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Purpose: To design a non–patient-specific system to detect the
electrical onset of seizures in patients with temporal lobe epilepsy.

Methods: We used EEG data from 29 seizures of 18 temporal
lobe epilepsy patients who underwent multiday video-scalp
EEG monitoring as part of their presurgical evaluations. We
segmented each data set into preictal and ictal phases, and
identified spectral entropy, spectral energy, and signal energy
as useful features for discriminating normal and seizure
conditions. The performance of five different classifiers was
analyzed using these features to design an automated
detection system.

Results: Among the five classifiers, decision tree, k-nearest
neighbor, and support vector machine performed with
sensitivity (specificity) of 79% (81%), 75% (85%), and 80% (86%),
respectively. The other two, linear discriminant algorithm and

Naive Bayes classifiers, performed with sensitivity (specificity) of
54% (94%), 47% (96%), respectively.

Conclusions: The support vector machine–based seizure detection
system showed better detection capability in terms of sensitivity and
specificity measures as compared to linear discriminant algorithm,
Naive Bayes, decision tree, and k-nearest neighbor classifiers.

Conclusions: Our study shows that a generalized system to detect
the electrical onset of seizures in temporal lobe epilepsy using
scalp-recorded EEG is possible. If confirmed on a larger data set,
our findings may have significant implications for the management
of seizures, especially in patients with drug-resistant epilepsy.
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(J Clin Neurophysiol 2019;36: 14–24)

Epilepsy comprises a heterogeneous group of disorders
characterized by recurrent and unprovoked epileptic seizures

because of sudden surges of synchronized electrical discharges in
a population of neurons. The recurrent seizures that constitute
epilepsy may be localized in origin (focal epilepsy) or may be
generalized over the whole brain (generalized epilepsy).1

Worldwide, nearly 65 million people are affected by epilepsy,
of whom one-third are resistant to antiepileptic drugs.2 A subset
of patients with drug-resistant focal epilepsy are candidates for
epilepsy surgery.3,4 The success of resective epilepsy surgery
depends on accurate localization of the origin of the seizures by
long-term video-EEG monitoring (VEM) and correlating the
findings with structural abnormalities observable in magnetic
resonance imaging.

A major concern of patients with epilepsy, especially those
with drug-resistant epilepsy, is the random and unexpected
occurrence of epileptic seizures. The anticipatory anxiety, feel-
ings of helplessness, and restrictions in activities of daily living

markedly impair the quality of life of individuals with poorly
controlled epileptic seizures. An ability to detect the electrical
onset of seizures could have a great impact on the management of
epilepsy. Seizure detection could help in designing strategies to
avoid injuries during seizures and could increase confidence in
driving. During VEM, it facilitates the injection of radioisotopes
for use in an ictal single photon emission tomography study.
Warnings of impending seizures might also provide an oppor-
tunity to control the seizures by delivering fast-acting antiepi-
leptic drugs or electric stimulation such as vagus nerve or direct
brain stimulation.5–7 A seizure detection algorithm consists of
two major parts: feature extraction and classification. Selection of
optimal features discriminating normal and epileptic seizure
activity is an essential task for any detection algorithm. The
choice of features varies based on synchronous neuronal activity
and may include autocorrelation, phase synchronization, pattern-
match regularity statistic,8–10 and morphological characteristics
of interictal spike discharges on the recorded EEG.11,12 The
continuous discharges of polymorphic waveforms of different
amplitude and frequency can be captured using spectral and
wavelet features.13–18 Apart from these, statistical measures17–19

and entropy measures20–23 have been proposed to characterize
EEG time series. The brain symmetry index of spatial and
temporal measures has been proposed to localize the hemisphere
of seizure onset,9,16 and an algorithm using autoregressive
spectra has been designed for the detection of temporal lobe
seizures.24 The best discriminating features are used to train the
classifiers for automated categorization of a given pattern as
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normal or seizure-related. Several classifiers using decision rules
from simple thresholds to complex decision boundaries have
been proposed to define the classification as a two-class or
multiclass problem.13,14,25,26 The support vector machine (SVM),
a statistical machine learning algorithm, has been used in a wide
range of biomedical applications, including automated seizure
detection.15,17,27–29

During the last four decades, several studies have attempted
to detect seizure occurrence based on changes in the EEG.30

However, reliably detecting an epileptic seizure remains an
unsolved problem even today, for the following reasons. First,
because electrical and clinical features of epileptic seizures differ
from patient to patient and even between seizures in the same
patient, it is difficult to develop a generic algorithm to forecast
clinical seizures reliably. Most studies that have investigated
patient-specific detection paradigms have used extensive
machine training strategies for application to individual pa-
tients.13,15,31–33 Second, the methods used to detect seizures have
differed widely and included a number of univariate and bivariate
measures comprising both linear and nonlinear approaches with
different classification algorithms, thereby making interstudy
comparisons difficult.32,34,35 Third, most studies have used
intracranially recorded EEG data because they are less prone to
artifacts than scalp EEG signals.15,36,37 As intracranial EEG is
invasive and can be undertaken only in a minority of patients, it
would not be appropriate to generalize the findings to the
majority of patients who undergo only scalp-recorded EEG.38

Finally, the influence that antiepileptic drug withdrawal can have
on the electrical characteristics of the seizures in an individual
patient is largely unknown.

Against this background, we designed this study to explore
the utility of scalp-recorded EEG in detecting the electrical onset
of seizures in a uniform cohort of well-characterized patients
with drug-resistant temporal lobe epilepsy (TLE), who under-
went multiday VEM as part of their presurgical evaluations. To
achieve this objective, we applied a set of time and frequency
measuresdsignal energy, spectral energy, and spectral
entropydto identify changes in the EEG before the clinical
onset of seizures. We chose the essential feature space to
discriminate the normal and seizure patterns for development
of an automated system for the detection of the electrical onset of
seizure. The performances of five different classifiers, namely the
linear discriminant algorithm (LDA), Naive Bayes (NB), deci-
sion tree (DT), SVM, and k-nearest neighbors (KNN), are
examined for the clinical utility of the system. We envisaged
that the proposed algorithm would identify the electrical onset of
seizures and would allow for the short-term prediction of clinical
seizure onset, which might provide a window for diagnostic and
therapeutic opportunities in the management of people with
epileptic seizures.

MATERIALS AND METHODS

Patient Database
Data provided by two hospitals were used for this study:

data set_1, with data from 11 patients (3 male and 8 female)

collected at Sree Chitra Tirunal Institute of Medical Sciences and
Technology, Trivandrum, Kerala, India, and data set_2 with data
from 7 patients (3 male and 4 female) collected at Fortis Malar
Hospital, Chennai, India. The ages of the 18 patients (6 male and
12 female) ranged from 16 to 46 years. There were 29 seizures
recorded from the 18 patients. The clinical, EEG, and magnetic
resonance imaging findings of these patients were consistent with
the diagnosis of TLE. The VEM was undertaken per standard
protocol, using 21 scalp electrodes placed according to the
standard 10 to 20 system, which has been described in detail
elsewhere.39 Permission was obtained from the Institute Ethical
Committee to use the scalp-recorded VEM data for this study. A
summary of the clinical characteristics is provided in Table 1.
The recordings in data set_1 included two sphenoidal electrodes
(Sph1 and Sph2) along with 21 scalp electrodes. The recorded
EEG data were time samples as recorded using 32 channels
digital video-EEG system. In data set_1, each channel was
sampled at the rate of 400 Hz. In data set_2, each channel was
recorded at the rate of 256 Hz and upsampled to 400 Hz to ensure
uniform window length for data set_1 and data set_2.

Preprocessing
Previous studies used different preictal durations of 5, 10, 20,

30, 40, 120, and 240 minutes to predict the electrical onset of
seizure and the mean prediction time varied from a few seconds
to minutes.6,7,40,41 Using the algorithm named Advanced Seizure
Prediction via Pre-Ictal Relabeling (ASPPR), the best intervention
time proposed for the prediction of the electrographic onset of
seizures was 1 minute.42 A seizure usually lasts for 30 seconds to
2 minutes and is followed by a postictal phase lasting several mi-
nutes.3,41 According to the length of available EEG, the data were
split into preictal and ictal phases. In this work, we defined the
preictal phase as a 3-minute-long EEG sample immediately before

TABLE 1. Summary of Clinical Data

Patient ID Sex Age Onset Hemisphere No. of Seizures

P1 Male 43 Bilateral 3
P2 Male 39 Right 3
P3 Female 46 Left 1
P4 Female 44 Left 1
P5 Female 30 Left 1
P7 Female 28 Left 3
P8 Female 31 Right 2
P11 Female 33 Left 3
P12 Female 23 Left 1
P13 Female 29 Right 1
P14 Male 37 Right 1
P15 Female 21 Right 1
P16 Female 19 Right 1
P17 Female 28 Right 2
P18 Male 42 Left 1
P19 Male 44 Right 1
P20 Female 39 Right 2
P21 Male 16 Right 1

The electrical onset of seizure episodes in patients P6, P9, and P10 were not clearly
visible in the EEG. Hence, these recordings were excluded from the analysis.
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the clinical onset, whereas the ictal phase was defined as a 2-minute
EEG recording clipped immediately after the clinical onset (Fig. 1).
Because our study considered only TLE, we restricted the analysis
of the EEG to the four channels T1 and T3 from the left, and T2
and T4 from right sides of the scalp. Samples of 5 minutes of EEG
from these four channels in 29 seizure recordings were used for the
design of the automated detection system. The EEG was passed
through a second-order high-pass filter to obtain 1 to 200 Hz
signals. A notch filter was used to remove 50 Hz supply-line
frequency and its 100, 150, and 200 Hz harmonics. Because the
amplitude of each patient EEG varied, the signals were normalized
to make the amplitudes relatively comparable across patients. The
maximum and minimum values of each channel in the 29 seizure
recordings were computed. The average of the 29 maximum values
and average of the 29 minimum values were used to normalize the
5 minute EEG samples in all 29 seizure recordings, as specified in
the following equation:

xnorm 5
xi 2Avg minimum

Avg maximum2Avg minimum
; (1)

where xnorm is the normalized value of x, xi is the instantaneous value
of x, and Avg minimum and Avg maximum are the
average minimum and maximum value computed from all 29 seizure
recordings. This makes the EEG data suitable for the design of
a patient-independent seizure detection system. After preprocessing,
the sliding window technique was used to divide the 5 minute EEG
signal into segments of 4-second duration. The 4 second predefined
window was moved by 1 second, keeping 3 seconds of data
overlapping with the previous window. For each 4 second window,
five featuresdsignal energy, spectral energy in 1 to 25 Hz, 25 to
100 Hz, and 100 to 200 Hz frequency bands, and spectral entropy (4
channels · 5 features ¼ 20 features for each seizure recording)d
were extracted to use in the automated system (Fig. 2).

Feature Extraction
For each 5 minute recording with 4 second window

moving at 1 second intervals, five features, namely signal

energy, spectral energiesdElowband, Emidband, and Ehighbandd
and spectral entropy, were extracted to obtain the profile of
amplitude and frequency variations to identify the seizure
precursors.

Signal Energy
In the time domain, the signals were analyzed to track the

changes in amplitude of brain potentials. The signal energy was
measured as the sum of the squared instantaneous voltage of
EEG samples. The energy of the signal was calculated by the
following equation:

Ek 5
Xð31 kÞ

i5ðk2 1ÞD1 1

jxij2; (2)

where Ek is the signal energy in the k’th segment, k is the segment
index, i is the sample index, D is the sampling rate, and xi is the
instantaneous sample value.

Spectral Energy
The brain produces different rhythmic activity patterns

depending on mental state and task performance. The power of
the EEG signal is most concentrated in low frequencies. During
the evolution of a seizure, changes in rhythmic activity occur.
The seizure evolves with different morphologies in different
frequency bands, including delta (d): 0.5 to 4 Hz, theta (u):4 to
8 Hz, alpha (a):8 to 12 Hz, and beta (b):13 to 30 Hz, showing
amplitude depression and polyspike patterns along with large
amplitude waves.43 Hence the energy variations before seizure
onset are not always predictive, and the frequency signature
during the transition from normal to ictal phases must be
captured using frequency transformation tools to detect the
seizure precursors. To identify the variations in frequency
components, the spectral energy of the windowed EEG signal
was calculated using the Fast Fourier Transform technique
under the assumption that the EEG signal was statistically
stationary within the segment. The spectral energy was
calculated using the following equation:

Es 5
Xf 2
f1

jXðviÞj2; (3)

where Es is the spectral energy in the f1 to f2 band and X(vi) is the
Fourier coefficient of the signal at angular frequency vi. The spectral
energy was calculated in the Elowband (1–25 Hz), Emidband (25–100
Hz), and Ehighband (100–200 Hz) frequency bands.

Spectral Entropy
The entropy is a parameter that describes the irregularity,

complexity, and unpredictable characteristics of a stochastic
signal. During the normal state, the EEG signal is random in
nature, but during the approach to a seizure, the brain produces
deterministic oscillations with high neural synchrony. The
spectral entropy is a suitable measure for capturing the
synchronous activity of the brain. The major advantage of
using spectral entropy is that the frequency band contributing
the entropy is known and user-defined. The previous use of

FIG. 1. General schema of 5-minute EEG data selection of four
selected channels with respect to clinical onset of seizure. A period
of 3 minutes of EEG immediately before the clinical onset is
referred to as lPre-ictal, and 2 minutes of EEG after the clinical onset
is referred to as lIctal.
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spectral entropy for detection20 and prediction44 motivated us
to use this as one of the measures to detect the electrical onset
of seizure. In the study of Blanco et al., the invasively
measured spectral entropy showed variations in the high-
frequency bands from 32 to 128 Hz. Because the scalp EEG
was used in this study, we searched for oscillations with lower
frequencies. The spectral entropy S was calculated using the
following equation:

S5
Xf 2
f 1

pðf iÞ$log
�

1

pðf iÞ
�
˛ 0; 1; (4)

where S is the spectral entropy in the frequency range f1 to f2, and
p(fi) is the power spectral density of fi. The spectral entropy was
calculated in the 3 to 12 Hz frequency band.

RESULTS
In this section, we will demonstrate the suitability of time

and frequency measuresdsignal energy; spectral energies Elow-

band, Emidband, and Ehighband; and spectral entropydto identify
EEG changes at the electrical onset of seizures. We will also
compare the performance of five classifiers using reduced feature
spaces that accurately distinguish the normal and seizure patterns
for use in automated detection.

Electrical Versus Clinical Onset of Seizures
For 29 scalp video-EEG recordings, the electrical onset

(the first alteration in the scalp-recorded EEG) and clinical
onset (the time at which the patient manifested the first
observed alteration in behavior or motor activity in the
synchronized video) of seizures were visually identified by
the three neurologists involved with the study (K.R., C.R., and
S.D.N.). Based on the electrical and clinical onset, the seizure
recordings were divided into five groups. In the first group of
nine seizures, the electrical onset preceded the clinical onset
with mean latency of 54 seconds (median: 55 seconds; range:
42 seconds to 69 seconds). Figure 3 shows an example from
the first group of the onset of seizure P1_s1 in the right
temporal lobe, for four channels of the scalp EEG. The seizure
started at 138 seconds at T2 in the right temporal region with
4 Hz oscillation and slowly spread to the contralateral hemi-
sphere and the clinical seizure started at 180 seconds. In the
second group of 5 seizures, the electrical onset preceded the
clinical onset with a mean latency of 37 seconds (median: 38
seconds; range: 35 to 39 seconds). In the third group of four
seizures, the electrical onset preceded the clinical onset with
a mean latency of 23 seconds (median: 22 seconds; range: 21
to 28 seconds). In the fourth group of seven seizures, the
electrical onset preceded the clinical onset with a mean latency
of 16 seconds (median: 17 seconds; range: 13 to 19 seconds).
In the fifth group of 5 seizures, the electrical onset preceded

FIG. 2. Steps in EEG data collection and
processing for the automated seizure
detection system. The image of the 10 to
20 electrode placement system used in
this figure is adapted from
Bioelectromagnetism, Principles and
Applications of Bioelectric and
Biomagnetic Fields (page no. 368) by J.
Malmivuo and R. Plonsey, 1995, Oxford
University Press, New York, adapted with
permission.52

FIG. 3. Scalp-recorded EEG of the
selected electrodes in the P1_s1 seizure.
The electrical onset of seizure P1_s1 was
visually identified in the temporal region,
and rhythmic theta activity commenced
at the T2 electrode (arrow) at 138
seconds.
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the clinical onset with a mean latency of 5 seconds (median: 5
seconds; range: 3 to 6 seconds). When all 29 seizures were
considered, the mean time lapse between electrical onset and
clinical onset was 29 seconds. The measured profile of each
seizure recorded at 1 second interval was investigated with
respect to the visually identified electrical and clinical onset to
select the most useful measures for the automated system. The
automated identification of electrical onset by classifiers
trained using these significant features was compared with
the results of manual identification.

Feature Space Reduction
The five measures signal energy; spectral energies Elow-

band, Emidband, and Ehighband; and spectral entropy were
investigated to select the best discriminating features for
discrimination of the normal and seizure conditions. From
the 29 seizure recordings, we found that the spectral energy in
the low-frequency band changed the most at the electrical
seizure onset, whereas Emidband and Ehighband changes devel-
oped slowly a few seconds later, followed by the Elowband

changes. The spectral energy in the 25 to 100 Hz and 100 to
200 Hz bands showed large variations in the T3 and T4
electrode recordings. In all 29 seizure recordings, the energy
level of the mid- and high-frequency bands was substantially
lower than that of the low-frequency band. The spectral
entropy in the 3 to 12 Hz band varied significantly over time
and decreased at electrical onset in 26 recorded seizures.
Among the 29 seizures, in 27, the electrical onset was
correlated with a different set of time and frequency measures.
The two seizures P2_s1 and P7_s3 showed distinctive changes
in all measures only at the clinical onset of the seizure. The
measures showing large changes from the background
activitydsignal energy, Elowband spectral energy, and spectral
entropydwere selected as candidates for the automated
detection system. The most prominent measures in the P1_s1
seizure recording are shown in Fig. 4. The spectral entropy
varied most at electrical onset and contributed most to the

detection of the electrical onset. The Elowband and signal energy
measures variations remained the same until the electrical
onset. The energy in high-frequency bands became large only
after the clinical onset of the seizure. In TLE, spread of
electrical activity from temporal lobe to neighboring areas
results in loss of consciousness and tonic–clonic activity. The
spectral entropy in 3 to 12 Hz was selected to capture the
rhythmic spiking or oscillations of large synchronized neuronal
populations at the electrical onset of a seizure. The spectral
energy in the 1 to 25 Hz frequency band was selected to
characterize the EEG dynamics at the initial stage of a seizure
episode with loss of consciousness. The signal energy measure
was selected to capture large energy changes at different stages
of a seizure episode.

Automated Seizure Detection
We designed the automated seizure detection system to test

five supervised learning algorithms: LDA, NB, DT, SVM and
KNN with k ¼ 2. The classifiers are designed to solve the binary
problem of distinguishing the normal and seizure classes. The
classifiers distinguished the seizure and normal patterns using
three features: Elowband, signal energy, and spectral entropy of the
4 channels T1, T2, T3, and T4. Each 5 minute recording was split
into normal and seizure data with respect to the electrical onset of
the seizure. For testing, the normal and seizure data for N 2 1
patients’ recordings were grouped, and the outliers beyond the
63s limit were removed to model the classifier. Each classifier
was trained using these N 2 1 patients’ recordings, and the
remaining one patient data sample, which was unknown to the
classifier, was used to validate the performance of the classifier.
Thus the classifier performance is validated using an unknown
patient data, which ensures the patient-independent system
approach.33,39 The entire 5 minute recording of each seizure
was tested with the set of 5 classifiers. The performance of the
classifiers was compared to test their suitability for real-time
implementation. The performance was evaluated using the
measures shown in the following equation:

FIG. 4. Prominent features extracted
from the P1_s1 seizure recording.
Elowband, signal energy, and spectral
entropy changes appear at the electrical
and clinical onset of seizure, 138 and 180
seconds, respectively. The profiles of
Elowband and signal energy measures are
alike until the electrical onset. Emidband

and Ehighband contribute to the total
energy only after the clinical onset of the
seizure. The spectral entropy changed
most at the electrical onset and
contributed most to the detection of the
electrical onset.
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Sensitivity5
No: of correctly classified seizure patterns

Total no: of seizure patterns
· 100%

Specificity5
No: of correctly classified normal patterns

Total no: of seizure patterns
· 100%

Accuracy5
No: of correctly classified patterns

Total no: of patterns
· 100%

Error rate5
No: of misclassified patterns

Total no: of patterns
· 100%

(5)

The sensitivity was defined as the ability of the classifier to
correctly identify the seizure samples, whereas the specificity was
the ability of the classifier to correctly identify the normal
samples. The accuracy and error rate were the percentage of
correctly classified and misclassified patterns, respectively. For
each classifier, there was a trade-off between sensitivity and
specificity. The performance of each classifier on patient-
independent data set is shown in Table 2. The sensitivity and
specificity of five classifiers in distinguishing the normal and
seizure samples of each seizure recording are tabulated. The
LDA and NB classifiers scored very low sensitivity and high

specificity. The other three classifiers DT, SVM, and KNN
showed good sensitivity and specificity values. Among the 29
seizures, four seizures (P4_s1, P13_s1, P19_s1, and P20_s2)
yielded very low sensitivity in identifying the electrical onset of
seizure. Apart from these four seizures, the normal samples of
two seizures P15_s1 and P21_s1 were identified with low
specificity. In particular, the spectral entropy pattern of the
normal region of P15_s1 overlapped with the seizure region, all
the normal patterns were classified as seizure patterns, and it was
unable to determine the electrical onset.

Good performance of an automated system is ensured by
high sensitivity and specificity of the classifier. The average
performance for each classifier design across all seizure record-
ings is given in Table 3. The LDA and NB classifiers performed
with sensitivity (specificity) of 54% (94%) and 47% (96%),
respectively. The performance of the other three (DT, SVM, and
KNN) classifiers was very similar. The DT and KNN algorithms
had a slightly lower accuracy of 80%, with sensitivity (specific-
ity) of 79% (81%) and 75% (85%), respectively. Hence the
SVM, with overall sensitivity of 80%, specificity of 86% and
accuracy of 83%, seemed to be suitable for real-time implemen-
tation of a seizure detection system.

TABLE 2. Performance of Classifiers on Independent Seizure Recording

Seizure ID

Sensitivity (%) Specificity (%)

LDA NB DT SVM KNN LDA NB DT SVM KNN

P1_s1 41 44 71 81 74 93 80 72 75 74
P1_s2 55 15 61 72 61 99 100 96 95 97
P1_s3 43 40 75 77 72 99 100 96 90 98
P2_s1 78 77 89 91 92 99 100 87 94 94
P2_s2 81 78 93 92 88 99 100 92 97 91
P2_s4 70 79 90 90 81 100 100 99 99 98
P3_s1 73 79 100 98 97 99 97 79 90 90
P4_s1 17 2 47 47 47 100 100 99 99 97
P5_s1 34 32 61 68 58 99 99 94 92 93
P7_s1 74 78 94 97 95 96 91 70 85 80
P7_s2 85 64 91 100 87 96 100 89 94 92
P7_s3 81 69 94 93 89 100 99 84 94 87
P8_s1 77 82 96 99 94 94 92 81 89 88
P8_s3 63 72 89 83 83 99 100 88 95 93
P11_s1 70 77 98 98 93 98 94 78 89 92
P11_s2 67 74 96 95 91 99 94 78 89 90
P11_s3 70 78 97 97 93 95 89 73 84 86
P12_s1 51 31 86 94 86 88 88 65 76 73
P13_s1 4 34 42 45 47 99 99 90 89 88
P14_s1 44 16 81 66 67 94 99 66 81 69
P15_s1 100 78 100 100 99 4 67 3 0 3
P16_s1 21 33 80 67 61 97 97 82 87 88
P17_s1 74 28 78 81 72 100 100 93 91 93
P17_s2 59 21 66 78 71 100 100 94 99 99
P18_s1 42 28 67 66 64 98 98 91 90 93
P19_s1 14 14 58 45 46 88 93 81 79 78
P20_s1 17 6 62 60 52 100 100 98 99 100
P20_s2 24 16 56 58 40 99 100 96 99 98
P21_s1 29 17 82 70 91 91 96 32 53 48

DT, decision tree; KNN, k-nearest neighbor; LDA, linear discriminant algorithm; NB, Naive Bayes; Pn-sm, nth patient mth seizure recording; SVM, support vector machine.
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The automated detection of electrical onset is compared with
visual identification in Table 4. The latency is defined as the time
difference between detection of the electrical onset by the manual
and automated systems. The LDA classifier identified 16 seizures
with an average latency of 6 seconds (median: 4 seconds; range:
1 to 29 seconds), and the electrical onset of seizure P8_s1 was
identified 4 seconds before the manual detection. The NB
classifier identified seizure (P8_s1) 4 seconds before visual

detection and 11 seizures with an average latency of 11 seconds
(median: 11 seconds; range: 2 to 29 seconds). The DT classifier
identified 7 seizures before manual detection with an average
time of 4 seconds, 14 seizures with an average latency of 9
seconds (median: 5 seconds; range: 1 to 32 seconds), and in four
seizures, machine detection coincided with manual detection.
The SVM classifier identified the three seizures P2_s2, P5_s1,
and P8_s1 1 s, 1 and 4 seconds before the manual detection of
electrical onset, 12 seizures with an average latency of 8 seconds
(median: 4 seconds; range: 1 to 32 seconds), and in four seizures,
machine detection coincided with manual detection. The KNN
classifier identified the three seizures P2_s4, P7_s2, and P8_s1,
1, 1 and 5 seconds before manual detection, 17 seizures with an
average latency of 8 seconds (median: 4 seconds; range: 1 to 32
seconds), and in four seizures, machine detection coincided with
manual detection. The seizures P2_s1 and P7_s3 were identified
only after clinical onset by all the classifiers, and seizure P15_s1
is not identified by any of the five classifiers. The seizure patterns
of P13_s1 recording were identified as normal patterns by the
LDA classifier. The LDA classifier was unable to identify P4_s1,
P12_s1, P16_s1, P19_s1, P20_s1, and P21_s1 seizures with
better accuracy. The seizure patterns of P4_s1 and P20_s1 were
identified as normal patterns, and P12_s1, P14_s1, P15_s1,
P19_s1, P20_20, and P21_s1 were not detected by the NB
classifier. In seizure recording P15_s1, all the normal patterns
were classified as seizure patterns by the LDA, DT, SVM, and
KNN classifiers. The visual and SVM-based identification of the
electrical onset of seizure P1_s1 is shown in Fig. 5. The
identification of electrical onset of the seizure by the machine
learning algorithm coincides with manual detection by the
neurologists. Comparing the profile of prominent features of
P1_s1 in Fig. 4 and the classifier output for seizure P1_s1 in Fig.
5, it seems that the spectral entropy measure had the greatest
impact on the classification of unknown samples at the initial
stage of a seizure.

The performance of the classifiers was evaluated by another
test that used 2/3 (12 patients) of the data for training, and
the remaining data (6 patients) were dedicated for testing the
classifiers. Thus, this method evaluated the performance of the
classifiers on a cohort containing more than one individual
patient. The performance of the classifiers on different set of
patient cohorts is tabulated in Table 5. The average performance
of the classifiers on the cohort data is tabulated in Table 6. The
performance of the LDA and NB classifiers on the cohort data
averaged 75% in accuracy. The accuracy of the DT classifier was
reduced by 1% on cohort data from the value for the individual
patient approach as given in Table 3. The KNN classifier scored
the same 80% accuracy by adjusting the sensitivity by 1%. The
sensitivity and specificity of the SVM classifier declined by 2%
on the cohort data, with 81% accuracy.

The SVM classifier trained using signal energy, spectral
energy in the 1 to 25 Hz band, and spectral entropy in the 3 to 12
Hz band had sensitivity and specificity of 78% and 84%,
respectively, on the cohort data. Further improving the perfor-
mance of the SVM classifier, three LDA classifiers each using
different set of features (Elowband · 4, signal energy · 4, and
spectral entropy · 4) transformed the 4-dimensional feature space
to a 1-dimensional space to provide good separability of the

TABLE 3. Average Performance of Classifiers on Independent
Patient Data

Classifier, Parameters LDA NB DT SVM KNN

Sensitivity (%) 54 47 79 80 75
Specificity (%) 94 96 81 86 85
Accuracy (%) 75 71 80 83 80
Error rate (%) 25 29 20 17 20

DT, decision tree; KNN, k-nearest neighbor; LDA, linear discriminant algorithm;
NB, Naive Bayes; SVM, support vector machine.

TABLE 4. Manual and Automatic Detection of Electrical Onset of
Seizures

Seizure ID Manual (s)

Automated Detection (s)

LDA NB DT SVM KNN

P1_s1 138 143 153 145 138 139
P1_s2 143 147 163 145 145 147
P1_s3 165 168 182 166 166 168
P2_s1 174 181 189 180 180 180
P2_s2 159 164 170 164 164 166
P2_s4 142 143 147 141 141 141
P3_s1 152 164 164 152 153 155
P4_s1 159 ND AN 166 166 166
P5_s1 165 171 168 164 164 165
P7_s1 175 176 177 178 177 177
P7_s2 157 163 173 155 157 156
P7_s3 173 182 214 182 182 182
P8_s1 177 173 173 172 173 172
P8_s3 121 150 150 150 150 150
P11_s1 134 136 138 127 138 138
P11_s2 114 116 118 107 118 118
P11_s3 176 178 180 169 180 180
P12_s1 162 ND ND 162 162 162
P13_s1 161 AN 180 179 179 180
P14_s1 125 133 ND 125 127 127
P15_s1 145 AS ND AS AS AS
P16_s1 163 ND 185 164 175 168
P17_s1 163 182 237 166 166 166
P17_s2 138 157 210 142 143 143
P18_s1 141 143 217 142 143 143
P19_s1 114 ND ND 127 135 133
P20_s1 134 ND AN 134 136 134
P20_s2 167 188 ND 167 167 167
P21_s1 111 ND ND 143 143 143

AN, all the patterns were detected as normal; AS, all the patterns were detected as
seizure; DT, decision tree; KNN, k-nearest neighbor; LDA, linear discriminant
algorithm; ND, not detected; NB, Naive Bayes; SVM, support vector machine.
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normal and seizure classes. With these LDA classifiers, each
using a different set of features, the feature space was reduced
from 12 to 3 features (1 · Elowband, 1 · signal energy, and 1 ·
spectral entropy). The transformed 3-dimensional feature set was
used to train the SVM classifier on the cohort data. The LDA-
SVM classifier accuracy increased by 1%, with a 2% rise in the
sensitivity and unchanged specificity.

DISCUSSION
We designed this study to investigate the usability of time

and frequency measuresdsignal energy, spectral energy, spectral
entropydand to compare the performances of five different
classifiers with the goal of developing a patient-independent
seizure detection system. To achieve this objective, we gathered

relatively uniform scalp-recorded EEG data from patients with
well-characterized TLE and applied time- and frequency-domain
measures to detect the electrical onset of seizures. Although most
studies have included temporal and extratemporal focal seizures
to achieve generality, we restricted our investigation to temporal
lobe seizures.7,17,43,45–47 Compared with scalp-recorded EEG,
intracranial EEG recordings are largely free of artifacts. How-
ever, as intracranial EEG is invasive and expensive, it is
undertaken on only in a minority of selected patients with
antiepileptic drug-resistant epilepsy, in whom scalp-recorded
EEG data have failed to provide localization of the seizure onset.
Because of these reasons, studies that have used intracranial EEG
are likely to give different results from ours.36,40,44,48

An SVM-based algorithm applied to pediatric patients with
a variety of seizure types detected the seizures within 8 6 3.2
seconds of electrical onset with 94% sensitivity and a false alarm

FIG. 5. Electrical onset of seizure P1_s1
by manual and SVM identification. The
normal pattern is represented as “0,”
and the seizure pattern is represented as
“1.” Misclassifications of the normal and
seizure patterns are marked as “false
seizure” and “false normal,” respectively.

TABLE 5. Performance of Classifiers on Cohort Patient Recordings

Seizure ID

Sensitivity (%) Specificity (%)

LDA NB DT SVM KNN LDA NB DT SVM KNN

Set 1 52 32 66 58 58 90 98 89 90 90
Set 2 58 35 62 62 59 88 97 91 88 91
Set 3 54 45 70 67 62 93 97 91 91 93
Set 4 58 49 73 75 72 93 97 88 89 87
Set 5 59 49 72 76 69 94 98 90 91 92
Set 6 63 56 77 77 73 92 97 89 90 91
Set 7 68 62 78 79 77 93 97 90 91 91
Set 8 72 71 89 86 85 94 97 82 93 91
Set 9 71 75 89 86 84 94 92 71 91 87
Set 10 67 76 90 85 82 93 91 79 90 85
Set 11 64 80 88 85 84 91 91 77 89 85
Set 12 68 80 91 86 84 90 89 67 87 83
Set 13 70 82 93 90 89 77 78 60 73 72
Set 14 66 78 89 87 85 76 76 65 71 72
Set 15 70 60 82 82 81 70 82 71 70 72
Set 16 68 56 77 78 77 72 86 74 72 75
Set 17 68 53 79 76 77 71 84 72 72 73
Set 18 61 45 70 67 65 77 88 78 79 79

DT, decision tree; KNN, k-nearest neighbor; LDA, linear discriminant algorithm; NB, Naive Bayes; SVM, support vector machine.
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rate of 0.25 hours.31 In another study, recurrent neural
network–based system trained using spectral, wavelet, statis-
tical, and complexity measures identified seizures with mean
preonset and onset detection latency of 251 seconds (range:
21,140 to 261 seconds) and 14 second (212 to 151 sec-
onds), respectively.32 A clinical seizure onset detection and
warning system with tunable threshold mechanism showed
a sensitivity of 76% with median detection latency of 10 sec-
onds.13 An SVM-based detection system using intracranial
EEG identified the electrical onset of seizures with median/
mean latency (5 seconds/6.9 seconds) and with 97% sensitiv-
ity.15 A patient-specific seizure detection algorithm using
Combined Seizure Index of wavelet coefficients extracted from
multichannel scalp EEG identified 90.5% of the 63 seizures
with median detection latency of 7 seconds.46 However, most
of the systems proposed in previous studies were patient-
dependent and required expert input for channel selection and
training data to reconfigure the system for another patient. A
generic SVM system using 6 ictal morphologies identified 91
seizures of 57 patients with a median delay of 11.6 seconds
(range: 24 to 110 seconds) detection latency and .96%
sensitivity. In the system proposed by Meyer et al.,43 each
sample of the feature vector was mapped to a probability by
comparing the 5 second history with a 25 second baseline
history to obtain generalizability across patients.

We aimed to develop a self-sustaining system and therefore
normalized each segment using the maximum and minimum
values computed from all 29 seizure recordings. The proposed
algorithm makes the EEG comparable across patients and does
not need any change to use the system for another patient. The
features computed for each windowed signal on N 2 1 patient
recordings were used to train the classifier, and the remaining
recording was used to validate the classifier. Each classifier
identified the electrical onset of seizure at a different latency
compared with manual detection. Comparing the detection
latency and performance of the classifiers, the SVM algorithm
performed better by detecting the electrical onset well before the
clinical onset, with sensitivity and specificity of 80% and 86%,
respectively. In 25/29 seizures, the electrical onset was detected
by the SVM classifier with median/mean latency of 2 seconds/5.8
seconds (range: 24 to 132 seconds), whereas two seizures are
identified at the clinical onset, and one seizure was identified 2
seconds after the clinical onset. The LDA and NB classifiers
performed with very low false-positive rates but a high missed
seizure rate. The DT and KNN algorithms had good sensitivity
but a comparatively low specificity.

Although comparing our results with previous studies, we
found that the signal energy increased a short time before the
clinical onset of seizure, which is in agreement with a study of
the cumulative energy profile of multiday intracranial EEG.49 By
contrast, another study in which the energy of the signal
decreased 30 minutes before the seizure onset.40 Most of the
previous studies using frequency measures used standard spectral
bands (0.5–4, 4–8, 8–13, 13–30, and 30–48 Hz) to compute the
spectral and wavelet energy measures to capture the brain
dynamics.32,37,47,50 Sitt et al.27 attempted to correlate the state
of consciousness with spectral measures of ongoing EEG
activity. They found that the spectral power in low frequencies
(delta, theta, and alpha bands) constituted the most reliable
signature of the state of consciousness, distinguishing between
vegetative state (VS), minimally conscious state, and conscious
state (CS). The spectral entropy in the 1 to 45 Hz frequency band
showed higher values in minimally conscious and CS than in VS.
Logesparan et al.18 analyzed the performance of 65 measures
including 17 time domain, 12 Fourier transform, 4 continuous
wavelet transform, and 32 discrete wavelet transform based
measures, for online data selection and seizure occurrence
detection. They concluded that discrete wavelet transform–based
power in the 0 to 3.125, 3.125 to 6.25, 6.25 to 12.5, and 12.5 to
25 Hz frequency bands yielded a 0.97 value of the area under the
curve in a receiver–operating characteristic analysis and were
selected as the best discriminating features for seizure occurrence
detection. In another study, a non–patient-specific system for
pediatric patients was designed using stationary wavelet trans-
form with 1.91 to 4.16, 3.84 to 8.28, 7.69 to 16.56, and 15.41 to
33.09 Hz frequency bands.39

We found that for all the 29 seizure recordings, the profile of
wavelet energy correlated with spectral energy in 1 to 3, 3 to 6, 6
to 12, 12 to 25, 25 to 50, 50 to 100, and 100 to 200 Hz bands. In
a previous study, we observed that the spectral energy in 1 to 3, 3
to 6, 6 to 12, and 12 to 25 Hz increased at the electrical onset of
seizure.51 Hence, we combined the lower frequency bands, and
the entire signal was divided into 1 to 25, 25 to 100, and 100 to
200 Hz bands for the measurement of spectral energy. The
selection of these frequency bands made the analysis and
comparisons simple and efficient due to the resulting reduced
feature set, yielding better distinguishability of normal and
seizure patterns. The spectral entropy in the 3 to 12 Hz band
used for seizure electrical onset detection was not analyzed in
previous studies with scalp EEG recordings. The spectral entropy
in the 1 to 200 Hz frequency band has not shown large changes at
the electrical onset of seizures. The largest decrease in entropy
was obtained in the 3 to 12 Hz frequency band, and therefore,
this was chosen to measure the spectral entropy.

We acknowledge the following limitations of our study.
Among our 29 seizure recordings, we could identify the electrical
onset in 26 seizures by the classifiers. Among the rest, for two
seizures, the clinical onset was detected by all the five classifiers
and one seizure was identified by none of the classifiers. Because
the algorithm was trained with 29 EEG samples recorded in
a routine clinical environment with the presence of movement
and myogenic artifacts, the classifiers produced relatively low
specificity. Among the 29 seizures, 4 seizures (P4_s1, P13_s1,
P19_s1, and P20_s2) were identified with low sensitivity. In all

TABLE 6. Average Performance of Classifiers on Cohort Patients
Data

Classifier, Parameters LDA NB DT SVM KNN

Sensitivity (%) 64 60 80 78 76
Specificity (%) 86 91 79 84 84
Accuracy (%) 75 75 79 81 80
Error rate (%) 25 25 21 19 20

DT, decision tree; KNN, k-nearest neighbor; LDA, linear discriminant algorithm;
NB, Naive Bayes; SVM, support vector machine.
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the four seizures, the spectral entropy showed significant
variations at the electrical onset of seizure. The significant
changes in the profile of signal energy were observed at the
clinical onset of P13_s1 and P20_s2 seizures. The seizures
P4_s1, P13_s1, and P19_s1 showed no significant variations in
the spectral energy in 1 to 25 Hz bands. Because of the lack of
significant variations in Elowband and signal energy measures
during the seizure activity, the detection of these four seizures
resulted in more false normal. Two seizures P15_s1 and P21_s1
were identified with low specificity. Having a good profile of
Elowband and signal energy measures, the decrease in the spectral
entropy values of normal EEG leads to the misclassification of
normal as seizure condition. In particular, the spectral entropy
pattern of the normal EEG of P15_s1 overlapped with the seizure
region, the seizure detection was resulted in false alarm.
However, we admit that the performance of classification was
poor in the above-stated scenarios, which emphasizes the need
for further research focused to address these issues.

Among the five classifiers, the SVM was found most
suitable for the design of an automated system for clinical study.
Also, we observed that the performance of the system mainly
depended on three factors: (1) normalization scheme, (2) feature
extraction, and (3) machine learning algorithm. If the above three
parameters are properly selected, the design of a patient-
independent system is feasible, and it can be used in a clinical
environment. An automated seizure detection system would be
helpful for timing ictal SPECT studies as well as for warning
patients about upcoming clinical seizures. Such an automated
seizure detection system would assist neurologists in visual
analysis of long-term EEG recordings and considerably reduce
the time spend for reviewing the data.

CONCLUSIONS
We investigated the usability of time and frequency

measures to improve the performance of a patient-independent
system for detection of the electrical onset of seizures in patients
with TLE. We selected signal energy, spectral energy in the 1 to
25 Hz band, and spectral entropy in the 3 to 12 Hz band as useful
features and trained five classifiers using them. An SVM-based
system distinguished normal and seizure patterns with sensitivity
and specificity of 80% and 86%, respectively. If the system is
trained with data from a larger number of patients, the resulting
patient-independent system might be of value in the presurgical
evaluation of patients with drug-resistant TLE.
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