Improved Bitwidth-Aware Variable Packing

V. KRISHNA NANDIVADA, IIT Madras
RAJKISHORE BARIK, Intel Labs

Bitwidth-aware register allocation has caught the attention of researchers aiming to effectively reduce
the number of variables spilled into memory. For general-purpose processors, this improves the execution
time performance and reduces runtime memory requirements (which in turn helps in the compilation of
programs targeted to systems with constrained memory). Additionally, bitwidth-aware register allocation
has been effective in reducing power consumption in embedded processors. One of the key components
of bitwidth-aware register allocation is the variable packing algorithm that packs multiple narrow-width
variables into one physical register. Tallam and Gupta [2003] have proved that optimal variable packing is
an NP-complete problem for arbitrary-width variables and have proposed an approximate solution.

In this article, we analyze the complexity of the variable packing problem and present three enhancements
that improve the overall packing of variables. In particular, the improvements we describe are: (a) Width
Static Single Assignment (W-SSA) form representation that splits the live range of a variable into several
fixed-width live ranges (W-SSA variables); (b) POTR Representation - use of powers-of-two representation for
bitwidth information for W-SSA variables. Our empirical results have shown that the associated bit wastage
resulting from the overapproximation of the widths of variables to the nearest next power of two is a small
fraction compared to the total number of bits in use (*13%). The main advantage of this representation
is that it leads to optimal variable packing in polynomial time; (¢) Combined Packing and Coalescing -
we discuss the importance of coalescing (combining variables whose live ranges do not interfere) in the
context of variable packing and present an iterative algorithm to perform coalescing and packing of W-SSA
variables represented in POTR. Our experimental results show up to 76.00% decrease in the number of
variables compared to the number of variables in the input program in Single Static Assignment (SSA) form.
This reduction in the number of variables led to a significant reduction in dynamic spilling, packing, and
unpacking instructions.

Categories and Subject Descriptors: D.3.4 [Programming Languages]|: Processors—Optimization;
Compilers

General Terms: Algorithms, Experimentation, Performance
Additional Key Words and Phrases: Variable packing, combined packing and coalescing

ACM Reference Format:

Nandivada, V. K. and Barik, R. 2013. Improved bitwidth-aware variable packing. ACM Trans. Architec. Code
Optim. 10, 3, Article 16 (September 2013), 22 pages.

DOI: http://dx.doi.org/10.1145/2509420.2509427

1. INTRODUCTION

Applications from the embedded architecture domain (network, multimedia, and
speech processing) extensively use narrow-width data via packing and unpacking.

This work is partially supported by the New Faculty Seed Grant, funded by IIT Madras CSE/11-
12/567/NFSC/NANV.

Authors’ addresses: V. K. Nandivada (corresponding author), Department of Computer Science and Engi-
neering, IIT Madras, India; email: nvk@cse.iitm.ac.in; R. Barik, Intel Labs, Santa Clara, CA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2013 ACM 1544-3566/2013/09- ART16 $15.00

DOI: http://dx.doi.org/10.1145/2509420.2509427

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:2 V. K. Nandivada and R. Barik

A bitwidth-aware register allocation algorithm can potentially reduce the number of
spilled variables by packing multiple of these narrow-width data items into a sin-
gle physical register. The bitwidth-aware register allocator proposed by Tallam and
Gupta [2003] consists of computing bitwidth information for variables at various pro-
gram points using bit-section analysis and then packing narrower-width variables. This
is followed by a traditional graph coloring register allocation. Tallam and Gupta show
that optimal packing of variables is an NP-complete problem for arbitrary widths of
variables (the problem can be seen as a variant of bin-packing problem) and present an
approximate solution. In this article, we present new schemes to improve the bitwidth-
aware variable packing and use the packing algorithm by Tallam and Gupta [2003] as
a baseline for comparison.

One important fact in variable packing is that the live range of a variable may refer
to different number of bits (we refer this as useful bits) at different program points.
Note that, even though a variable is defined at only one place, the number useful bits
might vary. Thus at every step of packing of variables, it is required to compute the
useful bits for the newly generated packed variable (variable created after packing is
done). The useful bits of the packed variable can be computed by either walking over
the IR instructions again (time consuming) or estimating the useful bits using safe
approximation. Tallam and Gupta [2003] computed Estimated Maximum Interference
Width (EMIW) that approximates the actual Maximum Interference Width (MIW) of
the packed variable for efficiency reasons. This step incurs bit wastage in favor of
efficiency. To reduce such bit wastage (without losing efficiency), we introduce a new
program representation called Width Static Single Assignment (W-SSA), which extends
the classical Static Single Assignment (SSA) form [Cytron et al. 1991]. A program in our
proposed W-SSA form guarantees that every variable is defined exactly once (similar to
classical SSA), and additionally the set of useful bits of the variable remain unchanged
throughout its lifetime. For instance, say a variable is defined only once, and has sixteen
useful bits until a program point L1 and two useful bits thereafter then we will create
two W-SSA variables: one of size sixteen bits (live until L.1), and another of size two
bits (live after L1). This gives a refined view of the bit usage, and helps reducing the
bit wastage during the variable packing phase. In this article, we show that besides
reducing the associated bit wastage, W-SSA form also aids in efficient packing and
coalescing of variables.

Efficient representation of bitwidth information is an important requirement for dif-
ferent bitwidth-aware analysis including bitwidth-aware register allocation. Tallam
and Gupta have used leading and trailing bit representation (LTR) for bitwidth infor-
mation, wherein the width of a variable is represented by the start and end positions
of the useful bits. We extend this further, and use the Powers-of-Two Representation
(PoTR) for bitwidth information, wherein the sizes of the variables are always restricted
to powers of two only. This requires overapproximation of the sizes to the nearest next
power of two (for example, three variables that require 5, 7, and 8 bits are all assigned
8 bits each). Such a scheme can result in wastage of bits. Our experimental results
show that the resulting wastage from such a scheme is a small fraction (around 13%)
of the total number of bits required. The main advantage of PoTR is that it trivially
leads to polynomial-time optimal packing of variables in bitwidth-aware register allo-
cation [Coffman et al. 1987]. Note that, due to the incurred bit wastage, the resulting
packing may not be truly optimal.

As can be easily seen, W-SSA form ensures uniform variable sizes, which makes for a
simpler packing algorithm. However, W-SSA comes at a cost of creating more variables;
while our packing algorithm does pack many variables, it still leaves some opportu-
nities arising out of packing of noninterfering variables. We show that coalescing is
an important aspect of variable packing, and propose a combined phase of variable

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:3

@ (16,16) wa L1 (16,16) L4
16,16
= . & o = -
) 2 s o . 2
main() { SIS @ | = 5 7 |2
=) = ey
© G | 2 N L
e O
(16,16) (16,16)
wl = C1 & Oxffff; w2 w3 1.2 L3
w2 = C2 & Oxffff;
i (16,16) (16,16) (16.16

w3 = C3 & Oxffff;
wh = C4 & Oxffff; (b)
L1 = ((wl * K1) >> 16);
L2 = ((w2 * K2) >> 16);
L3 = ((w3 * K3) >> 16);
L4 = ((wa * K4) >> 16);

print L1 + L2 + L3 + L4;

(a)

(32,32)
(c)

Fig. 1. (a) An example bitwidth-sensitive program (taken from the bilint benchmark of the BITWISE
benchmark suite; (b) its interference graph. C1, C2...,and K1, K2... are constants and do not contribute
to the nodes of the interference graph; (c¢) the resulting interference graph after applying the packing
algorithm of Tallam and Gupta [2003].

coalescing and variable packing. We would like to recap the terms packing and coalesc-
ing of variables. Packing refers to combining two or more interfering variables so that
the combined width is less than the width of a physical register [Tallam and Gupta
2003]. Coalescing refers to combining two or more noninterfering variables [Chaitin
1982]. Both packing and coalescing can be used to reduce register pressure! (and thus,
improve the colorability of the interference graph) in a program. To illustrate the sig-
nificance of coalescing on the packing process, we present a motivating example from
the BITWISE benchmark suite.

Figure 1(a) shows a snippet from bilint benchmark (slightly modified to reduce com-
plexity) from the BITWISE benchmark suite [Stephenson et al. 2000] and the inter-
ference graph annotated with the edge-weights [Tallam and Gupta 2003] is shown in
Figure 1(b). An edge (n1, ng) has an associated edge-weight of (x1, x2), if the variable n;
has at most x; number of useful bits while interfering with ny, and ny has at most x
number of useful bits while interfering with n;. In this particular interference graph,
every variable has 16 useful bits each.

In this interference graph shown in Figure 1(b), the variable packing algorithm of
Tallam and Gupta would pack at most two pairs of variables: Their technique packs
two variables (merges two connected nodes in the graph and then updates the edge-
weights of the affected edges), only if the resulting edge-weights are valid. An edge-
weight (x1, x2) is considered valid if none of x; and xy is larger than the word size; for
the sake of illustration, in this article we take the word size to be 32. Say we start
by packing w1 and w2, L3 and L4, and w3 and L2. We can further follow up by packing
wiw2 and L1, w4 and L3L4. The final interference graph is shown in Figure 1(c). Further

IThe number of colors needed to color an interference graph of a program is called the register pressure
[Muchnick 1997] for the program. Register pressure at any program point p is the number of live variables
at p.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:4 V. K. Nandivada and R. Barik

Input Bitwidth Bitwidth Packing I
: : t T fi Global Regist:
T’—>rogram Computation ' Variable Packing : nseF ransformed zlla egister
Information Informatio move 1nstr. Progr am ocation

Fig. 2. Block diagram of the Tallam-Gupta bitwidth-aware register allocator.

packing of variables is not possible, as the resulting edge-weights would not remain
valid (brief details about the Tallam-Gupta algorithm can be found in Section 2). This
interference graph would require three registers. Let us now compare this result with
the combined phase of variable coalescing and packing presented in this article: Our
approach would first coalesce w1 and L1 into wiL1, w2 and L2 into w2L2, w3 and L3 into
w3L3, and w4 and L4 into w4L4. Next, we pack wiL1l and w2L2 into a 32-bit variable, and
w3L3 and w4L4 into another. We then invoke a traditional register allocator algorithm
which would use only two registers during the register allocation phase.

This example demonstrates the importance of coalescing on variable packing.

The main contributions of this article include the following.

—We give an algorithm to transform a program in SSA form to W-SSA form.

—We provide the use of the powers-of-two representation for bitwidth information
of W-SSA variables, and using the optimal algorithm of Coffman et al. [1987] for
efficient packing, while incurring a modest bit wastage.

—We describe the problem of combined variable packing and coalescing. We identify it
to be an NP-complete problem (reduces trivially to variable coalescing) and present
a heuristic for combined variable packing and coalescing that further enhances the
packing of variables.

—We give performance results to study the impact of variable packing and coalescing
using BITWISE benchmark [Stephenson et al. 2000] suite. Our experimental results
show decreases in the number of variables of up to 76.00% when compared to the
original number of variables in the SSA form. This reduction in the number of
variables led to a significant reduction in dynamic spilling, packing, and unpacking
instructions (up to 100% reduction compared to that arising from the approach of
Tallam and Gupta [2003]).

The article is organized as follows. In Section 2, we first present an overview of the
Tallam and Gupta bitwidth-aware register allocator. In Section 3, we describe pro-
gram representation using W-SSA form, POTR representation, and an optimal variable
packing algorithm that takes advantage of our representations. Section 4 presents
our heuristic-based algorithm for the combined phase of variable packing and coalesc-
ing. We present our experimental results in Section 5. We discuss the related work in
Section 6 and conclude in Section 7.

2. OVERVIEW OF THE TALLAM AND GUPTA REGISTER ALLOCATOR

In this section, we introduce the bitwidth-aware global register allocation algorithm
presented by Tallam and Gupta [2003]. The overall block diagram and the algorithm
for bitwidth-aware register allocation by Tallam and Gupta are given in Figure 2 and
Figure 3 respectively. The key components of the algorithm are as follows.

—Determining widths of variables: (step 1) First, bitwidth of a variable is represented
using the leading and trailing dead bits. Remaining middle bits are considered live
and are not explicitly expressed. We term this representation as LTR width repre-
sentation. Second, the authors propose a forward followed by a backward dataflow
analysis to determine actual width of a variable at every program point. Both the
dataflow analysis algorithms operate on a lattice over leading and trailing dead bit

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:5

1 Determine width of variables at various program points;

2 Build the Interference graph;

3 Associate labels to the edges of the interference graph based on the maximum
interference width of two variables;

4 PriorityList = Construct a prioritized list of all the variables;

5 while ~PriorityList.empty() do

6 n = PriorityList.removeT op();

7 foreach node that n interferes, say n’ do

8 if n and n’ can be packed together into a single physical register then

9 L L Merge n and n’ to a single node in the interference graph ;

10 Rename each packing variable and in the process introduce intra-register moves;
11 Rebuild the interference graph if needed;
12 Perform graph coloring based global register allocation;

Fig. 3. Bit-aware global register allocation.

pairs. Note that LTR ignores the fact that some of the bits in the middle live bit
section may be dead.

—Variable packing: (steps 2-9) This is an iterative algorithm that at each step packs a
pair of interfering variables into a single packing variable so that at no point their col-
lective width is greater than the available number of bits in a physical register (given
by the Maximum Interference Width (MIW) of the variables). Packing is performed
on the interference graph whose edges are annotated with LTR width information.
As nodes in the interference graph are packed, the LTR information for the packed
variables are computed on-the-fly using Estimated Maximum Interference Graph
(EMIW) for efficiency reasons. The packing algorithm tries to answer the following
key question.

Key question. Given a set of variables and a constant &, does there exist a packing
that reduces the number of variables to % such that the width of no packing variable
is greater than the size of physical register?

This problem is shown to be NP-complete (by reducing it to a bin-packing problem),
and the authors present a heuristic to prioritize the variables (and construct the
PriorityList) to determine the order of packing.

—Intra-variable moves: (step 10-11) After packing is done, intra-variable move in-
structions are added to the IR for packing and extracting bits. This may require
rebuilding the interference graph for the register allocation pass.

—Register allocation (step 12): A graph-coloring-based register allocator is invoked to
perform allocation, coalescing, and assignment.

In this article, we present several enhancements to the variable packing phase and
reuse the rest of the components of the traditional bitwidth-aware global register
allocation algorithm.

3. IMPROVEMENTS IN VARIABLE PACKING

In this section, we propose two enhancements to variable packing. First, we describe
a new Static Single Assignment (SSA)-based program representation that splits the
live ranges of SSA variables into smaller fixed-width W-SSA variables based on their
widths at various program points. The smaller live ranges of the fixed-width W-SSA
variables create more opportunities for the packing algorithm. Second, we propose

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:6 V. K. Nandivada and R. Barik

Li:v=2%_1; Li: v =2%2—-1;
Ls: print v; Lo : print vy;
Vo = \IJ(’UL 32, O, 15)
L,: x =v & 0xFFFF, L,: =z =y & OxFFFF;
(a) (b)

Fig. 4. A program and its corresponding W-SSA form.

Powers-of-Two Representation (POTR) of width information for W-SSA variables. This
leads to optimal packing at the cost of modest bit wastage.

3.1. Width-SSA (W-SSA) Form

A key property of a program represented in SSA form is that each variable is defined
only once (and thus has a fixed value throughout its lifetime). This enables many
powerful analyses such as partial redundancy elimination, sparse conditional constant
propagation, and so on. Similar to the guarantee provided in an SSA program with
respect to the value of a variable, it is desirable to have a constant actual width per
variable throughout its lifetime. None of the current program representations that we
are aware of gives such a guarantee.

Bitwidth-sensitive programs access different bit sections of a variable at different
program points, and thus induce different sets of useful bits at various program points.
We use this notion of useful bits to define the actual width of a variable.

Definition 3.1. Actual width is the set of contiguous bits of a variable that are
actually required (useful) for its use or definition at a program point.?

We present an intermediate program representation called Width-SSA (W-SSA in
short) which guarantees that each variable present in the program (called a W-SSA
variable) has only one definition and has the same unchanged actual width. Figure 4
shows an SSA program fragment and its corresponding W-SSA translation. The code
fragment in Figure 4(a) is in SSA form. Variable v requires 32 bits at L; and Ly. How-
ever, after Ls the program uses only the lower 16 bits of v. That is, the actual width of
v is not constant in this program (in SSA form). Figure 4(b) shows an equivalent pro-
gram in W-SSA form. The original variable v has been split into two W-SSA variables
v1 (which requires 32 bits) and ve (which requires 16 bits). The narrow width of v after
the print statement is captured using a select function W that takes four arguments:
(1) the source variable name; (2) the declared size of the source variable; (3) starting bit
position; (4) the ending bit position. The function ¥ returns the required selection. The
actual width of v; and vy are fixed throughout the program. That is, the actual width
of vy is 32 bits and the actual width of vy is 16 bits® (the lower 16 bits of variable v).
Before we present the algorithm for W-SSA translation, we introduce some notations.
We use the set Vars to denote the set of SSA variables in the program and Nodes
to denote the set of nodes (statements) in the program. Note that, we do not treat
the SSA ¢ nodes in any special way compared to the other nodes. We use a map
Use : Nodes — P(Vars); for any node n, Use(n) returns the set of variables used at n.
Similarly, we use another map Def : Nodes — P(Vars); for any node n, Def(n) returns

2We use width to refer to the starting and ending bits of the bit section of a variable as opposed to size which
represents the number of bits in the width representation. Note that the actual width of variables at various
program points can be computed using existing static bit-section analysis algorithms [Tallam and Gupta
2003; Stephenson et al. 2000; Barik and Sarkar 2006].

31t can be seen that the statement L, in Figure 4(b) can now be copy-coalesced by the coalescing pass of
register allocation with a copy instruction x = vs.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:7

function Rename-vars()
begin
wssaVars={};
foreach n € Nodes,v € Use(n) UDef(n) do
replace the variable v at node n, with v;, where i is fresh;
L add v; to wssaVars;

o UL A W N

7 end

o]

function Build-W-dominators()
9 begin
10 WDom(ng, v2) = {(n1,v1)|
ny € Nodes A vy € wssaVars A vy € Use,(ng) UDefy,(n2) A vy € Usey(ng)A
ny € Dom(ng) A R(v1,n1) C R(va, no)A
(—3ns € Nodes, v3 € wssaVars : (ny,v1) € WDom(ns, v3) A (ns,vs) € WDom(na, v2)) };
11 end

12 function Insert-W-nodes()

13 begin

14 foreach ns € Nodes do

15 if (n1,v1) € Whom(ng,v2) then

16 Let R(v1,n1) = (U1, uly);

17 Let R(ve,n2) = (lla, uls);

18 insert v1 = W(vg, uly — lly + 1,111, uly) after no;

19 end

20 function Eliminate-useless-vars()

21 begin

22 foreach n, € Nodes do

23 if (n2) € Dom(n;) then

24 Say two W-SSA variables v; and v; (with a common root variable) are used
in ny and ng respectively;

25 if R(vj,n1) € R(v;,n2) then

26 Replace every occurrence of v; with v;;

27 Eliminate the ¥ node that defines v;;

28 end

Fig. 5. Transforming a program to W-SSA form.

the (singleton) set of variables defined at n in case of assignment statements, and an
empty set otherwise. We also use the dominator map Dom : Nodes — P(Nodes); for any
node n, Dom(n) returns the set of nodes dominated by n.

In Figure 5, we present an algorithm to transform a given input program in SSA
form to W-SSA form. The input SSA program is derived from an IR in three address
code. The W-SSA translation algorithm consists of three phases.

(A) Rename-vars: This phase creates W-SSA variables by identifying each definition
and use of SSA variables, and computes the set wssaVars. New W-SSA variables are
created by breaking the live range of an SSA variable with varying actual widths. That
is, the new live ranges of the W-SSA variables corresponding to an SSA variable and the
union of the live ranges of the W-SSA variables matches the live range of the original
SSA variable. In Figure 5, lines 3-5 replace each occurrence of an SSA variable v, with
a new name (variable) v;; v is called the root variable of v;. We use different literals u,
v, w to denote different SSA variables. We use the subscripted variables vy, ve, ..., v; to

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:8 V. K. Nandivada and R. Barik

denote the W-SSA variables of v. We identify each def or use of a variable as a unique
W-SSA variable.*

(B) Build-W-dominators: To represent the w-dominator (abbreviated for width-
dominator) information, we define the map WDom : (Nodes x wssaVars) — P(Nodes x
wssaVars). For example, (n;, v1) € WDom(ng, ve) indicates that W-SSA variable vy at node
ny is width-dominated by W-SSA variable ve at node ng. We say (n1, v1) € WDom(ng, vg) if
ve can be used to extract the useful bits of vy, ng strictly dominates 1, and there exists
no other (ng, vs) such that (ns, v3) € WDom(n, v1) and (ng, ve) € WDom(ng, vs). A trivial yet
correct approach to build WDom information could have been to treat the definition of
the root SSA variable v as the w-dominator of all the W-SSA variables. This leads to
longer live ranges for the W-SSA variables. We avoid this by identifying the closest
w-dominator. Note that, the WDom map ensures that each W-SSA variable has at most
one w-dominator and the W-SSA variables defined at any node have no w-dominators.

To build w-dominators, we use an utility map R : (wssaVars x Nodes) — (Int x Int).
For any variable v; that is either defined or used at node n, %i(v;, n) returns the lower
and upper bit indices of the actual width of the variable v; at node n.> The actual size
of v; at node n with R(v;, n) = (L, ul) is ul — Il + 1. Given two range pairs r; = /Iy, uly)
and re = (llg, uly), we say that ry C rq iff (lls < 1) A (ul1 < ulg). Similar to the Use and
Def maps, we define Use,, and Def,, maps to return the set of used and defined W-SSA
variables, respectively.

In Figure 5, lines 7-11 compute WDom information. For the example program shown
in Figure 4, WDom(Lz, vl) = {(Ln, vg)}.

(C) Insert-¥-nodes: To extract the relevant bits for a variable v; that is used at node
n1, we insert a W node after no, where (n9, v2) w-dominates (1, v1).5 Note that we do
not insert ¥ nodes at the Iterated Dominance Frontiers (IDF) [Muchnick 1997] unlike
the insertion of ¢ nodes in SSA. This is done to avoid bit wastage that might result
from carrying the extra bits from the IDF until the last use program point.

(D) Eliminate-useless-vars: The preceding presented steps may lead to creation of
W-SSA variables that may have their live ranges and the actual widths completely
contained within another. We invoke a cleanup optimization phase to replace all such
variables with smaller range and width with the larger ones.

3.1.1. Complexity. The functions Rename-vars and Insert-w-nodes have complexity lin-
ear in the number of nodes. In the case of Build-W-dominators, though the function
could iterate over all the variables at each node, in reality, it needs to do so for only
those variables that are used at that program point. For a program in 3-address code,
this will always be a constant. Knowledge of this key point makes the complexity of
the algorithm quadratic in the number of nodes (O(n?)). The complexity of bit-section
analysis (required for computing %) and dominators computation is O(n) [Tallam and
Gupta 2003; Alstrup et al. 1996]. Hence, the worst-case time complexity of the overall
algorithm in Figure 5 is O(n?).

3.1.2. Code Generation. Similar to the code generation for SSA form, code generation
for programs in W-SSA form would need to translate away the ¥ nodes. A typical (un-
optimized) translation of a W operation is given using a sequence of bitwise operations.

4This information can easily be refined using a global value numbering prepass. We leave this as future
work.

5Since the input program is in SSA form, no node will both define and use the same variable. Also, since the
input SSA program is derived from a program in three-address code, it will not have a case where a node
has multiple uses of a variable with different actual sizes.

81f the source vy and destination vy both refer to the same set of bits of variable v, the select operator W
behaves like a copy operation. All these redundant copy instructions can be optimized away by a postpass of
copy propagation after our algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:9

3500 T T T T T T

3000 | —

2500 | 4

2000 4

totalVars

1500 4

1000 4

| ﬂ% J_H_HI |
O 1 1 1 1 —_—1 ’Tl_‘
5 10 15 20 25

30 35

Variable sizes

Fig. 6. Distribution of actual widths of variables in BITWISE benchmark suite.

ry=v1Ks—ul—1

vzz‘lf(vl,s,ll,ul) - vy = v >>ul+ll+1

Here > and « represent the shift-right and shift-left operators respectively.

3.1.3. Correctness. We present an informal correctness argument. For the W-SSA
transformation presented in Figure 5 to be correct, the following two points must
hold.

—The W-SSA transformations preserve SSA form: Intuition: Each W-SSA variable has
exactly one w-dominator and thus is defined only once.

—W-SSA transformation does not alter the semantics of the program: Intuition: We
do not introduce any new live ranges. We only subdivide existing live ranges into
contiguous live ranges. Further, the union of the live ranges of the W-SSA variables
matches the live range of the root SSA variable.

3.2. Optimal Variable Packing Algorithm with PoTR

Tallam and Gupta have proved the NP-completeness nature of the variable packing
algorithm. This is true where the actual width of a variable can have any value in
the range 0 to the statically defined size of the variable. If we restrict the actual
width of variables to the next-powers-of-two, then packing can be achieved optimally.
In this section, we first present an empirical study of the bitwidth information in
BITWISE benchmark set to demonstrate the modest bit wastage due to powers-of-two
representation (POTR) for the actual widths of W-SSA variables. Further, we discuss
an optimal variable packing algorithm using the POTR representation.

3.2.1. Bitwidth Representation. Figure 6 depicts the distribution of the actual sizes of
variables in BITWISE benchmark suite [Stephenson et al. 2000] using a bit-section
analysis described in Tallam and Gupta [2003]. BITWISE benchmark suite represents

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:10 V. K. Nandivada and R. Barik

1 function OptimalPacking(V)
2 begin
3 Queue Q = Sort V in the decreasing order of the sizes of the W-SSA variables;
4 Out = empty set;
5 v’ = create a new packing variable;
6 used = 0; Avail(v’) = maxSize;
7 while (@).size() # 0 do
8 v; = Q.remove();
9 packSetMap.add((v;, (v', used, used + Size(v;) — 1))); // v; is packed inside
/U/
10 used = used + Size(v;);
11 Avail(v') -= Size(v;);
// Assert(Avail(v’) >0)
12 if Awvail (v') == 0 then
13 Out.add(v');
14 v’ = create a new packing variable;
15 used = 0; Avail(v") = maxSize;
16 if Avail (v') # Size(v') then Out.add (v');
17 return Out;
18 end

Fig. 7. Optimal variable packing algorithm for W-SSA variables in PoTR.

a set of kernels from applications in the embedded systems domain. We calculate the
total number of variables having different actual widths (¢otalV ars) that are live at any
program point across all the benchmark programs. We have plotted totalVars against
all possible subword variable sizes (1 bit — 31 bits, for 32-bit integers). One observation
we make is that the distribution of actual sizes are clustered around numbers which
are powers-of-two. This interesting observation is leveraged to represent the actual
widths such that the actual size of each variable is a power-of-two irrespective of
the statically defined size of the variable; we call it the powers-of-two representation
(PoTR). Such a representation could result in the wastage of bits as each nonpowers-of-
two-sized variable will be padded with extra bits to expand the size to the next number
that is a power-of-two. Such a wastage could be significant. However, for the aforesaid
benchmarks, we calculated the resulting bit wastage (computed as a percentage of
extra bits required over the total number of bits) and found it to be around 13%. This
modest bit wastage is tolerable since POTR representation can help answer the key
question presented in Section 2 in polynomial time (as shown in the reminder of this
section) provided the size of the physical register is a power-of-two, which is the case
in practice.

3.2.2. Packing Algorithm. Our optimal variable packing algorithm is based on the op-
timal bin-packing algorithm of Coffman et al. [1987]. Figure 7 presents the optimal
variable packing algorithm. It takes a set V of W-SSA variables in PoTR and out-
puts a set Out containing the packing variables (the new packed variables). We as-
sume that the map Size : Vars — Int returns the size of the W-SSA variable, and
Avail : Vars — Int returns the number of available bits in the packing variable.
The algorithm starts with a list of W-SSA variables sorted in the decreasing order’

TIrrespective of the order (increasing or decreasing) in which the W-SSA variables are sorted in line 3, the
algorithm would still lead to optimal packing.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:11

Input Program| Bitwidth Bitwidth Rename Build Insert
in SSA form | Computation Variables W-Dominators ¥ nodes
Information
Program in Packing Eliminate Transformed Global Register
W-SSA T Optimal Packing || Insert U los :
orr Informatio move instr. nodes Program Allocation

Fig. 8. Block diagram of the improved bitwidth-aware register allocator.

of their sizes and greedily packs them into the current packing variable. The set
packMapSet C wssaVars X (wssaVars x N x N) is used to maintain the packing informa-
tion; (a, (b, 1, j)) € packMapSet indicates that the input W-SSA variable a is packed in
the packing variable b from the bit positions i to j. The set Out is updated every time
a packing variable gets full or when we break out of the while loop. The complexity of
the algorithm is bound by the complexity of sorting (O(nlogn)).

3.2.3. Optimality of Packing Algorithm. Despite being greedy in nature, the algorithm pre-
sented in Figure 7 is optimal; the optimality result is derived from the optimality
result of the bin-packing problem where the bin and the objects have powers-of-two
sizes [Coffman et al. 1987].

Our packing result is optimal modulo the bit wastage resulting from PoTR repre-
sentation of actual widths. Additionally, the optimal variable packing algorithm only
solves the bin-packing problem without taking into consideration any possible con-
straints (interferences) between variables (see Irani and Leung [1996]).

3.3. Modifications to Bitwidth-Aware Register Allocation

Figure 8 shows the new block diagram for the bitwidth-aware register allocator as pro-
posed in this section. The blocks with double lines are our contributions over Tallam
and Gupta. Given bitwidth information from any bit-section analysis, we first trans-
late the program into W-SSA form and round the actual widths of W-SSA variables
to the next-powers-of-two. Subsequently, the variable packing algorithm takes as in-
put the program in W-SSA form and generates the new packing variables. The packing
variables and the W-SSA variables are eliminated in the ¥ elimination phase using
additional intra-variable move instructions. In the end, we invoke the global register
allocator (as done by Tallam and Gupta [2003]).

4. IMPROVING THE VARIABLE PACKING PRECISION BY COALESCING

Coalescing of variables was introduced by Chaitin [1982] and has been studied exten-
sively in the context of register allocation. Coalescing of variables gets rid of some of
the avoidable move instructions in the generated code. There exist several variants of
coalescing: aggressive [Chaitin 1982], conservative [Briggs et al. 1994], optimistic [Park
and Moon 2004], iterative [George and Appel 1996]. In the context of bitwidth-aware
register allocation, as discussed in Section 1, the example program shown in Figure 1(a)
demonstrates the significance of coalescing for better packing and in turn improved reg-
ister allocation. In this section, we present a combined phase of variable packing and
coalescing (cPAC). We first formulate the decision version of the cPAC problem and
follow it up with a heuristic-based solution for the same.

Problem. Given an interference graph G = (V, E) and two integers k; and ky, does there
exist a variable packing that can pack variables of V in k; number of 32-bit variables, such
that at most &, noninterfering variables are not coalesced?

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:12 V. K. Nandivada and R. Barik

function SafelyAggressiveCoalesce(V)
begin
foreach v; € V do C(v;) = {root variable of v;};// Initialization
Say the max size of any variable be k = 2;
foreach i =0;i <r;i=1i+1do
| BucketCoalesce(i); PackBucket (i);

BucketCoalesce(V,r); CrossBucketCoalesce(V,0,r — 1); OptimalPacking(V);
end

function BucketCoalesce(V,i)// Coalesce in bucket .

begin

Worklist w = SelectList(V,i); // all the 2° sized variables from V
12 CoalesceWorkList(w);

13 end

14 function CoalesceWorkList(V,w)

15 begin

16 while ~w.empty() do

17 v; = w.removeT'op() ; // Removes one element

18 if Ju; € wA (ui,v;) € Interf then

// Coalesce u;, v;.

19 w.remove(u;); V.remove(v;); V.remove(u;);

20 x = create a new var; w.add(x); V.add(zx);

21 C(x) = C(vs) U C(us); UpdateInterf(v;, x); UpdateInterf(u;, z);

© X OOk WN -

o
= o

22 end

23 function PackBucket(V,4)// Pack variables of size 2

24 begin

25 Worklist w = SelectList(V,i);

26 while —w.empty() do

27 v; = w.removeT'op(); // Removes one element.

28 if Ju; € w A C(v;) NC(u;) == {} then

29 Assert(v;, u;) € Interf;

30 w.remove(u;);

31 x = create a new var of size 2'7! ; V.add(z);

32 C(x) = C(v;) UC(u;) ; UpdateInterf(v;,x); UpdateIntert(u;,x);

33 end

34 function CrossBucketCoalesce(V,m,n)

35 begin

36 Worklist w = emptyList;

37 foreach i = m;i < n;i+ + do w.add(SelectList(V,1));
38 CoalesceWorkList(w);

39 end

40 function UpdateInterf(v;,x)

41 begin

42 foreach (vi,u;) € Interf do

43 | Interf = Interf — {(vi,u;), (ui,vi)}; Intert = Intert U {(z,us), (ui, x)};

44 end

Fig. 9. Combined packing and coalescing algorithm.

As a special case to the preceding problem statement, if the actual width of every
variable is 32 bits, the problem trivially reduces to the graph coloring problem [Garey
and Johnson 1979], which is NP-complete. Figure 9 presents a heuristic-based solution
to the combined problem of coalescing and packing; it iteratively performs coalescing

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:13

and follows it up with packing. Coalescing is performed aggressively like Barik and
Sarkar [2006].

The function SafelyAggressiveCoalesce is the entry point of our algorithm. It takes
as input a set V of W-SSA variables with POTR representation of actual widths. The
function first initializes a “contains” map C; C(v;) returns the set of SSA root variables
corresponding to all the W-SSA variables contained in v;. Note that, because of packing
and coalescing, a single packing variable may contain multiple W-SSA variables. For
each possible bucket (denoted by the set of W-SSA variables having the same actual
width), we iteratively coalesce all possible variables aggressively (BucketCoalesce) and
then pack pairs of these coalesced variables into the next width bucket (PackBucket).
Considering the complexity of coalescing algorithm [Bouchez et al. 2007], we avoid
presenting any particular order among the variables ready for coalescing. In our im-
plementation, the “SelectList” function returns a list of variables seen in the syntactic
order of the program. At the end of the loop, BucketCoalesce is invoked to coalesce the
variables of actual width 2" that takes advantage of the noninterference among vari-
ables in the current bucket. At this point in the algorithm, there is a possibility that
in each bucket zero or more W-SSA variables do not get packed and carried to another
bucket (see the description of PackBucket). To coalesce and pack these variables (across
buckets), we invoke the function CrossBucketCoalesce followed by OptimalPacking
algorithm (Figure 7).

BucketCoalesce: In each bucket, we try to aggressively coalesce pairs of variables
that do not interfere. We use a function SelectList : wssaVars x Int — P(wssaVars);
SelectList (Vi) returns a set (represented as a worklist) of variables from V, with
actual width 2'. The set Interf contains the set of all interfering pairs of variables.
For each pair of noninterfering variables (v;, ©;), we replace the pair with a coalesced
variable that: (a) interferes with all the variables that v; and u; interfere with, and
(b) contain all the variables that v; and u; contain. For the coalesced variable, line 21
updates the C map and the interference information (using the function UpdateInterf).

PackBucket: In this function, we try to pack pairs of variables of actual width 2’ into
a variable of actual width 2/*1. Note that, since we have already performed aggressive
coalescing for the current bucket, every chosen pair of variables interfere. Hence, the
assertion of line 29 in the code listing holds. We pack two variables only if their “con-
tained” W-SSA variables do not share any common root variables. The reason is that, if
two W-SSA variables v; and ve, generated from a root variable v are packed into a sin-
gle packing variable then we would be wasting more bits. After packing is completed,
line 32 updates C map and the Interf set (using the function UpdatelInterf).

4.1. Complexity

Each invocation of BucketCoalesce takes O(]V|?) time, where V is the set of W-SSA
variables in the program. Note that Interf can be represented as a two-dimensional
array and then the insertion, search, and delete operations all can be done in constant
time. It may also be noted that function UpdateInterf takes O(|V|) time. Function
PackBucket takes O(|V|?) time. Since r is a constant in practice, the worst-case time
complexity of our algorithm is O(|V|?).

4.2. Example

We now consider the example shown in Figure 1(b) and apply the algorithm presented
in Figure 9. The transformation sequence, for one bucket (size 16) is shown in Figure 10.
Note that unlike in Figure 1(b), we avoid showing the edge-weights (which is required
for the approach of Tallam and Gupta [2003]) and instead show the size of the variables
as an annotation on each node. In the fifth invocation of BucketCoalesce function (for
i = 4), we coalesce w1 and L1 into wiL1, w2 and L2 into w2L2, w3 and L3 into w3L3, and w4

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:14 V. K. Nandivada and R. Barik

; wi L1 .4 W4L4
@ (16) (16) (16) v(vlléL)l (16)
Coalesce > @:>
L3
w2 L2 2L2
(16) w3 (16) @ %16) @

w3L3
\ (16)) / {16

Fig. 10. Combined phase of coalescing and packing in action.

Input Program| ~ Bitwidth Bitwidth Rename Build Insert
in SSA form | Computation ' Variables W-Dominators ¥ nodes
Informatio
Combined packin Packing Insert Eliminate Transformed Global R?gister
and coalescing Informatios move instr. U nodes Program Allocation

Fig. 11. Block diagram of the new bitwidth-aware register allocator using the combined packing and
coalescing algorithm.

Program in

W-SSA form

I

and L4 into w4L4. Next we invoke the PackBucket function and pack wiL1 and w2L2 into a
32-bit variable wiL1w2L2, and w3L3 and w4L4 into another 32-bit variable w3L3w4L4. This
interference graph will require two physical registers during the register allocation
pass.

4.3. Overall Bitwidth-Aware Register Allocation

Figure 11 depicts the final block diagram for the bitwidth-aware register allocator using
the algorithm presented in this section. It is similar to the one presented in Section 3,
except that the optimal packing algorithm has been replaced by a combined phase of
coalescing and packing.

4.4. Safety in cPAC

While coalescing can lead to better packing of variables, arbitrary coalescing may
produce a large number of packing variables after packing. We first present a safety
criteria and argue that our combined coalescing and packing algorithm meets the safety
criteria.

Definition 4.1. Safety criteria: A combined coalescing and packing algorithm (vCP)
is safe with respect to a packing algorithm (vP) if for every input program P: n; < ng,
where n; is the number of packing variables generated by vCP for P, and ng is that
generated by vP for P.

THEOREM 4.2. The SafelyAggressiveCoalesce algorithm is safe with respect to the
OptimalPacking algorithm shown in Figure 7.

Proor. (Sketch)
For an input program P, the number of packing variables that are produced after
OptimalPacking is directly related to the sum of the total number of bits (V) of the
variables present in V. This results in [X(V;)/ M| number of packing variables, where
M is the maximum possible width of a packing variable and V; is the set of variables
for a given size s.

For the same program P, we invoke SafelyAggressiveCoalesce(Vy). Let us assume
that the set of variables considered by the OptimalPacking (invoked in line 7 of Figure 9)

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:15

is given by V.. It can be easily seen that (V) > £(V,). That is, any invocation of the
coalescing phase would never increase the total number of bits, because any successful
invocation of the coalescing function (predicate in line 18 succeeds) would decrease
it, and an unsuccessful coalescing operation would leave it unchanged. Similarly, the
PackBucket function has no impact on the total number of bits. Thus, [X(V,)/M] >
[X(V,)/M7], and hence, SafelyAggressiveCoalesce would not result in more number
of packing variables than OptimalPacking when invoked on the same input program.
Hence the proof. O

4.5. Discussion

Note that the safety criteria do not take into account the optimality of our cPAC algo-
rithm in terms of the total number of coalesced variables and their actual widths. This
is done deliberately to keep the issues of optimality and safety separate. We ensure
that the absence of optimality does not lead to any amount of degradation in packing
for the following phase.

Another point related to register allocation is that the packing phases of cPAC algo-
rithm invoked via PackBucket do not affect the register pressure at any program point
(only interfering variables of equal actual width are packed). However, the coalescing
phases (invoked via BucketCoalesce, and CrossBucketCoalesce) and the global packing
phase OptimalPacking may increase the register pressure. This can be easily overcome
by modifying the coalescing and global packing algorithms with the help of a predicate
that conservatively checks if the coalescing/packing under consideration increases the
register pressure of the program and performs coalescing and packing only in cases
where the register pressure is not increased. We use a two simple heuristics (that do
not adversely affect the complexity of the algorithm) to address this issue.

—We only coalesce and pack nonsimple nodes. A node is simple if its degree is less than
the total number of available physical registers. This way, we do not pack or coalesce
variables which are guaranteed to get a register.

—We modify the CoalesceWorkList function, such that we coalesce variables with high-
est dynamic total cost first. We define dynamic total cost as the combined dynamic
cost of storing variables to memory, loading variables from memory, and packing and
unpacking of packed variables.

We use these heuristics in our empirical evaluation to establish the effectiveness in
our introduced phases.

5. EXPERIMENTAL RESULTS

We now report on the results obtained from our prototype implementation of the op-
timal packing described in Section 3 and the combined packing and coalescing phase
described in Section 4. The goal of this section is twofold: (a) to evaluate the POTR and
W-SSA representation; (b) to empirically establish the impact of coalescing on packing.
The benchmarks were all taken from the BITWISE benchmark set [Stephenson et al.
2000]. All implementations were carried out in GCC 4.1 framework targeted to x86
platform. We have tested our analysis at -O2 level of optimization of gcc. In our im-
plementation, we avoid rounding the widths and just use a greedy packing on a sorted
list of variables. Note that this strategy will never do worse than the case where the
widths are rounded off, and in some cases may do better. The changes to the (basic)
algorithms in Figure 7 and Figure 9 are trivial and we only present differences from
the basic versions.

—In Figure 7, the “Assert” after line 10 is eliminated.
—In Figure 7, line 11 is replaced with
“if Avail (v') < 0 then”

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:16 V. K. Nandivada and R. Barik

TG Our algorithms. Sec 3, Sec 4 Overall impr

benchmark | # # % # #vars % [ftvars % % %
orig | vars | less | W-SSA | after less | after less less less

SSA | after | over | vars opt over CcPC over | over | over

vars | PKG | orig OPK | W-SSA | +OPK | W-SSA | orig | TG

adpcm 26 19 26.9 59 34 42.4 12 79.7 | 53.8 | 36.8
bilint 12 11 8.3 17 10 41.2 3 82.4 | 75.0 | T2.7
bubblesort 20 18 10.0 30 20 33.3 8 73.3 60.0 | 55.6
convolve 8 8 0.0 15 10 33.3 4 73.3 50.0 | 50.0
edge_detect | 104 | 103 1.0 130 110 15.4 26 80.0 75.0 | 74.8
histogram 29 28 34 44 29 34.1 8 81.8 724 | 714
jacobi 36 32 11.1 60 50 16.7 11 81.7 | 694 | 65.6
levdurb 37 37 0.0 57 45 21.1 13 77.2 64.9 | 64.9
life 47 47 0.0 68 49 27.9 12 82.4 | 745 | 745
median 33 33 0.0 47 39 17.0 13 72.3 60.6 | 60.6
motiontest 12 12 0.0 16 13 18.8 9 43.8 25.0 | 25.0
mpegcorr 30 29 3.3 44 33 25.0 10 77.3 66.7 | 65.5
newlife 62 61 1.6 87 71 18.4 13 85.1 79.0 | 787
sha 610 | 610 0.0 618 616 0.3 30 95.1 95.1 | 95.1
softfloat 581 534 8.1 878 758 13.7 243 72.3 58.2 | 54.5

Fig. 12. Comparison of our algorithms presented in Section 3 and Section 4 vs. variable packing algorithm
developed by Tallam and Gupta (TG) for optimized code (using -O2).

—In Figure 9, line 3 is replaced with
“Say the max size of any variable be £ < 27; // for the smallest r.”

Figure 12 compares the performance of packing and coalescing algorithms described in
this article against the packing algorithm described in Tallam and Gupta [2003].8 The
bitwidth information for all the variables across all program points is computed using
the static analysis described in Tallam and Gupta [2003] and is provided as an input
to all the algorithms. We have abbreviated the Tallam and Gupta “packing phase” with
PKG, “optimal packing phase” with OPK, and the “combined packing and coalescing
phase” with CPC.

For our packing and coalescing algorithms, we present the input programs in W-SSA
form. The number of W-SSA variables are shown in column 5 of Figure 12. Since
multiple W-SSA variables are created for varying sizes of an SSA variable, the number
of W-SSA variables generated (column 5) is either equal to or more than the number
of original SSA variables (column 2). On average the number of W-SSA variables were
found to be around 40% more than the number of SSA variables.

Comparing the number of packing variables obtained by using Tallam and Gupta
[2003] (column 3) and the packing algorithm described in Section 3 (column 6), it can
be seen that the performance of our packing algorithm is comparable. However, Tallam
and Gupta is consistently performing better. Further investigations revealed another
interesting issue in our packing algorithm: in edge _detect benchmark we found that
one pseudo-variable had initial size of 16 bits, and subsequent size of 32. This re-
sulted in the creation of two W-SSA variables and our algorithm ended up using two
packing variables, whereas the Tallam Gupta approach uses a single 32-bit variable
across all program points. This reinforces our original motivation for combined coa-
lescing and packing algorithm to enhance bitwidth-aware register allocation algorithm
performance.

The coalescing and packing algorithm described in Section 4 significantly improves
the number of (W-SSA) packing variables. In the best case, it improves up to 95.1%

8We have avoided the compile-time numbers as we did not see any visible deterioration in compile time.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:17

in column 10 of Figure 12 (for 1ife benchmark). The geometric average improvement
was found to be 62.99%. It can also be seen that our combined coalescing and packing
algorithm significantly outperforms the variable packing obtained by Tallam and Gupta
(up to 95.1%, geometric average 60.32%). We conclude from such an evaluation that
coalescing has significant impact on the performance of packing algorithm in bitwidth-
aware register allocation.

To establish the real benefit of packing, we define a metric dynamic total cost as
the total cost of the dynamic spill loads, spill stores, packing, and unpacking; the
execution frequencies are obtained by profiling the applications.® Now, we compare the
performance of our proposed algorithm by studying the impact of our algorithm and
that of Tallam and Gupta on dynamic total cost.

For each of the benchmarks discussed in Figure 12, we compare, in Figures 13
and 14, the impact on dynamic total cost in the presence of three packing algorithms!°:
(i) packing algorithm of Tallam and Gupta (TG - red line). Since we are comparing
Tallam and Gupta with our packing algorithm that includes aggressive coalescing, we
invoked a postpass of aggressive coalescing [Budimlic et al. 2002] and to be fair used
the lower!! of the following two dynamic total costs: Tallam-Gupta + aggressive coalesc-
ing, and stand-alone Tallam-Gupta; (ii) our combined phase of coalescing and packing
(cPAC - green line); (iii) our combined phase of coalescing and packing supported by the
heuristic discussed in Section 4.5 (cPACH - blue line). For varying number of available
registers (6, 8, 10, 12, 16, 18), we plotted the dynamic total cost for each of the three
methods. We can make the following observations.

—For four benchmarks TG performs better for fewer number of registers (adpcm and
bubblesort for six registers, life up to ten registers, and motiontest to eight registers).
For the first two of these benchmarks, cPAC and ¢cPACH catch up and outperform
TG in the presence of 8 or more registers. For the latter two benchmarks, cPAC and
cPACH catch up with TG for higher number of available registers. The reason behind
this is that our greedy heuristic mentioned in Section 4.5 does not currently take
into account the packing and unpacking overheads explicitly (it primarily focuses on
register pressure). Note that both cPAC and ¢cPACH lead to much better spill cost
compared to TG (and also the total number of coalesced and packed variables as
shown in column 8 of Figure 12) for these benchmarks at lower registers, but the
cost of packing and unpacking mitigates these spill cost benefits. This we believe can
be easily fixed by extending our current heuristic to coalesce while also controling
the packing and unpacking costs.

—For the convolve benchmark all the three algorithms incur in zero cost (and hence
all the three curves are superimposed on top of one another).

—For blint, cPAC and TG incur the same cost and thus are superimposed. In jacobi,
cPAC and cPACH are superimposed on each other as our greedy heuristic does not
find enough opportunities to improve the code.

—Overall both cPAC and ¢cPACH outperform TG for most of the observed points.

—cPACH performs better cPAC on nearly all of the benchmarks; this signifies the
relevance of our heuristic.

—It can be seen that for each benchmark, all the three curves flatten out for increasing
number of registers. The flattened portions correspond to the packing and unpacking

9For the benchmark “softfloat”, the base gcc compiler was giving a SEGFAULT while collecting the profile
information. We had to disable the profiling for one function (estimateDiv64To32) to include the results for
the benchmark; we instead used static frequencies for the loops in the function.

10T practice all the spills may not be equal and depending on the architecture the load and store costs may
differ.

1 Note: coalescing may increase the total dynamic cost under some circumstances.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:18 V. K. Nandivada and R. Barik

400000 35 -
"adpCm.tg" e—f— d s 4
350000 "adpcm.cPAC" =—=@=— “pilint.cPAC" —@—
"adpcm.cPACH" ==3¢=— 30)‘\ “"bilint.CPACH" =)=
300000
u \ o 25
]]
] 8
8 250000 3 \
o = 20
% 200000“K \\ % \
c <
3z \\‘\ 3 15
® 150000 =
g — - g \
100000 N \
20000 \ . o o o B
0 0 0 0) 0
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
2e+06 1
"bubblesort.tg" e "convolve.tq" e
1.8e+06 bt t.CPAC" =—@— - "convolve.cPAC" =—=&=—
“bubblesort.cPACH" === “convolve.CPACH" ===
1.6e+06
\ 0.5
= l4e+06 o
]]
8 8
M 1.2e+06 \\ o
€ 1let0s £
g \ 3 d L L L L L L]
© 800000 \ ©
© ©
e 600000)\ \ kel
400000 0.5
200000 \
0 ‘ C—. ——— B
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
180000 80000
"edge_detect.tq" =—f=— "histogram.tg" ==
160000@ "edge_detect.cPAC" =—@=— .. 700006 "histogram.cPAC" "
\ “edge_detect.cCPACH" =)= 5 € € i PAQDH P
140000)‘\\\"’\ 60000
® 120000 4
S \ ‘l\ & 50000
g 100000 \ \ \ g
© & 40000
€ 80000 &\\ N <
) G
T 60000 '\\' § 30000
] S
= \ =
40000 2 "~ 20000
20000 10000
0
1 i i i 0
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
450000 2000
4\ "jacobi.tg" m—fe— 4 "levdurb.tq" e
400000 ,"jacobi.cPAC" —@— “levdurb.cPAC" =—©—
VaCODI.CPACH == "levdurb.cPACH" ===
350000 1500
2 300000 2 \
S S
o o
£ 250000 £ 1000
e g Y
> 200000 > \
))
© ©
< 150000 2
e 8 500
100000
50000
T\'\. 0 e o x
[- i it : .} ‘ i I i i i i
6 8 10 1 b 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers

Fig. 13. Plot I: Comparison of dynamic total cost (= spill load cost + spill store cost + packing cost + unpack-
ing cost). Plots captions from left to right: adpcm, bilint, bubblesort, convolve, edge_detecteps, histogram,
jacobi, and levdurb. We assume the relative cost of a spill load or a store instruction is 4 compared to the cost
of pack/unpack instruction is 1; this is consistent with the costs assumed by the underlying gec framework
for different analyses and transformations.

cost which is incurred independent of the number of registers; the spill load/store
cost becomes zero with increasing number of registers.

—Owing to improved packing of variables we incur less spill cost and slightly higher
packing/unpacking cost.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing

16:19

250000 200000
ife.tg" e—j— q "median.tg" eje—
"life.CPAC" ==@= "median.cPAC" =@=—
“life.CPACH" —3¢— “median.cPACH" —3¢—
200000
4 150000
@ 7
A ;
o 150000 o
€ \\ E 100000 \
2 2
3 5
2 100000 3 \
= = 50000
50000
0 i] 0 i i T % o
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
350 4000
4 "motiontest.ty" e + "MPEegeor.ty" emjum
“motiontest.cPAC" —@— 3500 "MPegCorT.cPAC" =—=@=—
300 \ "motiontest.cPACH" —3¢— \ "mpegcorr.cPACH" =3¢—
3000
H 250 2 2500
: R NENGAN
v 200 v 2000
£ £ \ ‘\\
o 3 1500
5 150) \\
> > > 1000 \
e} e}
g 100 | 2 500 ~
50 0 \x 3 5 3%
\. 500
0 - L L L L]
1 1 1 1] 1000 1 1 1 1
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
200000 4e+06
800004\ "newlife.tq" eje— "sha.tg" emje—
1 "newlife.cPAC" —@— "sha.cPAC" —E—
\ "newlife.cCPACH" ==3¢=— 3'55+06< \ "sha.CPACH" ===
160000 \
3e+06
-\
g 1400004 o Ny,
8 8 25e+06 S~
S 120000 \\ \ o = \,‘\\€ —~— .
E 100000 E 2e+06
g \\ g \
= 0 = L15e+06
e} e}
& 60000 \ 8 . \Qi)
le+0f
40000 [
20000 L ¢ > > 500000
0 i i 0
6 8 10 12 14 16 18 6 8 10 12 14 16 18
Physical Registers Physical Registers
6000
"softfloat.tg" e—fe—
"softfloat.cPAC" —©—
5000 "softfloat.cPACH" ===
Py o o o o o vy
B 4000
3
=
5
S 3000
S
5
©
§ 2000
% o3 % o3 ¥
1000
0
6 8 10 12 14 16 18

Physical Registers

Fig. 14. Plot II: Comparison of dynamic total cost (= spill load cost + spill store cost + packing cost +
unpacking cost). Plots captions from left to right: levdurb, life, median, motiontest, mpegcorr, newlife, sha.

6. RELATED WORK
Traditional SSA form [Cytron et al. 1991] keeps track of definition and uses of
scalar variables. Several research activities have undergone in extending traditional
SSA form to represent various attributes (Concurrent-SSA [Lee et al. 1997], Array-
SSA [Knobe and Sarkar 1998]) in a particular domain. Our W-SSA form is another
such representation that splits original program live ranges into smaller ones which

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:20 V. K. Nandivada and R. Barik

have unique width throughout their lifetime. We have shown that such a representation
aids in efficient variable packing.

Recently, narrow-width values have caught the attention of researchers, and they
have explored both hardware- [Ergin et al. 2004; Lipasti et al. 2004; Kondo and
Nakamura 2005], and compiler-assisted [Tallam and Gupta 2003] techniques to pack
multiple values into a single physical register. In this article, we take inspiration from
the compiler-assisted techniques of Tallam and Gupta [2003] and present new efficient
measures to pack variables containing subword data in an efficient way.

Tallam and Gupta [2003] introduced the notion of bitwidth-aware register allocation
in the compilers. They provide a heuristic to pack narrow-width data that uses an
interference graph annotated with edge labels based on the maximal interference of
variables. Interfering variables are packed iteratively until no more packing can be
done. New edge labels are computed on-the-fly using heuristic estimates that obey
the intermediate value theorem [Tallam and Gupta 2003]. A new set of estimates are
proposed in Barik and Sarkar [2006] that improve the packing algorithm. Both Barik
and Sarkar [2006] and Tallam and Gupta [2003] pack variables without coalescing
them during packing, which our approach does.

Coffman et al. [1987] discuss the properties of powers-of-two in the bin-packing prob-
lem. Bar-Noy et al. [2004] discuss optimal solutions for windows scheduling problem
with powers-of-two windows. In this article, we apply a similar solution to variable
packing.

Coalescing is well-studied in the context of register allocation: conservative coalesc-
ing by Briggs et al. [1994], aggressive coalescing by Budimlic et al. [2002], optimistic
coalescing by Park and Moon [2004], and iterative coalescing by Appel and George
[2001]. Bouchez et al. [2007] present a good account of the complexity of different
variations of the coalescing problem. To our knowledge, coalescing in the presence of
narrow-width data has not been studied in the literature. Our article addresses this
issue in the presence of W-SSA form and powers-of-two representation and provides a
heuristic for a combined packing and coalescing phase.

7. CONCLUSION AND FUTURE WORK

In this article, we have presented improvements to the variable packing algorithm of
the bitwidth-aware register allocation algorithm proposed by Tallam and Gupta [2003].
We propose modifications to both bitwidth representation and program representation
via POTR and W-SSA, respectively, to realize the improvements. We show that variable
coalescing is an important ally of variable packing and present an iterative aggressive
coalescing-based packing algorithm. Our experimental results show decreases in the
number of variables of up to 76.00% when compared to the original number of variables
in the SSA form. Our approach led to a significant reduction in dynamic spilling, pack-
ing, and unpacking instructions. We get these improvements at the cost of transforming
the input program into W-SSA form and reverting it back. We are currently exploring
how other optimizations such as memory coalescing may be able to take advantage of
code in W-SSA form.

Rigorous performance evaluation of our generated optimized code on a cycle-accurate
simulator that admits efficient packing/unpacking instructions would be one of the
key challenges that we leave as future work. Another interesting future work is to
extend our variable packing algorithm to efficiently pack in registers with varying
sizes; this is important for architectures like Intel that allow efficient access of partial
registers : different parts of the EAX can be accessed as AX (lowermost 16 bits), AL
(lowermost 8 bits), or AH (bits 8-16). Another interesting future work is the possibility
of directly incorporating our algorithm inside the register allocation pass instead of

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

Improved Bitwidth-Aware Variable Packing 16:21

keeping them separate. Since both these components have a phase ordering issue
between them, such a combined approach might deliver better results.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their comments and suggestions on the past submissions
related to this article. In particular, the idea about the greedy approach to improve the actual packing
(described in the beginning of Section 5), and the basic intuition behind the Eliminate-useless-vars were
provided by the reviewers of ACM TACO.

REFERENCES

ALSTRUP, S., LAURIDSEN, P. W., AND THORUP, M. 1996. Dominators in linear time. DIKU Tech. rep. 35. University
of Copenhagen.

APPEL, A. W. AND GEORGE, L. 2001. Optimal spilling for cisc machines with few registers. In Proceedings of
the Conference on Programming Language Design and Implementation (SIGPLAN’01). 243-253.

Bar-Noy, A., LADNER, R. E., anD Tamir, T. 2004. Windows scheduling as a restricted version of bin packing. In
Proceedings of the 15" Annual ACM-SIAM Symposium on Discrete Algorithms (SODA04). 224-233.

BARIK, R. AND SARKAR, V. 2006. Enhanced bitwidth-aware register allocation. In Proceedings of the 15™ Inter-
national Conference on Compiler Construction (CC’06) held as part of the Joint European Conferences
on Theory and Practice of Software. 263-276.

Birwise BENCHMARKS. 2013. http://www.cag.lcs.mit.edu/bitwise/bitwise_benchmarks.htm

BoucHgz, F., DARTE, A., AND RastELLO, F. 2007. On the complexity of register coalescing. In Proceedings of the
International Symposium on Code Generation and Optimization. 102-114.

Bricas, P., Cooper, K. D., anp Torczon, L. 1994. Improvements to graph coloring register allocation. ACM
Trans. Program. Lang. Syst. 16, 3, 428-455.

Bupmiric, Z., Cooper, K. D., Harvey, T. J., Kennepy, K., OBERG, T. S., AND REEVES, S. W. 2002. Fast copy
coalescing and live-range identification. SIGPLAN Not. 37, 5, 25-32.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. SIGPLAN Not. 17, 6, 98-105.

CorrFMAN, JR., E. G., GarEy, M. R., AND JonnsoN, D. S. 1987. Bin packing with divisible item sizes. J. Complex.
3, 406-428.

CyTrON, R., FERRANTE, J., RosEN, B. K.,WEGcMaN, M. N., AND ZADECK, F. K. 1991. Efficiently computing static
single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4,
451-490.

Erain, O., BaLkan, D., GHosg, K., anD PonoMaREY, D. 2004. Register packing: Exploiting narrow-width operands
for reducing register file pressure. In Proceedings of the 37" Annual IEEE | ACM International Sympo-
sium on Microarchitecture. IEEE Computer Society, Washington, DC, 304-315.

Garey, M. R. anp Jounson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman.

GEORGE, L. AND APPEL, A. W. 1996. Iterated register coalescing. ACM Trans. Program. Lang. Syst. 18, 3,
300-324.

IraNT, S. AND LEUNG, V. 1996. Scheduling with conflicts, and applications to traffic signal control. In Proceedings
of the 7" Annual ACM-SIAM Symposium on Discrete Algorithms. 85-94.

KnNoBE, K. AND SARKAR, V. 1998. Array ssa form and its use in parallelization. In Proceedings of the Symposium
on Principles of Programming Languages. 107-120.

Konpo, M. AND NARAMURA, H. 2005. A small, fast and low-power register file by bit-partitioning. In Proceedings
of the 11" International Symposium on High-Performance Computer Architecture. IEEE Computer
Society, Washington, 40—49.

LEE, J., MiDxiFr, S. P., aAND Pabua, D. A. 1997. Concurrent static single assignment form and constant propa-
gation for explicitly parallel programs. In Proceedings of the 10** International Workshop on Languages
and Compilers for Parallel Computing (LCPC’97). 114-130.

Lipasti, M. H., MEstan, B. R., anp Gunapi, E. 2004. Physical register inlining. In Proceedings of the 31t
Annual International Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
325-335.

MucHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San Francisco,
CA.

PaRk, J. AND Moon, S.-M. 2004. Optimistic register coalescing. ACM Trans. Program. Lang. Syst. 26, 4,
735-765.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

16:22 V. K. Nandivada and R. Barik

STEPHENSON, M., BABB, J., AND AMARASINGHE, S. 2000. Bitwidth analysis with application to silicon compilation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00). 108-120.

TaLLAM, S. AND GUPTA, R. 2003. Bitwidth aware global register allocation. In Proceedings of the 30" Symposium
on Principles of Programming Languages. 85—96.

Received February 2013; accepted March 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 3, Article 16, Publication date: September 2013.

