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Abstract: State of charge (SOC) estimation of a LiFePO4 battery exhibiting significant
hysteresis is considered. The dynamics of the battery is modeled as a linear system in conjunction
with a non-linear hysteresis block. The linear part is assumed to be of a second order equivalent
circuit model along with an open circuit voltage (OCV) source Voc. The circuit model is
descretised and the resulting parameters are modeled as a multivariate random walk with a
diagonal noise covariance matrix. These parameters are estimated using a Kalman filter. The
linear model is then validated using a hybrid pulse power characterisation (HPPC) current
profile. The major loop of the non-linear hysteresis relating Voc and SOC is experimentally
determined by charging and discharging the battery with low magnitude currents. Using
Chebyshev polynomials, a model is fit for the hysteresis curves. Constrained unscented Kalman
filter (CUKF) is used for estimating the minor loops of the hysteresis, and the SOC. The SOC
estimation is then validated from a full electrochemical model simulation of the battery using
COMSOL software.
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1. INTRODUCTION

A battery management system (BMS) consists of hardware
and software units that monitor and control the charging
and discharging of a rechargeable battery module. The
performance and health of a battery pack depends on
how closely the BMS can track the state of charge (SOC)
and the state of health (SOH) in real time. The SOC is
defined as the ratio of charge remaining in a battery to
its maximum rated capacity and SOH is a measure of the
maximum attainable capacity of the battery at any point
of its operational life. Since both SOC and SOH cannot
be measured directly, they are estimated from measurable
quantities like terminal voltage (Vt) and the current (I).
The focus of this paper is SOC estimation of a LiFePO4

battery exhibiting hysteresis.

A mathematical model of the battery is an integral part of
any BMS software. Battery models can be broadly cate-
gorised into two groups. (i) Electrochemical models (EM),
(Prada et al. (2012)), which consist of partial differential
equations (PDE) characterising the dynamics of chemical
reactions in the cell. (ii) Equivalent circuit models (ECM),
(Lim et al. (2016)), which are electric circuits with their
dynamics being equivalent to the battery dynamics.

EM can simulate the battery accurately but at the cost of
heavy computations thereby making it difficult to embed
in real-time applications.

In an ECM, the values of circuit elements are the parame-
ters of the model. Parameters are dynamically varying, can
be identified using recursive system identification methods.
The input-output data required for the identification is ob-
tained by passing a known current through the battery and
measuring the terminal voltage response Vt. In general,
lesser computation load, along with the ability to track
the parameters in real time, makes the ECM an attractive
choice for developing a BMS.

The simplest form of an ECM is a capacitor. Here the
SOC can be calculated by integrating the current pass-
ing through the battery (commonly referred as coulomb
counting). Though simple, the limitation of this method
is the accumulation of error due to uncertainty in initial
condition and loss during charging/discharging.

In this paper, the battery is modeled as a 2nd order ECM,
see Figure 1. Here, the RC blocks characterise different
dynamic phenomena occurring inside the battery. The
open circuit voltage Voc is taken as a sum of a time
varying voltage V0 and a voltage due to hysteresis Vhys.
The circuit model is first descretised. To accommodate
the time varying nature of the model parameters, they are
modeled as a random walk. By taking current I as input
and terminal voltage Vt as output, a Kalman filter is used
to estimate the parameters and Voc from the circuit model.
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Certain types of Lithium ion batteries show hystere-
sis behavior between SOC and Voc. In this paper, to
model the hysteresis, a small but constant current (charg-
ing/discharging) is applied across the battery. At a very
low magnitude of current, the terminal voltage Vt of the
battery is almost equal to the Voc and integrating the
current (coulomb counting) would approximately give the
SOC of the battery. The SOC and the Voc are plotted over
one full charging and discharging cycle to obtain the major
loop of the hysteresis. A polynomial is fit to the major loop,
using Chebyshev polynomials. Using the polynomial fit of
hysteresis major curves, a hysteresis model is developed.
A constrained unscented Kalman filter (CUKF) is used to
estimate the SOC from the hysteresis model.

The above mentioned SOC estimation paradigm is applied
to a commercially available LiFePO4 battery which is
known to show notable hysteresis. A known current profile
is applied across the battery and the terminal voltage Vt is
recorded. From the input current and output voltage data,
the Voc is estimated using the Kalman filter and the SOC is
estimated using the CUKF. To validate the SOC estimates
obtained, a full electrochemical model of the battery is
simulated using COMSOL for the same current profile.
The experimentally verified parameters of the battery used
for building the COMSOL model is available in Prada
et al. (2012). This validates the effectiveness and reliability
of the proposed method. SOC estimated by COMSOL is
assumed to be close to actual SOC and is compared with
the SOC estimated using the proposed algorithm. They
are found to be in close match.

This paper is organised as follows. In Section 2, the
circuit model for the Li-ion battery is discussed. Section
3 details the experimental setup. Section 4 contains the
entire algorithm proposed for SOC estimation. Section
5 provides an experimental validation for the proposed
algorithm. And finally, the paper concludes in Section 6.

2. MODELING OF LITHIUM ION BATTERY

As a trade off between minimal execution time and ac-
curacy of the estimation, an ECM with two RC blocks
is chosen to capture the linear dynamics of the battery,
see Fig. 1. This is a well known model and has been
used frequently in the past (Tang et al. (2011); Lim et al.
(2016)). Here, the first block R1C1 characterises the dif-
fusion of Li+ ions across the concentration gradient and
the second block R2C2 accounts for double layer effect
in the electrodes. The resistor R represents the effective
internal impedance of the cell. Vhys is the voltage due to
hysteresis and Vt is the terminal voltage across the battery.
I is the current passing through the battery, which is taken
as positive while discharging and negative while charging.

3. EXPERIMENTAL SETUP

A commercial Li-ion cell, ANR26650M1A from A123 sys-
tems is utilised for this study. The rated capacity of the cell
is 2300 mAh and the nominal voltage is 3V. The voltage
at fully discharged state is 2.8V and at fully charged state
is 3.6V. The cathode material is LiFePO4 and the anode
is made of graphite. Three of such cells are connected

Fig. 1. Second order ECM of a Li ion battery.

in parallel to form a battery with an overall capacity of
6900 mAh, which is used for the experiments. A battery
tester (Kikusui PFX2021, 20V, 10A) is used to procure
the terminal voltage (Vt) and current (I) as data for all
charging-discharging experiments. All measurements were
taken at room temperature.

4. ESTIMATION ALGORITHMS

There are two stages leading to SOC estimation. In the
first stage, Voc is estimated from Vt and I, and in the
second stage the SOC is estimated from the Voc.

4.1 Voc estimation

From the circuit model shown in Fig. 1, using Kirchhoff
law, the following relationship can be derived,

Vt(k) = Voc(k) + I(k)R+ V1(k) + V2(k) + e(k) (1)

where e(k) is the measurement noise. V1(k) and V2(k)
are the voltages across the RC blocks. I(k) is the current
through the battery and Voc(k) is the open circuit voltage.

Discretising the differential equation of the ECM leads to
the discrete state space model,[

V1(k)
V2(k)

]
= A

[
V1(k − 1)
V2(k − 1)

]
+BI(k − 1) (2)

Vt(k)− Voc(k) = C

[
V1(k)
V2(k)

]
+DI(k) (3)

where

A = diag(µ1, µ2), B = [ ρ1 ρ2 ]
T
, C = [ 1 1 ] , D = [R]

with,

µ1 = exp(−δt/(R1C1)), ρ1 = R1(1− exp(−δt/(R1C1)))

µ2 = exp(−δt/(R2C2)), ρ2 = R2(1− exp(−δt/(R2C2)))

where δt is the sampling time.

The details of this discretisation can be found in Tang
et al. (2011) and references therein. Using (2) and (3) in (1)
yields an auto regressive moving average (ARMA) model

Vt(k) = θ1Vt(k − 1) + θ2Vt(k − 2) + θ3I(k)+

θ4I(k − 1) + θ5I(k − 2) + θ6 + e(k) (4)

where

θ1 = µ1 + µ2 θ4 = ρ1 − ρ2 −R(µ1 + µ2)

θ2 = −µ1µ2 θ5 = µ1µ2R− ρ1µ2 − ρ2µ1

θ3 = R θ6 = (1− (µ1 + µ2) + µ1µ2)Voc. (5)
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through the battery and Voc(k) is the open circuit voltage.

Discretising the differential equation of the ECM leads to
the discrete state space model,[

V1(k)
V2(k)

]
= A

[
V1(k − 1)
V2(k − 1)

]
+BI(k − 1) (2)

Vt(k)− Voc(k) = C

[
V1(k)
V2(k)

]
+DI(k) (3)

where

A = diag(µ1, µ2), B = [ ρ1 ρ2 ]
T
, C = [ 1 1 ] , D = [R]

with,

µ1 = exp(−δt/(R1C1)), ρ1 = R1(1− exp(−δt/(R1C1)))

µ2 = exp(−δt/(R2C2)), ρ2 = R2(1− exp(−δt/(R2C2)))

where δt is the sampling time.

The details of this discretisation can be found in Tang
et al. (2011) and references therein. Using (2) and (3) in (1)
yields an auto regressive moving average (ARMA) model

Vt(k) = θ1Vt(k − 1) + θ2Vt(k − 2) + θ3I(k)+

θ4I(k − 1) + θ5I(k − 2) + θ6 + e(k) (4)

where

θ1 = µ1 + µ2 θ4 = ρ1 − ρ2 −R(µ1 + µ2)

θ2 = −µ1µ2 θ5 = µ1µ2R− ρ1µ2 − ρ2µ1

θ3 = R θ6 = (1− (µ1 + µ2) + µ1µ2)Voc. (5)
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Note, the open circuit voltage

Voc = θ6/(1− θ1 − θ2) (6)

can be computed using the estimates of θ1, θ2 and θ6.
Equation (4) can be written in the form

Vt(k) = φT (k)θ(k) + e(k), (7)

where

θ(k) = [ θ1(k) θ2(k) . . . θ6(k) ]
T

(8)

and

φ(k) = [Vt(k−1) Vt(k−2) I(k) I(k−1) I(k−2) 1]T . (9)

The parameters of a battery vary with time since the
impedance of the battery changes with SOC (Illig et al.
(2013)). To account this in (7) the parameter vector θ(k)
is taken to be time varying (slowly time varying).

Estimation of θ(k) from (7) is a standard problem in
system identification. If θ were a constant, then (7) can
be rewritten in state space form as,

θ(k + 1) = θ(k)

Vt(k) = φ(k)θT (k) + e(k). (10)

Applying the Kalman filter to this model would yield an

optimal state, θ̂(k + 1), which are the estimates of the
parameter θ(k). To track the time varying parameters, the
state equation in (10) is modified to a random walk model.

θ(k + 1) = θ(k) + v(k)

E(v(k)vT (k)) = L, (11)

where E(·) denotes the expected value and covariance
matrix

L =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λ6


 (12)

is diagonal and positive definite. λi, which are the diagonal
elements of L determine how fast the parameters change
with time. Smaller the value, slower the change. The λ′s
are taken as tuning parameters and chosen such that the
estimates of the output

V̂t(k) = φT (k)θ̂(k − 1) (13)

are brought reasonably close to the true output (measured
data Vt(k)).

The iteration steps of Kalman filter for the model (10) are

ˆθ(k) = θ̂(k − 1) +K(k)ε(k) (14)

ε(k) = Vt(k)− φT (k)θ̂(k − 1) (15)

K(k) = P (k − 1)φ(k)/[1 + φT (k)P (k − 1)φ(k)] (16)

P (k) = P (k − 1)− P (k − 1)φ(k)φT (k)P (k − 1)

[1 + φT (k)P (k − 1)φ(k)]
+ L.

(17)

For validating the Voc estimation, an HPPC test data
(Tang et al. (2011)) is used. HPPC is a current profile
having a discharging and a charging pulse with an interval
of zero current in between. Here, a number of periodic
HPPC pulses with a period of 140s is used. The width
of the charge and discharge pulses are 10s each and their
magnitude being 1.5Cb. The zero current interval between
the charge and the discharge pulses is 40s. The chosen
values of the λ’s are given in Table 1. The voltage response
Vt corresponding to the HPPC input is shown in Fig. 2.
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Fig. 2. Vt and the estimated Voc for the HPPC input.

The Voc, in (6) is obtained using the Kalman algorithm
(17) by taking HPPC current profile as input and Vt as
output, is also plotted.

Vt converges to Voc when the current flowing through
the battery is zero and the battery is allowed to rest
for sometime. Note, from the Fig. 2, Voc is converging
to Vt in the zero current intervals between discharging
and charging pulses. Thus, validating the estimation. The
ability of Voc to recover from a wrong initialisation can
also be observed at the initial intervals in Fig. 2.

4.2 SOC estimation

Hysteresis phenomenon in Lithium ion batteries: The
LiFePO4 battery is known to show hysteresis behavior
(Roscher and Sauer (2011)), leading to a one-to-many
mapping from SOC to Voc. In such a situation, a proper
hysteresis model is necessary for estimating the SOC from
the Voc.

The hysteresis effect of the battery is captured by carrying
out a charge - discharge cycle from 0% SOC (Vt = 2.8V)
to 100% SOC (Vt = 3.6V) and back to 0% SOC. A very
low value of current (Cb/20) is used to ensure that Voc

is approximately equal to Vt. Since a constant current is
applied, the SOC is assumed to be increasing at a constant
rate between 0 and 1, when the Vt varies from 2.8V
to 3.6V. Similarly, while discharging with same constant
current, the SOC decreases at a constant rate from 1 to
0 with Vt varying from 3.6V to 2.8V. This experiment
yields Voc-SOC curves which follow separate paths for
charging and discharging as shown in Fig. 3. These curves
together constitute the major loop of the hysteresis. For
modeling the hysteresis behavior, Chebyshev polynomials
of degree 14 are fit to the charging and discharging curves
plotted in Fig. 3. The fitted curves along with the actual
hysteresis data, are shown in the Fig. 3. The Chebyshev
polynomial fits for the charging and the discharging curves
are denoted by Pch(x) and Pdch(x) respectively. During
normal operations of a battery, the Voc can attain any
value within the boundaries of the hysteresis loop. This
value depends on its past value and the direction of the
current I. To capture this behavior, V k

oc (Voc at time
instant k) is written as in Roscher and Sauer (2011),

Table 1. The tuned forgetting factor values.

λ1 λ2 λ3 λ4 λ5 λ6

0.02 0.001 0.001 0.0001 0.0001 0.0001
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V k
oc(SOC,ψ) = ψP k

ch(SOC) + (1− ψ)P k
dch(SOC) (18)

where ψ ∈ [0, 1] is a weighing constant and SOC ∈ [0, 1].
Here, ψ = 1 and ψ = 0 are two special cases when the
Voc meets the upper and lower boundaries respectively.
When 0 < ψ < 1, the Voc can be anywhere within the loop
forming the minor curves of hysteresis as shown in Fig. 4.
Once the Voc is estimated at an instant k, estimation of
the corresponding values of SOC and ψ is posed as a non-
linear Kalman filtering problem. A constrained unscented
Kalman filter (CUKF) (Teixeira et al. (2010)), is used for
the SOC estimation.

State Space Model of Hysteresis: The SOCk and ψk

follow the state equations,

SOCk+1 = SOCk − η(Ikδt)/Cb (19)

ψk+1 = ψk − (Ikδt)/Chys (20)

respectively.

Here Cb is the capacity of the lithium ion cell, Ik is the
current at instant k and δt is the discrete time interval. η is
a constant known as coulombic efficiency, which accounts
for the loss during charging and discharging. η for charging
and discharging states are separately denoted as ηc and ηd,
where ηc ∈ [0, 1] and ηd > 1. For example, if ηc = 0.98 for
charging and ηd = 1.02 for discharging indicates 2% loss
during both charging and discharging.

The value of Voc in hysteresis minor branch is obtained
using (18). The transition of Voc between the hysteresis
major curves, see Fig. 4, occurs when the direction of
current changes. The direction of the transition depending
on sign of current Ik and the past value of Voc. Chys

represents the change in capacity during such a transition,
see Fig. 4. The value of Chys depends on the current value
of SOC and roughly varies from 0.1Cb − 0.3Cb. Since the
accurate value of Chys may vary as battery ages and is
difficult to map along all values of SOC, an average value
of 0.2Cb is used in state prediction equation . From (18),
(19) and (20), the state space model for hysteresis can be
written as

xk+1 =Axk +Buk + wk

yk =f(xk, uk) + vk (21)

where, xk is the state vector [SOCk ψk]
T , uk is the

current I(k), A is a 2 × 2 identity matrix, Matrix B
= [ δt/C δt/Chys ]T , output vector yk is Voc, and f(·) is
the non-linear function (18). wk and vk are process noise
and measurement noise respectively, which are assumed
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to be Gaussian random variable (GRV) of zero mean with
covariance matrices denoted by Q′ and R′, where,

Q′ = σ2
q

[
1 0
0 1

]
, R′ = σ2

r . (22)

Here, σq and σr are taken as tuning parameters. σq = 0.14
and σr = 0.07 were found to be giving the best results.
Since the Chebyshev polynomials are defined in [-1,1], SOC
is normalised within this interval.

Using CUKF the values of SOC and ψ are estimated from
the state space model (21).

4.3 UKF and the concept of sigma points

UKF is a nonlinear Kalman filter which has the ability
to avoid filtering errors generated by linearisation of a
nonlinear model. See (Julier and Uhlmann (1997)). In
UKF, a set of deterministic vectors- known as sigma
points, are generated from the current state vector. These
vectors are distributed around the mean state vector
in accordance with its variance. The sigma points are
propagated through the non-linear process model (21) and
the mean and variance of the transformed state vector
is recovered from these transformed sigma points. Using
this method, the true statistics of the transformed state
vector are determined. The sigma points are obtained
using a method called unscented transform (UT) which
is explained in section 4.3.1.

In CUKF, the sigma points are generated such that the
states are restricted within certain limits. This will make
the estimation bounded compared with a standard UKF.

Unscented Transform for CUKF: Assume, the state
vector xk is having a mean x̂k and covariance matrix
P xx
k . For a state vector of dimension n, minimum 2n + 1

sigma points are required to capture its statistics. Since
xk ∈ R2, in (21), 5 sigma points denoted by Xj,k, where

Xj,k ∈ R2, j = 0....2n and their weights γ, where γ �
[γ0...γ2n]1×2n+1 have to be generated. Sigma points and
their corresponding weights should satisfy the conditions

2n∑
j=0

γjXj,k = x̂k,

2n∑
j=0

γj = 1,

2n∑
j=0

γj [Xj,k − x̂k][Xj,k − x̂k]
T
= P xx

k ,
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V k
oc(SOC,ψ) = ψP k

ch(SOC) + (1− ψ)P k
dch(SOC) (18)

where ψ ∈ [0, 1] is a weighing constant and SOC ∈ [0, 1].
Here, ψ = 1 and ψ = 0 are two special cases when the
Voc meets the upper and lower boundaries respectively.
When 0 < ψ < 1, the Voc can be anywhere within the loop
forming the minor curves of hysteresis as shown in Fig. 4.
Once the Voc is estimated at an instant k, estimation of
the corresponding values of SOC and ψ is posed as a non-
linear Kalman filtering problem. A constrained unscented
Kalman filter (CUKF) (Teixeira et al. (2010)), is used for
the SOC estimation.

State Space Model of Hysteresis: The SOCk and ψk

follow the state equations,

SOCk+1 = SOCk − η(Ikδt)/Cb (19)

ψk+1 = ψk − (Ikδt)/Chys (20)

respectively.

Here Cb is the capacity of the lithium ion cell, Ik is the
current at instant k and δt is the discrete time interval. η is
a constant known as coulombic efficiency, which accounts
for the loss during charging and discharging. η for charging
and discharging states are separately denoted as ηc and ηd,
where ηc ∈ [0, 1] and ηd > 1. For example, if ηc = 0.98 for
charging and ηd = 1.02 for discharging indicates 2% loss
during both charging and discharging.

The value of Voc in hysteresis minor branch is obtained
using (18). The transition of Voc between the hysteresis
major curves, see Fig. 4, occurs when the direction of
current changes. The direction of the transition depending
on sign of current Ik and the past value of Voc. Chys

represents the change in capacity during such a transition,
see Fig. 4. The value of Chys depends on the current value
of SOC and roughly varies from 0.1Cb − 0.3Cb. Since the
accurate value of Chys may vary as battery ages and is
difficult to map along all values of SOC, an average value
of 0.2Cb is used in state prediction equation . From (18),
(19) and (20), the state space model for hysteresis can be
written as

xk+1 =Axk +Buk + wk

yk =f(xk, uk) + vk (21)

where, xk is the state vector [SOCk ψk]
T , uk is the

current I(k), A is a 2 × 2 identity matrix, Matrix B
= [ δt/C δt/Chys ]T , output vector yk is Voc, and f(·) is
the non-linear function (18). wk and vk are process noise
and measurement noise respectively, which are assumed
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to be Gaussian random variable (GRV) of zero mean with
covariance matrices denoted by Q′ and R′, where,

Q′ = σ2
q

[
1 0
0 1

]
, R′ = σ2

r . (22)

Here, σq and σr are taken as tuning parameters. σq = 0.14
and σr = 0.07 were found to be giving the best results.
Since the Chebyshev polynomials are defined in [-1,1], SOC
is normalised within this interval.

Using CUKF the values of SOC and ψ are estimated from
the state space model (21).

4.3 UKF and the concept of sigma points

UKF is a nonlinear Kalman filter which has the ability
to avoid filtering errors generated by linearisation of a
nonlinear model. See (Julier and Uhlmann (1997)). In
UKF, a set of deterministic vectors- known as sigma
points, are generated from the current state vector. These
vectors are distributed around the mean state vector
in accordance with its variance. The sigma points are
propagated through the non-linear process model (21) and
the mean and variance of the transformed state vector
is recovered from these transformed sigma points. Using
this method, the true statistics of the transformed state
vector are determined. The sigma points are obtained
using a method called unscented transform (UT) which
is explained in section 4.3.1.

In CUKF, the sigma points are generated such that the
states are restricted within certain limits. This will make
the estimation bounded compared with a standard UKF.

Unscented Transform for CUKF: Assume, the state
vector xk is having a mean x̂k and covariance matrix
P xx
k . For a state vector of dimension n, minimum 2n + 1

sigma points are required to capture its statistics. Since
xk ∈ R2, in (21), 5 sigma points denoted by Xj,k, where

Xj,k ∈ R2, j = 0....2n and their weights γ, where γ �
[γ0...γ2n]1×2n+1 have to be generated. Sigma points and
their corresponding weights should satisfy the conditions

2n∑
j=0

γjXj,k = x̂k,

2n∑
j=0

γj = 1,

2n∑
j=0

γj [Xj,k − x̂k][Xj,k − x̂k]
T
= P xx

k ,
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and γj ≥ 0, for all j = 0, 1, . . . , 2n. Since, SOC and ψ are
confined in the interval [0, 1], all sigma points have to be
restricted between the lower and upper limit: [0, 0]T and
[1, 1]T denoted by dk and ek respectively. So, a method
called interval constrained unscented transform (ICUT)
(Teixeira et al. (2010)) is used to generate the sigma points
which confirms to the inequality dk ≤ x̂k ≤ ek.

The sigma point matrix Xk consisting of the sigma point
vectors Xj,k, are generated by,

Xk = x̂k [ 1 1 . . . 1 ]
1×2n+1

+
[
0n×1 Mk(n×2n)

]
(23)

where,

colj(Mk) ={
min(colj(Θk))colj [(P

xx
k )

1
2 ], j = 1 . . . n

−min(colj(Θk))colj [(P
xx
k )

1
2 ], j = n+ 1 . . . 2n.

(24)

Here colj(·) is the jth column of a matrix and min(·)
represents the element having the minimum value in a
vector.

For i = 1 . . . n and j = 1 . . . 2n,

Θi,j,k =




√
n+ λ, Si,j,k = 0

min
(√

n+ λ,
(ei,k−x̂i,k)

Si,j,k

)
, Si,j,k > 0

min
(√

n+ λ,
(di,k−x̂i,k)

Si,j,k

)
Si,j,k < 0

(25)

and,

Sk =
[
(P xx

k )
1
2 − (P xx

k )
1
2

]
2×2n

. (26)

Here λ > −n, which needed to be tuned. λ decides the
spread of sigma points around the mean and λ = −0.42
was found to be giving the best result.

The weights γj,k can be calculated by,

γj,k =

{
bk, j = 0

ak min(colj(Θk)) + bk, j = 1 . . . 2n
(27)

where,

ak =
2λ− 1

(2(n+ λ)(
∑n

j=1 min(colj(Θk))− (2n+ 1)(
√
n+ λ))

(28)

bk =
1

2(n+ λ)
− ak

√
(n+ λ) (29)

The above procedure, which generates Xk and γk from
xk, P

xx
k , e, d, n, and λ is denoted by,

[γk, Xk] � βICUT (x̂k, P
xx
k , e, d, n, λ). (30)

CUKF algorithm

Step 1: Initialisation. The Kalman gain (Kk), process
covariance matrix (P xx

k ) and states xk = [Sk, ψk]
T are set

to their respective initial values. K0 is given an arbitrary
positive value. Approximate values for S0 and ψ0 can be
usually obtained from their last states. P xx

0 is usually set as
a positive definite matrix having elements with reasonably
high values. Here, the initial values are taken as,

P xx
0 =

[
103 0
0 103

]
,K0 =

[
103, 103

]
,

[
S0

ψ0

]
=

[
0
1

]
. (31)

Step 2: Sigma point generation using ICUT. Sigma
points corresponding to the state x̂k−1|k−1 and their
weights are derived as,

[γk−1, Xk−1|k−1] � βICUT (x̂k−1|k−1, P
xx
k−1|k−1, e, d, n, λ)

(32)
where e and d are [1, 1]T and [0, 0]T respectively.

Step 3: State prediction. Each of these sigma points are
applied to the state prediction equation in (21) to get the
corresponding apriori transformed sigma points.

Xj,k|k−1 = AXj,k−1|k−1 +BUk−1,j ∈ 0..2n. (33)

The mean of the apriori state is calculated from trans-
formed sigma points and their weights using the formula,

x̂k|k−1 =

2n∑
j=0

γjXj,k−1. (34)

Using the weighted mean, forecast error covariance matrix
can be found,

P xx
k|k−1 =

2n∑
j=0

γj [Xj,k|k−1 − x̂k|k−1]
[
Xj,k|k−1 − x̂k|k−1

]T

+Q′ (35)

where Q′ is as in (22).

Step 4: Updating the sigma points and their weights.[
γk, Xk|k−1

]
= βICUT (x̂k|k−1, e, d, P

xx
k|k−1, n, λ). (36)

Step 5: Generating the output vector. Output vectors for
each sigma point

Yj,k|k−1 = f
(
Xj,k|k−1

)
. (37)

Mean output is,

ŷk|k−1 =

2n∑
j=0

γj .Yj,k|k−1. (38)

Here, ŷk|k−1 is the estimated terminal voltage V̂t(k|k − 1)
calculated from the predicted states.

Step 6: Generating the covariance matrices. Innovation
covariance matrix is derived as,

P yy
k|k−1 =

2n∑
j=0

γj [Yj,k|k−1 − ŷk|k−1]
[
Yj,k|k−1 − ŷk|k−1

]T

+R′ (39)

where R′ is taken as per (22).

Cross covariance matrix is obtained as,

P xy
k|k−1 =

2n∑
j=0

γj [Xj,k|k−1 − x̂k|k−1]
[
Yj,k|k−1 − ŷk|k−1

]T

(40)

Step 7: Data assimilation. Kalman gain matrix is calcu-
lated

Kk = P xy
k|k−1

(
P yy
k|k−1

)−1

. (41)

Posteriori sigma points are obtained as,

Xj,k|k = Xk|k−1 +Kk(yk − Yj,k|k−1) (42)

where the yk is the measured Vt(k).
Posteriori mean state vector is calculated as,

x̂k|k =
2n∑
j=0

γjXj,k|k. (43)
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Fig. 5. Comparison of SOCs from estimation (SOCUKF ),
simulation (SOCEM ) and coulomb counting
(SOCCC)

Posteriori covariance matrix is calculated as,

P xx
k|k =

2n∑
j=0

γj [Xj,k|k−1− x̂k|k−1][Xj,k|k−1− x̂k|k−1]
T . (44)

The above steps are repeated for each instance of k.
Irrespective of the initial values, the SOC, which is the
first element of xk, will converge to its true value after a
few iterations.

5. PERFORMANCE AND ERROR ANALYSIS

A current profile 1 that simulates a typical dynamic charge
- discharge scenario in HEVs was used used to study the
performance of the algorithm. To determine the actual
SOC corresponding to the current profile, a full electro-
chemical model (EM) of the battery (ANR26650M1A) is
simulated using COMSOL 2 software. A 1D isothermal
model is used and the SOC obtained from the simulation
is denoted by SOCEM .

The state prediction equation (19) of the UKF algorithm
uses an approximate value of η for predicting SOCk+1 from
SOCk. Irrespective of the value of η used in the (19), the
final estimated SOC by UKF is expected to follow the
SOCEM .

The SOCCC profiles for η = (0.94, 1.06) is plotted in Fig. 5
along with SOCUKF and SOCEM . Here, SOCUKF can be
seen following SOCEM even though the state prediction
equation in UKF algorithm uses η = (0.94, 1.06).

6. CONCLUSION

A LiFePO4 battery was modeled as an equivalent circuit.
An HPPC current profile was applied to the battery and
the corresponding terminal voltages were recorded as the
output. From this input-output data, the estimation of
the circuit elements and the open circuit voltage Voc were
posed as a Kalman filtering problem.

In order to determine the hysteresis curves relating the
SOC and the open circuit voltage Voc, the battery was
charged and discharged at a very low current. As the
current was very low, the terminal voltage Vt was taken

1 http://tinyurl.com/o79vb2a
2 http://www.comsol.com

to be equal to Voc. Furthermore, as losses are minimal
at low currents, SOC was calculated by coulomb counting.
The resulting non-linear curves between Voc and SOC were
taken as the major loop of hysteresis.

Minor branches of the hysteresis appear when the bat-
tery is switched between charging and discharging modes.
Minor branches were modeled as a weighted linear com-
bination of major curves. This model was non-linear, in
the weighting coefficients and SOC. An Unscented Kalman
Filter (UKF) with states constrained between 0 and 1 was
used to estimate the SOC.

The estimated SOC was compared with the SOC obtained
using a full electrochemical model from COMSOL. The
η in the UKF algorithm was varied and resulting SOC
estimations were compared with the simulated SOC.
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