(logn) for L = 1 and some fixed €
]

1

k-characterized by atlases | (testing)

Q(v/loglogn) for k = 1, and some

Adaptive conditional k - poly(logn,1/€) fixed € [10]

Our result for unconditional testing (Theorem 27) gives a v/nL/poly(e) query algorithm
in the standard (unconditional) sampling model for testing an L-decomposable property of
distributions. Our method of finding a good partition for p using pulled partitions, that we
explained above, avoids the logn factor present in Theorem 3.3 of [8]. The same method
enables us to extend our results to the conditional query model, which we present for both
adaptive and non-adaptive algorithms. Table 1 summarizes our results and known lower
bounds!. We note that the hidden dependencies on ¢ in the theorems we present are not
optimized. The optimized versions will appear in the journal version of this paper.

2 Preliminaries

We study the problem of testing properties of probability distributions supported over [n]
(the set {1,...,n}), when given samples from the distribution. For two distributions u
and y, we say that p is e-far from yx if they are far in the ¢; norm, that is, d(u,x) =
Zie[n] |(i) — x(7)| > €. For a property of distributions C, we say that p is e-far from C if
for all x € C, d(p, x) > €.

Outside the ¢; norm between distributions, we also use the £o, norm, [[g — x|l =
max;ep,) |1(2) — x(4)|, the following measure for uniformity and, implicitly throughout, an
observation that is directly implied from this definition.

» Definition 1. For a distribution p over a domain I, we define the bias of yu to be
bias(u) = max;er p(2)/ mingey p(i) — 1.

» Observation 2. For any two distributions u and x over a domain I of size m, d(u, x) <
mllp — Xlloo- Also, || — Us||oo < Lbias(u), where Uy is the uniform distribution over I.

We study the problem, both in the standard model, where the algorithm is given indexes
sampled from the distribution, as well as in the model of conditional samples. The conditional
model was first studied in the independent works of Chakraborty et al. ([10]) and Canonne
et al ([9]). We first give the definition of a conditional oracle for a distribution .

L The lower bounds for unconditional and non-adaptive conditional testing of L-decomposable properties
with L = 1 are exactly the lower bounds for uniformity testing; the lower bound for adaptive conditional
testing follows easily from the proved existence of properties that have no sub-linear complexity adaptive
conditional tests; finally, the lower bound for properties k-characterized by atlases with & =1 is just a
bound for a symmetric property constructed there. About the last one, we conjecture that there exist
properties with much higher lower bounds.



E. Fischer, O. Lachish, and Y. Vasudev

Input: Distribution u supported over [n], parameters 7 > 0 (fineness) and § > 0 (error
probability)

-

Take m = % log (%) unconditional samples from p

2 Arrange the indices sampled in increasing order i; < is < --- < 4, without repetition
and set ig =0

3 for each j € [r] do

4 if 4; > ;1 + 1 then add the interval {i;_; +1,...,4; — 1} to Z;
Add the singleton interval {i;} to Z

6 if i, < n then add the interval {i, + 1,...,n} to Z;

7 return 7
Algorithm 1: Pulling an 7-fine partition.

» Definition 3 (conditional oracle). A conditional oracle to a distribution p supported over
[n] is a black-box that takes as input a set A C [n], samples a point ¢ € A with probability

(1)) > e 4 #(j), and returns i. If 37, 4 pu(j) = 0, then it chooses i € A uniformly at random.

» Remark. The behaviour of the conditional oracle on sets A with u(A) = 0 is as per the
model of Chakraborty et al. [10]. However, upper bounds in this model also hold in the
model of Canonne et al. [9], and most lower bounds can be easily converted to it.

Now we define adaptive conditional distribution testing algorithms. The definition of
their non-adaptive version, which we will also analyze, appears in [14].

» Definition 4. An adaptive conditional distribution testing algorithm for a property of
distributions C, with parameters €,6 > 0, and n € N, with query complexity ¢(e,d,n), is
a randomized algorithm with access to a conditional oracle of a distribution p with the
following properties:
For each i € [q], at the i*" phase, the algorithm generates a set A; C [n], based on
J1,42, -+ »Ji—1 and its internal coin tosses, and calls the conditional oracle with A; to
receive an element j;, drawn independently of 71, jo, -, ji—1-
Based on the received elements ji, jo, - - - , j, and its internal coin tosses, the algorithm
accepts or rejects the distribution pu.
If p € C, then the algorithm accepts with probability at least 1 — §, and if p is e-far from C,
then the algorithm rejects with probability at least 1 — 4.

3 Fine partitions and how to pull them

We define the notion of 7-fine partitions of a distribution u supported over [n], which are
central to all our algorithms.

» Definition 5 (7)-fine interval partition). Given a distribution p over [n], an 7-fine interval
partition of p is an interval-partition Z = (Iy, Is,...,I.) of [n] such that for all j € [r],
w(I;) <m, excepting the case |I;| = 1. The length |Z| of an interval partition Z is the number
of intervals in it.

Algorithm 1 is the pulling mechanism. The idea is to take independent unconditional
samples from p, make them into singleton intervals in our interval-partition Z, and then take
the intervals between these samples as the remaining intervals in Z.
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Input: Distribution p supported over [n], parameters 7,y > 0 (fineness) and § > 0
(error probability)

1 Take m = %log %) unconditional samples from p

2 Perform Step 2 through Step 6 of Algorithm 1.
3 return 7
Algorithm 2: Pulling an (7, ~)-fine partition.

» Lemma 6. Let p be a distribution that is supported over [n], and n,0 > 0, and suppose
that these are fed to Algorithm 1. Then, with probability at least 1 — 6, the set of intervals T

returned by Algorithm 1 is an n-fine interval partition of p of length O (% log (%))

Proof. Let Z the set of intervals returned by Algorithm 1. The guarantee on the length of 7
follows from the number of samples taken in Step 1, noting that |Z| < 2r — 1 = O(m).

Let J be a maximal set of pairwise disjoint minimal intervals I in [n], such that u(I) > n/3
for every interval I € J. Note that every ¢ for which u(i) > n/3 necessarily appears as a
singleton interval {i} € J. Also clearly | 7| < 3/n.

We shall first show that if an interval I’ is such that u(I’) > n, then it fully contains
some interval I € J. Then, we shall show that, with probability at least 1 — §, the samples
taken in Step 1 include an index from every interval I € J. By Steps 2 to 6 of the algorithm
and the above, this implies the statement of the lemma.

Let I’ be an interval such that u(I") > 1, and assume on the contrary that it contains no
interval from J. Clearly it may intersect without containing at most two intervals I;, I, € J.
Also, u(I' N 1I;) < n/3 because otherwise we could have replaced I; with I’ N I; in J, and the
same holds for p(I’ N I,.). But this means that p(I\ (I; U I.)) > /3, and so we could have
added I'\ (I; UI,) to J, again a contradiction.

Let I € J. The probability that an index from I is not sampled is at most (1 —
n/3)3108(3/19)/n < §p/3. By a union bound over all I € J, with probability at least 1 — J,
the samples taken in Step 1 include an index from every interval in J. |

The following is a definition of a variation of a fine partition, where we allow some
intervals of small total weight to violate the original requirements.

» Definition 7 ((7),v)-fine partitions). Given a distribution p over [n], an (n,~)-fine interval
partition is an interval partition Z = (I, I, ..., 1) such that ) ;,, pu(I) <, where Hz is
the set of violating intervals {I € T : u(I) > n,|I| > 1}.

In our applications, v will be larger than 7 by a factor of L, which would allow us through
Algorithm 2 to avoid having additional log L factors in our expressions for the unconditional
and the adaptive tests.

» Lemma 8. Let u be a distribution that is supported over [n], and v,n,0 > 0, and suppose
that these are fed to Algorithm 2. Then, with probability at least 1 — J, the set of intervals T

returned by Algorithm 2 is an (n,v)-fine interval partition of p of length O (% log (%))

The proof of this lemma is based on Lemma 6 and appears in [14].

4 Handling decomposable distributions

The notion of L-decomposable distributions was defined and studied in [8]. They showed
that a large class of properties, such as monotonicity and log-concavity, are L-decomposable.
We now formally define L-decomposable distributions and properties, as given in [8].
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» Definition 9 ((vy, L)-decomposable distributions [8]). For an integer L, a distribution p sup-

ported over [n] is (v, L)-decomposable, if there exists an interval partition Z = (I, Ia, ..., Iy)
of [n], where ¢ < L, such that for all j € [¢], at least one of the following holds.
Lou(ly) < 1.

2. maxer; p(i) < (14 y) minger, p(i).

The second condition in the definition of a (v, L)-decomposable distribution is identical
to saying that bias(u [1;) <. An L-decomposable property is now defined in terms of all
its members being decomposable distributions.

» Definition 10 (L-decomposable properties, [8]). For a function L : (0,1] x N — N, we say
that a property of distributions C is L-decomposable, if for every v > 0, and u € C supported
over [n], u is (v, L(vy,n))-decomposable.

Recall that part of the algorithm for learning such distributions is finding (through
pulling) what we referred to as a fine partition. Such a partition may still have intervals
where the conditional distribution over them is far from uniform. However, we shall show
that for L-decomposable distributions, the total weight of such “bad” intervals is not high.

The next lemma shows that every fine partition of an (v, L)-decomposable distribution
has only a small weight concentrated on “non-uniform” intervals, and thus it will be sufficient
to deal with the “uniform” intervals.

» Lemma 11. Let p be a distribution supported over [n] which is (v, L)-decomposable. For
every ~/L-fine interval partition T' = (I}, I5,...,I.) of u, the following holds:
Zje[r]:bias(u[ﬂ)M p(l3) < 27.

J

Proof. Let T = (I1,1Is,...,1;) be the L-decomposition of u, where ¢ < L. Let 7' =
(11,13, ..., 1;) be an interval partition of [n] such that for all j € [r], u(I}) <~/L or |I}| = 1.

Any interval T ]’ for which bias(y [ IJ() > 7, is either completely inside an interval Ij such
that pu([)) < /L, or intersects more than one interval (and in particular [I}| > 1). There
are at most L — 1 intervals in Z’ that intersect more than one interval in Z. The sum of the
weights of all such intervals is at most ~.

For any interval I} of Z such that p(Ix) < /L, the sum of the weights of intervals from
T’ that lie completely inside Iy is at most /L. Thus, the total weight of all such intervals is
bounded by 7. Therefore, the sum of the weights of intervals I} such that bias(u [ 1,’-) > v is
at most 2v. <

In order to get better bounds, we will use the counterpart of this lemma for the more
general (two-parameter) notion of a fine partition.

» Lemma 12. Let p be a distribution supported over [n] which is (v, L)-decomposable.
For every (vy/L,v)-fine interval partition T' = (I1,15,...,I.) of u, the following holds:
2 jelrbias(ul ) > MI7) < 37

Proof. Let Z = (I, Is,...,1;) be the L-decomposition of pu, where £ < L. Let 7/ =
(I1, I}, ..., I) be an interval partition of [n] such that for a set Hz of total weight at most ~,
for all I; € T\ Hz, p(I}) < v/L or |I}| = 1.

Exactly as in the proof of Lemma 11, the total weight of intervals I} € Z\ Hz for which
bias(u rfj-) > v is at most 2y. In the worst case, all intervals in Hz are also such that

bias(p | 1,’-) > v, adding at most ~ to the total weight of such intervals. <
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As previously mentioned, we are not learning the actual distribution but a “flattening”
thereof. We next formally define the flattening of a distribution u with respect to an interval
partition Z. Afterwards we shall describe its advantages and how it can be learned.

» Definition 13. Given a distribution u supported over [n] and a partition Z = (I1, Io, ..., Iy),
of [n] to intervals, the flattening of p with respect to Z is a distribution pz, supported over
[n], such that for i € I}, puz (i) = p(l;)/|L;].

The following lemma shows that the flattening of any distribution u, with respect to any
interval partition that has only small weight on intervals far from uniform, is close to u.

» Lemma 14. Let p be a distribution supported on [n], and let T = (I1,Ia,...,I.) be an
interval partition of p such that Zje[r]:d(uh. U )>~ pw(l;) <n. Then d(p, pz) < v+ 2n.
3=

The proof of this lemma appears in [14]. The good thing about a flattening (for an interval
partition of small length) is that it can be efficiently learned. For this we first make a
technical definition and note a trivial observation, whose proof follows immediately from the
definition:

» Definition 15 (Coarsening). Given p and Z, where |Z| = ¢, we define the coarsening of u
according to Z the distribution fiz over [¢] as by fiz(j) = p(I;) for all j € [£].

» Observation 16. Given a distribution fiz over [{], define uz over [n] by p(i) = pz(4:)/11; 1,
where j; is the index satisfying i € 1;,. This is a distribution, and for any two distributions
fiz and Xz we have d(uz, xz) = d(fiz, Xz). Moreover, if iz is a coarsening of a distribution
w over [n], then uz is the respective flattening of p.

The following lemma, which is proved in [14], shows how learning can be achieved. We will
ultimately use this in conjunction with Lemma 14 as a means to learn a whole distribution
through its flattening.

» Lemma 17. Given a distribution p supported over [n] and an interval partition T =
(I, Iz, ..., Ip), using w samples, we can obtain an explicit distribution u'r, supported
over [n], such that, with probability at least 1 — &, d(uz, pi) < e.

5 Weakly tolerant interval uniformity tests

To unify our treatment of learning and testing with respect to L-decomposable properties to
all three models (unconditional, adaptive-conditional and non-adaptive-conditional), we first
define what it means to test a distribution p for uniformity over an interval I C [n]. The
following definition is technical in nature, but it is what we need to be used as a building
block for our learning and testing algorithms.

> Definition 18 (Weakly tolerant interval tester). A weakly tolerant interval tester is an

algorithm T that takes as input a distribution p over [n], an interval I C [n], a maximum

size parameter m, a minimum weight parameter -, an approximation parameter ¢ and an

error parameter 9§, and satisfies the following.

1. If |I] <m, pu(I) > v, and bias(u 1) < €/100, then the algorithm accepts with probability
at least 1 — 4.

2. I |I| <m, p(I) >, and d(p I1,Ur) > €, then the algorithm rejects with probability at
least 1 — 4.

In all other cases, the algorithm may accept or reject with arbitrary probability.
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Input: A distribution p supported over [n], parameters ¢, r, an interval partition Z
satisfying |Z| < r, parameters ¢,d > 0, a weakly tolerant interval uniformity
tester T taking input values (u, I, m,~,€,9).

for s = 20log(1/9)/e times do

Take an unconditional sample from p and let I € Z be the interval that contains it
Use the tester T with input values (u, I,n/c,e/r,€,§/2s)
if test rejects then add I to B;

B W N

[

if |B| > 4es then reject else accept
Algorithm 3: Assessing a partition.

For our purposes we will use three weakly tolerant interval testers, one for every model.
These are summed up in the following lemma. They mostly build on previous work on
uniformity testing; the proofs are found in [14].

» Lemma 19. For the input (u, I, m,~,¢€,0), there exist these weakly tolerant interval test-

ers:

1. A tester using O(y/mlog(1/8)/v€*) unconditional samples from pu.

2. A tester that adaptively takes log(1/8)poly(log(1/€))/€? conditional samples from u.

3. A non-adaptive tester that takes poly(logn,1/e)log(1/d)/y conditional samples from p,
where just the decision depends on I and the queries depend only on the other parameters.

Note that the independence of the queries of I in Item 3 is important in the sequel to
keep the algorithm using it a non-adaptive one.

6 Assessing an interval partition

Through either Lemma 6 or Lemma 8 we can construct a fine partition, and then through
either Lemma 11 or Lemma 12 respectively we know that if p is decomposable, then most of
the weight is concentrated on intervals with a small bias. However, eventually we would like
a test that works for decomposable and non-decomposable distributions alike. For this we
need a way to assess an interval partition as to whether it is indeed suitable for learning a
distribution. This is done through a weighted sampling of intervals, for which we employ a
weakly tolerant tester. The following is the formal description, given as Algorithm 3.

To analyze it, first, for a fine interval partition, we bound the total weight of intervals
where the weakly tolerant tester is not guaranteed a small error probability; recall that T as
used in Step 3 guarantees a correct output only for an interval I satisfying u(I) > €/r and
lI| < n/e.

» Observation 20. Define Nz ={I €Z:|I|>n/cor u(I) <e/r}. If T is (n,7)-fine, where
en+v < e, then p(Urepr, I) < 2e.
The proof of this observation appears in [14]. The following “completeness” lemma states

that the typical case for a fine partition of a decomposable distribution, i.e. the case where
most intervals exhibit a small bias, is correctly detected.

» Lemma 21. Suppose that T is (n,7)-fine, where cn+~ < e. Define Gz = {i : T : bias(u I1)
<€/100}. If i(Ujeg,) = 1 — ¢, then Algorithm 3 accepts with probability at least 1 — 6.

The proof of this lemma appears in [14]. The following “soundness” lemma states that if
too much weight is concentrated on intervals where pu is far from uniform in the ¢; distance,
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Input: Distribution u supported over [n], parameters L (decomposability), € > 0
(accuracy), a weakly tolerant interval uniformity tester T taking input values
(1, I,m,7,€,0)

Use Algorithm 2 with input values (i, €/2000L, /2000, 1/9) to obtain a partition Z

with |Z] < r = 10°Llog(1/¢)/e

Use Algorithm 3 with input values (u, L, 7, Z,€/20,1/9,T)

if Algorithm 3 rejected then reject;

Use Lemma 17 with values (u,Z,€/10,1/9) to obtain p’

return pf

fary

[SLEE NV I N

Algorithm 4: Learning an L-decomposable distribution.

then the algorithm rejects. Later we will show that this is the only situation where p cannot
be easily learned through its flattening according to Z.

» Lemma 22. Suppose that T is (n,)-fine, where cn+ v < e€. Define Fr = {i: T :d(u |7,
Ur) > e 1If f(Urer,) > Te, then Algorithm 3 rejects with probability at least 1 — 4.

The proof of this lemma appears in [14]. Finally, we present the query complexity of the
algorithm. It is presented as generally quadratic in log(1/J), but this can be made linear
easily by first using the algorithm with 6 = 1/3, and then repeating it O(log(1/§)) times and
taking the majority vote. When we use this lemma later on, both r» and ¢ will be linear in
the decomposability parameter L for a fixed €, and § will be a fixed constant.

» Lemma 23. Algorithm 3 requires O(qlog(1/d)/€) many samples, where q is a function of
n/c, €/r, € and 6/2s that is the number of samples that the invocation of T in Step 8 requires.

In particular, Algorithm 8 can be implemented either as an unconditional sampling
algorithm taking rmlog2(l/5)/poly(e) many samples, an adaptive conditional sampling
algorithm taking rlog®(1/6) /poly(e) many samples, or a non-adaptive conditional sampling
algorithm taking rlog®(1/8)poly(logn, 1/€) many samples.

Proof. A single (unconditional) sample is taken each time Step 2 is reached, and all other
samples are taken by the invocation of T in Step 3. This makes the total number of samples
to be s(qg+ 1) = O(qlog(1/9)/e).

The bound for each individual sampling model follows by plugging in Items 1, 2 and 3
of Lemma 19 respectively. For the last one it is important that the tester makes its
queries completely independently of I, as otherwise the algorithm would not have been
non-adaptive. |

7 Learning and testing decomposable distributions and properties

Here we finally put things together to produce a learning algorithm for L-decomposable
distributions. This algorithm is not only guaranteed to learn with high probability a
distribution that is decomposable, but is also guaranteed with high probability to not
produce a wrong output for any distribution (though it may plainly reject a distribution
that is not decomposable). This is presented in Algorithm 4. We present it with a fixed
error probability 2/3 because this is what we use later on, but it is not hard to move to a
general §.

First we show completeness, that the algorithm succeeds for decomposable distributions.

» Lemma 24. If i is (¢/2000, L)-decomposable, then with probability at least 2/3, Algorithm
4 produces a distribution u' so that d(p, p') < e.
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Proof. By Lemma 8, with probability at least 8/9, the partition Z is (¢/2000L, ¢/2000)-fine,
which means by Lemma 12 that ZjG[T]:biaS(,uFI/)>E/2000 p(I;) < 3¢/2000. When this occurs,

by Lemma 21 with probability at least 8/9, Algorithm 3 will accept and so the algorithm will
move past Step 3. In this situation, in particular by Lemma 14 we have that d(uz, ) < 15¢/20
(in fact this can be bounded much smaller here), and with probability at least 8/9 (by Lemma
17) Step 4 provides a distribution that is €/10-close to pz and hence e-close to p. |

Next we show that the algorithm will, with high probability, not mislead about the
distribution, whether it is decomposable or not.

» Lemma 25. For any p, the probability that Algorithm 4 produces (without rejecting) a
distribution p' for which d(u, u') > € is bounded by 2/9.

Proof. Consider the interval partition Z. By Lemma 8, with probability at least 8/9, it is
(¢/2000L, €/2000)-fine. When this happens, if 7 is such that >=; ;. 2, y1(L;) > Te/20,
then by Lemma 22 with probability at least 8/9, the algorithm will reject in Step 3, and we
are done (recall that here a rejection is an allowable outcome).

On the other hand, if Z is such that Zj:d(uhj ur,) p(I;) < 7e/20, then by Lemma 14

we have that d(uz,n) < 15¢/20, and with probability at least 8/9 (by Lemma 17), Step
4 provides a distribution that is €/10-close to pz and hence e-close to u, which is also an
allowable outcome. |

We now plug in the sample complexity bounds and afterwards summarize all as a theorem.

» Lemma 26. Algorithm j requires O(Llog(1/e)/e + q/e + Llog(1/€)/e®) many samples,
where the value ¢ = q(n/L,e?/10°L1og(1/e€),€/20,€/2000) is a bound on the number of
samples that each invocation of T inside Algorithm 8 requires.

In particular, Algorithm 4 can be implemented either as an unconditional sampling
algorithm taking M/poly(e) many samples, an adaptive conditional sampling algorithm
taking L/poly(e) many samples, or a non-adaptive conditional sampling algorithm taking
Lypoly(logn, 1/¢) many samples.

Proof. The three summands in the general expression follow respectively from the sample
complexity calculations of Lemma 8 for Step 1, Lemma 23 for Step 2, and Lemma 17 for Step
4 respectively. Also note that all samples outside Step 2 are unconditional. The bound for
each individual sampling model follows from the respective bound stated in Lemma 23. <«

» Theorem 27. Algorithm 4 is capable of learning an (e/2000, L)-decomposable distribution,
giving with probability at least 2/3, a distribution that is e-close to it, such that for no
distribution will it give as output a distribution e-far from it with probability more than 1/3.
It can be implemented either as an unconditional sampling algorithm taking \/E/poly(e)
many samples, an adaptive conditional sampling algorithm taking L/poly(e) many samples,
or a non-adaptive conditional sampling algorithm taking Lpoly(logn,1/€) many samples.

Proof. This follows from Lemmas 24, 25 and 26 respectively. <

Algorithm 5, next, is a direct application of the above to testing decomposable properties.

» Theorem 28. Algorithm 5 is a test (with error probability 1/3) for the L-decomposable
property C. For L = L(e/4000,n), It can be implemented either as an unconditional sampling
algorithm taking v/nL/poly(e) many samples, an adaptive conditional sampling algorithm,
taking L/poly(€) many samples, or a non-adaptive conditional sampling algorithm taking
Lpoly(logn, 1/¢) many samples.
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Input: Distribution p supported over [n], function L : (0,1] x N = N
(decomposability), parameter € > 0 (accuracy), an L-decomposable property C
of distributions, a weakly tolerant interval uniformity tester T taking input
values (p, I,m,~,€,0).

1 Use Algorithm 4 with input values (u, L(e/4000,n),€/2,T) to obtain p’
2 if Algorithm 4 accepted and 1 is €/2-close to C then accept else reject
Algorithm 5: Testing L-decomposable properties.

Proof. The number and the nature of the samples are determined fully by the application
of Algorithm 4 in Step 1, and are thus the same as in Theorem 27. Also by this theorem,
for a distribution p € C, with probability at least 2/3, an €/2-close distribution u’ will be
produced, and so it will be accepted in Step 2.

Finally, if u is e-far from C, then with probability at least 2/3, Step 1 will either produce
a rejection, or again produce u’ that is €/2-close to p. In the latter case, p’ will be e/2-far
from C by the triangle inequality, and so Step 2 will reject in either case. <

8 Introducing properties characterized by atlases

In this section, we formally define properties characterized by atlases. It is shown in [14,
Section 9], that distributions that are L-decomposable are, in particular, characterized by
atlases. First we start with the definition of an inventory.

» Definition 29 (Inventory). Given an interval I = [a,b] C [n] and a real-valued function v :
[a,b] — [0,1], the inventory of v over [a, b] is the multiset M corresponding to (v(a),...,v(D)).

That is, we keep count of the function values over the interval including repetitions, but
ignore their order.

» Definition 30 (Atlas). Given a distribution u over [n], and an interval partition Z =
(I1,...,I) of [n], the atlas A of u over Z is the ordered pair (Z, M), where M is the
sequence of multisets (M, ..., My) so that M; is the inventory of p (considered as a real-
valued function) over I; for every j € [k]. In this setting, we also say that p conforms

to A.

There can be many distributions over [n] with the same atlas. We also denote by an atlas
A any ordered pair (Z, M) where 7 is an interval partition of [n] and M is a sequence of
multisets of the same length, so that the total sum of all members of all multisets is 1. It is a
simple observation that for every such A there exists at least one distribution that conforms
to it. The length of an atlas |A| is defined as the shared length of its interval partition and
sequence of multisets. Next we define when a property is characterized by atlases.

» Definition 31. For a function % : (0,1] x N — N, we say that a property of distributions C
is k-characterized by atlases if for every n € N and every € > 0 we have a set A of atlases of
lengths bounded by k(e,n), so that every distribution p over [n] satisfying C conforms to
some A € A, while on the other hand no distribution y that conforms to any A € A is e-far
from satisfying C.

In [14, Section 9], we give some examples of such properties, and show that characteriz-
ability is preserved also when switching to a tolerant testing scheme. The following is the
main result, whose proof is given in [14, Section 9].



E. Fischer, O. Lachish, and Y. Vasudev

» Theorem 32. If C is a property of distributions that is k-characterized by atlases, then
for any € > 0 there is an adaptive conditional testing algorithm for C with query complexity
k(e/5,n) - poly(logn,1/e) (and error probability bound 1/3).
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