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In this paper, we show how the phenomenon of intermittency observed in systems with turbulent

flow-sound interaction is related to the formation of homoclinic orbits in the phase space. Such

orbits that emerge via the intersection of the stable and unstable manifold of an equilibrium

configuration result from interactions that happen at multiple spatial/temporal scales associated

with turbulent convection and wave propagation. Through a quantification of the time spent by the

dynamics in the aperiodic states using recurrence plots, we show how the presence of homoclinic

orbits in the dynamics may be convincingly demonstrated, which is often not possible through a

visual inspection of the phase space of the attractor.VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821475]

The interaction of flow with sound can often lead to
unsteady pressure fluctuations that display intermittent
bursts, i.e., low amplitude, aperiodic oscillations embed-
ded amongst higher amplitude periodic oscillations in a
near-random manner. We show that these intermittent
states give rise to homoclinic orbits in the phase space.
These homoclinic orbits, which are often difficult to iden-
tify visually through phase space reconstruction, can be
discerned by quantifying the recurrence properties of the
system dynamics. We show that an exponential fall-off of
the time spent by the dynamics in the aperiodic states
provides an easy way of identifying homoclinic orbits in
the underlying phase space.

I. INTRODUCTION

The phenomenon of intermittency has received a lot of

attention in the description of deterministic dynamics arising

from pattern forming complex systems. Through a study

of simple dissipative dynamical systems, Pomeau and

Manneville presented three models of intermittency classi-

fied as type I-III1 to describe the routes of transition from a

stable periodic behaviour to chaos. Even more varieties of

intermittency were discovered later on such as chaos-chaos

intermittency2 (e.g., on-off intermittency3 and in-out inter-

mittency4), crisis-induced intermittency,5 type-X intermit-

tency,6 or type-V intermittency.7 There has also been a

number of experimental observations8,9 of intermittent

dynamics in the literature.

Here, we present another dynamical system where inter-

mittency is observed—that corresponding to the interaction

of sound with turbulent flow. We study two systems that dis-

play intermittent oscillations as a result of sound-flow interac-

tion, (i) a combustor with a bluff-body for flame stabilization,

(ii) a pipe-tone whistler. The combustion chamber had a

length of 700mm, and a square cross-section of 90� 90mm2

with a bluff-body of 47mm diameter for flame-stabilization.

Further design details may be found in Nair et al.10 The whis-

tler consists of a duct of length 600mm and diameter 50mm

terminated by a circular orifice of diameter 15mm and thick-

ness 5mm. Similar configurations are described in Karthik

et al.11,12

In the combustor, the acoustics of the confinement is

driven mainly by the heat released through combustion add-

ing energy into the turbulent flow and when there is a lock-in

between the hydrodynamic fluctuations and the acoustics,

large amplitude oscillations are established. In the whistler,

pipe tone oscillations are set up when the vortex shedding

frequencies at the duct exit match the natural acoustic fre-

quencies of oscillations inside the duct. Here also, there is a

lock-in between hydrodynamics and the acoustics of the

confinement.

Shown in Fig. 1 are the unsteady pressure measurements

made from the two systems whose dynamics is characterized

by turbulent flow-sound interaction. Recently, Kabiraj and

Sujith13 showed that intermittency is possible in simple ther-

moacoustic systems prior to lean blowout of the flame.

However, in their system, the intermittency was composed

of high-amplitude chaotic oscillations that emerged from a

quiet, laminar background. Here, we observe that the signals

display what is termed an intermittent bursting phenom-

enon—bursts of periodic oscillations that appear in a near-

random fashion amidst aperiodic irregular fluctuations. The

dynamics of such systems can be thought of as being com-

posed of two subsystems or attractors that operate on differ-

ent time scales; acoustics which is characterized by the local

speed of sound and hydrodynamics which is defined by the

local flow speed. The current study aims to establish that

such intermittent bursts arise naturally in systems composed

of two attractors through the formation of homoclinic orbits

in the phase space of the global system dynamics. It also

aims, through analyzing the recurrence properties of these

intermittent states, to provide a systematic way to inspect the
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presence of such homoclinic orbits from a measured time

signal.

II. INSPECTION OF HOMOCLINIC ORBITS

In order to understand the dynamical evolution of the

measured variable and define measures that quantify homo-

clinicity, a reconstruction of the phase space of evolution is

necessary. Since the amount of information available at the

hands of an experimental researcher is limited and often is

just the measurements of a single variable, techniques of

delay embedding need to be employed to reconstruct the

phase space, the procedure for which is outline below.

A. Phase space reconstruction

The dynamics of the system at different operating condi-

tions can be visualized by reconstructing the phase space of

evolution of the time signal acquired at those conditions.14

In such a reconstruction, also known as delay-embedding,

the measured time series is converted into a set of delay

vectors that have one-to-one correspondence with one of

the dynamic variables involved in the system dynamics.

That is, we construct the vectors piðdÞ ¼ fpðtiÞ; pðti þ sÞ;
pðti þ 2sÞ;…; pðti þ d � 1Þsg from the measured pressure

data pðtÞ such that these vectors in combination provide us

with maximum information on the dynamics of the system.

The elements of these vectors are the co-ordinates in the

d-dimensional phase space of evolution of the time signal.

To accomplish an appropriate reconstruction, we need to

estimate the optimum time delay (sopt) for embedding the

signal as well as the least embedding dimension (d0) of the

phase space composed of these delay vectors in which the

dynamics unfold.

The optimum delay sopt is estimated as that first mini-

mum of the average mutual information between the delay

vectors.15 The average mutual information of a time signal

pðtÞ is given by the expression

IðsÞ ¼
X

N

t¼1

PðpðtÞ; pðtþ sÞÞlog2
PðpðtÞ; pðtþ sÞÞ
PðpðtÞÞPðpðtþ sÞÞ

� �

;

where, PðEÞ represents the probability of occurrence of event
E: Since average mutual information is an indicator of the

amount of information shared by two data sets, the location

of the minimum would, therefore, generate a set of delay

vectors that would provide more information about the sys-

tem than any of them in isolation.

To obtain a suitable embedding dimension d0, we use

the technique developed by Cao.16 The method is an opti-

mized version of the False Nearest Neighbors method15

wherein one tracks the fraction of false neighbors in the

phase space as the embedding dimension is progressively

increased. A false neighbor in phase space changes its rela-

tive position with respect to its neighbouring points when the

embedding dimension is increased. Mathematically, we can

construct a measure aði; dÞ of the form

aði; dÞ ¼
jjpiðd þ 1Þ � pnði;dÞðd þ 1Þjj

jjpiðdÞ � pnði;dÞðdÞjj
;

where i ¼ 1; 2; :::; ðN � dsÞ and nði; dÞ is the index of the

nearest neighbour to the point pi. The dependency on the

index i is removed by averaging aði; dÞ for different values
of i as

EðdÞ ¼ 1

N � dsopt

X

n�dsopt

i¼1

aði; dÞ:

Here, EðdÞ is a function only of the dimension d and the opti-

mum time lag sopt. The variation of EðdÞ on increasing the

dimension from d to d þ 1 is determined by defining a mea-

sure E1ðdÞ as

E1ðdÞ ¼
Eðd þ 1Þ
EðdÞ :

FIG. 1. Intermittent signals arising from

sound-flow interaction. The time signals

correspond to (a) unsteady pressure

measurements made from a bluff-body

stabilized combustor (90 mm from the

backward-facing step) and (b) unsteady

pressure measurements made from a

pipe tone whistler (2mm downstream of

the orifice). The signals are composed

of aperiodic, low-amplitude fluctuations

interspersed amongst periodic, high am-

plitude fluctuations in a near random

fashion. Notice that two signals differ

by almost three orders of magnitude.
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If E1ðdÞ stops changing for values of d greater than d0 � 1,

then d0 is chosen as the least embedding dimension for the

time signal. Since the acquired time signal is limited, it is of-

ten difficult to distinguish a stochastic signal from a deter-

ministic signal merely by observing the variations in E1ðdÞ.
This is because although E1ðdÞ saturates beyond a value of d

for a deterministic signal, it is always increasing with d for

random signals. To clearly distinguish deterministic signals

from stochastic signals, an additional measure E2ðdÞ can be

defined as

E2ðdÞ ¼
E�ðd þ 1Þ
E�ðdÞ ;

where

E�ðdÞ ¼ 1

N � dsopt

X

N�dsopt

i¼1

jpðiþ dsoptÞ � pðnði; dÞ þ dsoptÞj:

Since future values are independent of past values for ran-

dom signals, E2ðdÞ is independent of d and equals 1 for all

values of d. For deterministic signals, since E2ðdÞ is depend-
ent on d, there must exist some values of d for which E2ðdÞ
is not equal to 1.

The average mutual information and the measures to

obtain optimum dimension of embedding of the two unsteady

pressure signals presented in Fig. 1 are shown in Fig. 2. The

signals were acquired at a sampling rate of 10 kHz for a dura-

tion of 3 s. The optimum delay of embedding was estimated

from the first minimum of the average mutual information of

the two signals as sopt ¼ 1:0ms and sopt ¼ 0:5ms, respec-

tively. The embedding dimension of the two signals showed

no significant variation after d ¼ 9 and hence the embedding

dimension was safely chosen to be d0 ¼ 10. In the calculation

of the embedding dimension, the last 5000 points (data for

0.5 s) of the signal were used. After reconstructing the phase

space, recurrence properties of the intermittent signals were

explored using recurrence plots.

B. Recurrence quantification

The temporal features of the dynamics can be better

understood by tracking the regularity of the trajectories using

recurrence plots.17 Recurrence is a fundamental property of

dynamical systems and recurrence plots allow one to visually

identify the times at which the trajectory of the system visits

roughly the same area in the phase space. Recurrence plots

are constructed by computing the pairwise distances between

points in the reconstructed phase space and estimating a bi-

nary recurrence matrix Rij in the following fashion:

Rij ¼ Hð�� k pi � pj kÞ; i; j ¼ 1; 2;…;N � d0sopt;

where H is the Heaviside step function and � is a threshold

or the upper limit of the distance between a pair of points in

the phase space to consider them as close or recurrent. The

indices represent the various time instances when the distan-

ces are computed. Recurrence plot is merely a plot of the

symmetric matrix Rij for various values of i and j (time

instants). The elements of Rij are just 1 s and 0 s which are

then marked as black and white. The black points correspond

to those time instants when the distance measured is less

than �. The time instants when the distance exceeds � are

marked as white.

The recurrence plots for a portion of the unsteady pres-

sure signals are plotted in Fig. 3. The black patches represent

the times at which the system lingers around the stable fixed

point (distances less than the threshold) and the white patches

represent the unstable oscillatory regimes (when the pairwise

distances exceed �). The recurrence plots were computed for

0.6 s of data, so that the intermittent bursts from low-to-high

amplitudes and back are captured in the time interval.

The recurrence plots display a pattern with black squares

and rectangles inside a lightly shaded structure. This can be a

pattern characteristic of type-II or type-III intermittency.18

Type-II intermittency happens near a Hopf bifurcation

whereas type-III intermittency arises near a subcritical period

doubling bifurcation. The nature of intermittency in the signal

from the whistler was identified as type-III since the black

patches in the recurrence plot have a rounded upper right cor-

ner. Also, period-2 oscillations were always observed at the

onset of oscillations. The nature of intermittency could not be

discerned from the recurrence plot (as type-II or type-III) for

the signal from the combustor. However, we wish to point

out that period-2 oscillations were observed in portions of the

signal post the onset of periodic oscillations in the combustor.

This leads us to suspect that the intermittency observed in

combustors is also of type-III.

Although a close association between homoclinicity and

intermittency has been shown experimentally,19–21 identifi-

cation of homoclinic orbits from a measured time series has

proved a difficult task.

FIG. 2. Details of phase space reconstruction of the unsteady pressure sig-

nals from the combustor and the whistler during intermittency. The optimum

delay for embedding was estimated from the first minimum of average mu-

tual information I as (a) sopt ¼ 1:0 ms and (b) sopt ¼ 0:5 ms for the two sig-

nals, respectively. The values of the measures E1ðdÞ and E2ðdÞ for the two

signals are plotted in (c) and (d). The embedding dimension was chosen to

be d0 ¼ 10 for both the signals as there was no significant variation discerni-

ble past d ¼ 9.
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C. Homoclinic orbits

A homoclinic orbit is one in which the unstable mani-

fold of a hyperbolic equilibrium state of the system merges

with its own stable manifold. In Fig. 4, the evolution in phase

space of an intermittent burst is shown for the two signals.

For the signal from the combustor, such a homoclinic orbit is

visible in the reconstructed phase space that transitions the

system dynamics from low amplitude chaos to high ampli-

tude oscillations and back. The signal is seen to spiral out of

the center to the unstable orbit and then spirals back in

through the plane of oscillations. However, for the pressure

signal from the whistler, the homoclinic orbit, is not seen;

i.e., its existence cannot be inferred by a mere visual inspec-

tion of the phase space. Therefore, we propose a new tech-

nique to infer the presence of homoclinic orbits in the phase

space of the global attractor.

The circulation time of trajectories in phase space for

homoclinic orbits are dominated by their passage time near

the saddle fixed point. This time is highly sensitive to exter-

nal perturbations and the distribution of passage times for a

given initial distribution of points near the saddle point is

given by the expression22

PðTÞ ¼ 2kDðTÞe�D
2ðTÞ=

ffiffiffi

p
p

ð1� e�2kTÞ ;

where DðTÞ ¼ d
a
2

k

� �

ðe2kT � 1Þ
h i�1=2

, k is the unstable

eigenvalue of the saddle point, a is the noise level rms, and d

is the size of the neighbourhood influenced by noise. PðTÞ is
a skewed distribution with its peak value different from

the mean and has an exponential tail22 as T ! 1 (PðTÞ
� 2d

ffiffiffiffi

pa
p k

3
2e�kTÞ. This behaviour is independent of the details

FIG. 3. Recurrence plots for 0.6 s from the (a) combustor and the (b) whistler time signals during intermittency. The threshold value of the ball was taken to be

� ¼ 0:25D , where D is the size of the attractor (length of the largest vector in phase space). In these plots, we see black squares and rectangles inside a lightly

shaded structure. Intermittency in the whistler signal can easily be identified to be of type-III from the rounded shape of the upper right corners of rectangles of

black patches. The recurrence plot of the combustor signal shows patterns that could emerge from type-II or type-III intermittency. However, the presence of

period-2 oscillations in the signal post the transition to periodic oscillations suggests that the intermittency is of type-III.

FIG. 4. Phase portraits (in 3 d) of a part

of the (a) combustor and the (b) whis-

tler time signals during intermittency

are shown in (c) and (d), respectively.

The embedding dimension was chosen

to be d0 ¼ 10 for both the signals

with sopt ¼ 1:0 ms and sopt ¼ 0:5 ms,

respectively, for the two signals. The

evolution of burst oscillations in phase

space results in the aperiodic oscilla-

tions spiraling out into high amplitude

oscillations and then again spirals back

into the low amplitude aperiodic.

Whereas such a homoclinic orbit is

visible though barely in the phase plot

of the combustor pressure signal, it is

completely masked in the phase plot of

the pressure signal from the pipe-tone

whistler.
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of the initial distribution.23 It is known that the distribution

of the laminar phases (quiet, aperiodic regimes) for both

type-II and type-III intermittencies have an exponential

tail.18 Thus, the analysis shows that systems exhibiting type-

II or type-III intermittency are characterized by homoclinic

orbits in the underlying phase space.

The distribution of the passage time of the dynamics in

low amplitude regimes can be estimated from a recurrence

plot as the frequency distribution of the vertical lines (or hor-

izontal lines since the matrix is symmetric) in the recurrence

plot. Histograms of this vertical length frequency distribution

for the two signals were plotted in Fig. 5 to understand the

variation of the visitation frequency as a function of the trap-

ping time. The histogram reveals a skewed distribution with

its peak off the mean and has an exponentially decaying tail.

The presence of such an exponential tail is thus indicative

of homoclinic orbits in the system.24 The trajectory of such a

homoclinic orbit is repeatedly injected near the stable manifold

of a saddle node as a result of the perturbations in the turbulent

base flow. Hence, even for the case of the whistler signal

(Fig. 5(b)), the skewed distribution with an exponential fall-off

is clearly visible. The higher concentration at low passage

times is because the fluctuations become comparable to the

least count of the pressure transducer. Nevertheless, recurrence

quantification serves as an efficient tool for the inspection of

homoclinicity in the phase space of the system dynamics.

III. CONCLUDING REMARKS

Intermittent bursts characterized by periodic high ampli-

tude oscillations amidst irregular low amplitude chaotic fluc-

tuations are produced when a turbulent flow interacts with

the acoustics of a confinement. Recurrence plots provide a

convenient and quantitative descriptive tool to inspect and

identify the presence of a homoclinic orbits in the underlying

phase space by measuring the amount of time the system

lingers around the low amplitude fluctuations. A skewed dis-

tribution of passage times with an exponential tail is a dis-

tinctive signature of systems with a homoclinic orbit; i.e.,

the trajectory is repeatedly injected near the stable manifold

of a saddle in the presence of small perturbations. It seems

thus possible that large-scale vortices often observed at the

onset of periodic oscillations are intimately linked to the

presence of such homoclinicity in the underlying dynamics.
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