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Identification of a Crack in a Rotor System

Using a Model-based Wavelet Approach

A. S. Sekhar*

Technische Universität Darmstadt, Institute für Mechanik AG 2,

Hochschulstrasse 1, D - 64289 Darmstadt, Germany

The dynamics and diagnostics of a cracked rotor have been gaining importance in recent years.

Vibration monitoring during start-up or shut-down is as important as during steady-state operations to

detect cracks especially for machines such as aircraft engines which start and stop quite frequently

and run at high speeds. In the present study, a model-based method is proposed for the on-line

identification of cracks in a rotor while it is passing through its flexural critical speed. The fault-induced

change of the rotor system is taken into account by equivalent loads in the mathematical model. The

equivalent loads are virtual forces and moments acting on the linear undamaged system to generate a

dynamic behaviour identical to the measured one of the damaged system. The rotor has been

modelled using FEM, while the crack is considered through local flexibility change. The crack has been

identified for its depth and location on the shaft for different rotor accelerations. The nature and

symptoms of the fault – crack – are further ascertained using the continuous wavelet transform.

Keywords crack � model-based approach � modal expansion � wavelet � transient � FEM

1 Introduction

An important rotor fault, which can lead to

catastrophic failure if undetected, is fatigue

cracks in the shaft. Vibration behaviour of

cracked structures, in particular cracked rotors,

has received considerable attention in the last

three decades [1–3]. The problem of damage and

crack identification in structural components has

acquired an important role in recent years. Severe

damages in power plants have been reported by

Hass [4] and Muszynska [5]. The efforts to

successfully detect the crack started way back, the

simple hinge model of Gasch [6] to demonstrate

the breathing crack is one such. Mayes and

Davies [7] based on the energy rate approach

developed models to locate the position and size

of a crack. Inagaki et al. [8] have used transfer

matrix approach by a step function for the

bending moment to model the breathing of crack.

The increasing concern over early crack

detection or rotor failures due to the presence of

a crack has accelerated the development of non-

destructive techniques based on changes of the

modal parameters of the system [9]. As summar-

ized by Hamidi et al. [9], several publications

have proposed the use of several techniques

such as the use of natural frequencies, mode

shapes and frequency response functions for the

damage detection.

Modern machinery is bound to fulfill increas-

ing demands concerning durability as well as

safety requirements. The concepts of a continuous

on-line monitoring system with real-time reporting
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offers the promise of improved knowledge of the

condition of a machine and therefore fewer

uncertainties in the operating decisions. Edwards

et al. [10] have provided a broad review of the

state of the art in fault diagnosis techniques, with

particular regard to rotating machinery. It has

been seen that new model-based fault diagnosis

are being developed rapidly in order to meet the

demand for increasingly intelligent condition

monitoring systems for the maintenance of modern

industrial process. On-line condition monitoring

strategies will become increasingly commonplace

in a greater range of systems.

Seibold and Weinert [11] investigated on the

detection techniques based on Extended Kalman

filters to detect the position and depth of crack

whereby each filter represents a different damage

scenario. Recently, Markert et al. [12–14] pro-

posed a model-based method which allows the

online identification of malfunctions in rotor

systems. They presented the models in which

equivalent loads due to the faults such as rubbing

and unbalance as virtual forces and moments

acting on the linear undamaged system model to

generate a dynamic behaviour are identical to the

measured one of the damaged system. The

identification is then performed by least squares

fitting in the time domain. Edwards et al. [15]

employed a model-based identification in the

frequency domain to identify an unbalance on a

test-rig. A more comprehensive approach to

identify different types of faults has been

reported in [16].

For diagnosing the state of a machine, usually

signal-based monitoring systems are used as good

tools, although they do not fully utilize the

information contained within the vibration data.

These approaches to machinery diagnostics are

generic rather than machine specific and the

interpretation of the data is based on qualitative

rather than quantitative information. Contrary to

signal-based monitoring systems, model-based

diagnostics systems developed in recent years

[17,18] utilize all information contained in the

continuously recorded vibration signals. These

methods work either in the time or in the

frequency domain depending on the malfunction

type and the operating state for which the

vibration data are available. Also it can be used

together with or alternatively to conventional

signal-based monitoring systems.

Most of the previous works focussed on detec-

ting rotor cracks by analyzing the steady-state

vibrations of a rotor bearing system. Vibration

monitoring during start-up or shut-down is as

important as during steady-state operation to

detect cracks. But research on transient responses

of the cracked rotor passing the critical speed has

been limited, although some recent works have

been reported [19–21]. However, many works

used speed-response, time domain signals and/or

the traditional signal processing technique such as

FFT with modifications to suit the non-stationary

vibration signals to detect cracks. The wavelets

provide time-scale information of a signal,

enabling the extraction of features that vary in

time. This property makes ‘‘wavelets’’ an ideal

tool and an alternate.

The theory of the orthogonal wavelets and

their application to signal analysis have been

presented by Newland [22, 23]. An excellent recent

review by Staszewski [24] gives various wavelet

methodologies for damage detection. In a recent

paper [25] the effectiveness of wavelet transforms

was shown for crack detection and monitoring in

rotors.

In the present study a model-based technique

for the crack identification is discussed. Previously,

the model-based techniques were employed to

identify faults. But to the best of the author’s

knowledge, the simulations of crack identification

using equivalent loads (virtual loads) in the

model-based approach and that to for the tran-

sient rotors are not demonstrated in literature.

Also in the present paper, the combined approach

of model-based using the equivalent loads fol-

lowed by signal-based approach using continuous

wavelet technique (CWT) for a rotor passing the

flexural critical speed has been suggested for

crack identification.

2 Identification Method

In the present study, model-based identification

method [13,14] is used, which is based on the idea

that system faults can be represented by virtual

loads �F that act on the linear undamaged
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system model. Equivalent loads are fictitious

forces and moments, which generate the same

dynamic behaviour as the real non-linear

damaged system does. This method enables to

maintain linear, so that fast analysis can be

carried out to identify faults while the machine is

still running.

2.1 Mathematical Description

The vibrations represented by the vector roðtÞ at

N degrees of freedom (DOF) of the undamaged

rotor system due to the operating load Fo(t)

during normal operation are described by the

linear equation of motion:

Mo €rroðtÞ þDo _rroðtÞ þ KoroðtÞ ¼ FoðtÞ ð1Þ

where Mo, Do, Ko are mass, damping and

stiffness matrices of any complex rotor system,

which can include the effects of bearings, founda-

tion and gyroscopic forces etc.

The occurrence of a fault changes the

dynamic behaviour of the system; the extent of

the change depends on the vector �, which

describes the fault parameters like type, magni-

tude and location etc. of the fault. The fault-

induced change in the vibrational behaviour is

represented by the additional loads acting on the

undamaged system.

Mo €rrðtÞ þDo _rrðtÞ þ KorðtÞ ¼ FoðtÞ þ�Fð�, tÞ ð2Þ

The residual vibrations induced represent the

difference of the previously measured normal

vibrations of the undamaged system from vibra-

tions of the currently measured damaged system.

�rðtÞ ¼ rðtÞ � roðtÞ; �_rrðtÞ ¼ _rrðtÞ � _rroðtÞ;
�€rrðtÞ ¼ €rrðtÞ � €rroðtÞ

ð3Þ

Subtraction of the equations of motion for the

undamaged (Equation (1)) from that of the

damaged (Equation (2)), and using Equation (3),

yields the equation of motion for the residual

vibration as given by,

Mo�€rrðtÞ þDo�_rrðtÞ þ Ko�rðtÞ ¼ ð�, tÞ ð4Þ

The system matrices remain unchanged and the

rotor model stays linear. Only the equivalent

loads induce the change in the dynamic behaviour

of the undamaged linear rotor model. To identify

the fault parameters, the difference of the theore-

tical fault model and the measured equivalent

loads will be minimized by a least squares fitting

algorithm.

For calculating the fault-induced residual

vibrations, measured vibration data for both the

undamaged and damaged rotor system have to be

available for the same operating and measure-

ment conditions. For example, differences in the

rotor speeds, phase and the sampling times have

to be taken into account. Different rotor speeds,

for instance, are compensated by adjusting the

time-scale of the normal vibrations to the time-

scale of the currently measured vibrations.

Similarly for others, because directly matching

data are usually not available, some signal

processing has to be done to achieve the same

conditions [13,14].

The definition of the additional vibrations

during rapid transients is a difficult task. However,

for small time steps, during that time duration,

the accelerations and the other conditions can be

assumed to be identical in real machines.

2.2 Modal Expansion

For calculating the equivalent loads from the

mathematical model of the rotor system by

Equation (4), measured residual vibrations

must be available at all DOF of the model. Since

the vibrations are measured only at a few DOF

in practice, the vibrations at non-measured DOF

must be estimated using the measured vibrations.

Therefore, the residual vibrations need to

be reconstructed via modal expansion from the

directly measured vibrations such as �~rrMðtÞ, at

the measuring positions. This technique is

based on the approximation of the residual

vibration by a linear combination of only a few

eigenvectors. Simultaneously, a set of equivalent

loads representing the malfunctions is calculated

from the measured vibration signals using the

mathematical model of the undamaged rotor

system.
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By comparing the equivalent loads recon-

structed from the current measurements to the

pre-calculated equivalent loads resulting from

fault models, the type, amount and location of

the current fault can be estimated. The identi-

fication method is based on least squares fitting

algorithms in the time domain. The quality of

the fit is used to find the probability that the

identified fault is present.

As explained before, the residual vibrations

�~rrMðtÞ are available only for a few DOF of the

model. The number M of the measurement loca-

tions is much smaller than the number N, the DOF

of the model. The data of the non-measurable

DOF have to be estimated from the measured

signals. The measurable part �~rrMðtÞ of the resi-

dual vector is related to the full residual vector

�~rrðtÞ by the measurement matrix C,

�~rrMðtÞ ¼ C�~rrðtÞ ð5Þ

The full residual vector can be approximated by

a set of mode shapes r
_

kwhich are put together in

the reduced modal matrix

�
_

¼ ½r_1, r_2, . . . , r_k�: ð6Þ

Logically, the number K of mode shapes used

may not exceed the number M of independently

measured vibration signals contained in ~rrMðtÞ,
K�M. The vector of modal co-ordinates �q(t)

is estimated by combining the measurement

Equation (5) with modal representation

�~rrðtÞ ¼ �
_

�qðtÞ ð7Þ

of the full residual vector and minimising the

equation error by the least squares method.

Eventually, the full residual vector at all DOF is

estimated by

�~rrðtÞ ¼ f�
_

½ðC�
_

ÞT ðC�
_

Þ��1½C�
_

�T g�~rrMðtÞ ¼ Q�~rrMðtÞ
ð8Þ

where the constant matrix Q can be calculated in

advance.

2.3 Equivalent Loads

The equivalent load � ~FF ðtÞ characterising the

unknown fault is calculated by substituting the

residual vibrations of the full vibrational state

into Equation (4), together with Equation (8),

yielding,

� ~FF ðtÞ ¼ MoQ�€~rr~rrMðtÞ þDoQ�_~rr~rrMðtÞ þ KoQ�~rrMðtÞ
ð9Þ

Only simple matrix multiplications and additions

have to be carried out, for estimating the equiva-

lent loads from the measured vibration signals.

Thus, it is very suitable for on-line identification

of crack or any other fault.

2.4 Fault Models

For the model-based fault identification method,

each fault has to be represented by a mathema-

tical model describing the relation between the

fault parameters � and the equivalent force

� ~FF ðtÞ. Hence, �F(�, t) is a mathematical expres-

sion for the time history of the forces acting on

the individual DOF of the model. The fault

vector � in this case contains the crack depth and

location. A detail explanation on crack, the fault

considered in this paper is given in a separate

section. The basic idea to model a transverse

crack in a shaft is to consider the change of the

cracked element’s stiffness. The changed stiffness

of the cracked element is multiplied with the dis-

placement vector r(t) which yields the equivalent

force,

�Fcrð�, tÞ ¼ rðtÞ ð10Þ

2.5 Least Squares Fitting in the Time

Domain

For identifying the fault parameters, the equiva-

lents loads from measured vibrations and those

from the mathematical model should be com-

pared. If there were no noise and no errors due

to modal expansion, the equivalent loads, i ~FF ðtÞ
from measured data would match exactly to

loads iF(t) of a certain mathematical fault

296 Structural HealthMonitoring 2(4)
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model. Since the measured signals and their

processing are always associated with some

noise and inevitable errors, the best fit between

the two loads pattern is sought by adjusting

the fault parameter fault model �. The least

squares algorithm is used in time domain to

achieve the best curve fitting. The objective

function to be minimized for the measured

equivalent forces i ~FF ðtÞ and the theoretical ones

(or of a certain mathematical model) iFi (�i, t),

is given as

Z

X

i

�Fið�i, tÞ �� ~FFðtÞ
�

�

�

�

�

�

�

�

�

�

2

dt ¼ Min ð11Þ

The algorithm iterates for the values of fault

parameters �i for all suspected faults taken into

account. For example in the present paper, the

fault considered is crack. A small amount of

crack depth is assumed to start with in the

element no.1 and the algorithm is iterated in the

program. Then the process is repeated consider-

ing crack in the next element and so on for all

the elements for the same depth of crack. The

process is repeated for different depths by a small

increment and preceded to do the iteration, till

objective function is satisfied. Thus the crack

depth and location can be identified. If more

faults are there, fault parameters �i for all

suspected faults shall be taken into account. This

eventually leads to identification of the fault type,

its position and the extent. The least square

technique can be used in the frequency domain as

well. Matlab version 6.0 has been used to solve

the algorithm. More details of the algorithm can

be seen in [13,14].

2.6 Probability Measures

The quality of fit achieved can be used to

estimate the probability of the different identified

faults. Two probability measures based on corre-

lation functions have been developed and success-

fully tested in [14]. These are also used here.

The first probability measure p1, called coherence,

is the normalized correlation of the identified

equivalent forces iFi (�i, t) of a particular fault

with the measured equivalent forces i ~FF ðtÞ for

lag �¼ 0,

p1 ¼ �
�Fi ,� ~FF ð0Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��Fi ,�Fi
ð0Þ�

� ~FFðtÞ,� ~FF ð0Þ
q

ð12Þ

Due to the normalisation by the auto-correlation

functions of iFi (�i, t) and i ~FF ðtÞ, the cohe-

rence takes values between �1� p1� 1, where

p1¼ 1 means that iFi (�i, t) matches i ~FF ðtÞ
perfectly.

The other probability measure p2, called

the intensity, measures the contribution of the

particular fault to the measured total equivalent

forces iFident¼
P

iFi,

p2 ¼ ��Fi ,�Fi
ð0Þ

�

��Fident,�Fident
ð0Þ: ð13Þ

The intensity measures takes values in the interval

0� p2� 1, where p2¼ 1 signifies that the identified

fault is the only one present in the rotor system.

It was reported in [13,14], that both measures p1
and p2 should be used simultaneously to evaluate

the probability of a fault. Suitable threshold

values are p1� 10% and p2� 20% indicating that

specific fault is present in the rotor system [14].

The whole process of identification is shown

in the Figure 1. The measured vibration signals

~rrMðtÞ are the input and the fault parameters �i
for each fault are the output.

3 System Equation of Motion

The rotor-bearing system is discretized into finite

beam elements [26] as shown in Figure 2, together

with details of shaft element. The DOF of the

model considered are two deflections and two

translations at each node with the q1 to q8 are the

nodal quantities. Even though the figure is shown

with crack, all the configuration and details are

also valid for uncracked rotor. The equation of

motion of the complete rotor system in a fixed

co-ordinate system can be written as,

½M�f €qqg þ ½D�f _qqg þ ½K �fqg ¼ fFg ð14Þ

where the mass matrix [M] includes the rotary

and translational mass matrices of the shaft,

Sekhar Crack Identification in a Transient Rotor System 297
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Figure 1 Flow chart of the fault identification method.

Figure 2 Simply supported shaft with a cracked element.
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mass and diametral moments of the rigid disc.

The matrix [D] includes the gyroscopic moments,

and damping. The stiffness matrix [K ] considers

the stiffness of the shaft elements and the bearing

stiffness. Cracked element stiffness can be

included easily, for the cracked rotor analysis.

The excitation matrix {F } in Equation (14)

consists of the unbalance forces due to disc

having mass m, eccentricity e and the weight

of the disc. The unbalance force components in

x and y directions for angular rotation � are

given as,

Fx ¼ mef €�� sin � þ _��2 cos �g;
Fy ¼ mef� €�� cos � þ _��2 sin �g:

ð15Þ

4 Crack Modelling

The transverse breathing crack has been consid-

ered in the present study. The flexibility matrices

of the cracked section as given in Papadopoulos

and Dimarogonas [27] are utilized for crack

modelling. The flexibility coefficients for an

element without crack by neglecting shearing

action are given by,

C0 ¼

l3=3EI SYM

0 l3=3EI

0 �l2=2EI l=EI

l2=2EI 0 0 l=EI

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

where EI is the bending stiffness and l is the

element length. During the shaft’s rotation, the

crack opens and closes, (the breathing action of

the crack) depending on the rotor deflection [28].

For the large class of machines, the static

deflection is much greater than the rotor vibra-

tion. With this assumption, the crack is closed

when �¼ 0 and it is fully open when �¼�

(see Figure 3). The transverse surface crack on

the shaft element introduces considerable local

flexibility due to strain energy concentration in

the vicinity of the crack tip under load. The

additional strain energy due to the crack results

in a local flexibility matrix Cc, which will be Cop

and CHC for a fully open crack and half-open,

half-closed conditions, respectively:

Cop ¼
1

F0

�CC11R SYM

0 �CC22R

0 0 �CC33=R

0 0 �CC43=R �CC44=R

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

,

CHC ¼ 1

2F0

�CC22R SYM

0 �CC11R

0 0 �CC44=R

0 0 �CC34=R �CC33=R

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

where F0¼�ER2=ð1� �2Þ,R ¼ D=2 and � ¼ 0:3.

The dimensionless compliance coefficients, �ccij,

are functions of non-dimensional crack depth,

�(�/D), where � is the crack depth in shaft

diameter D (see Figure 2). These compliance

coefficients are computed from the derivations

discussed in [27]. The total flexibility matrix for

the cracked section is given as [28],

½C� ¼ ½C0� þ ½Cc�: ð16Þ

Figure 3 Breathing crack model.
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As explained before, Cc will be Cop or CHC

depends on the breathing position of crack

(see Figure 3).

From the equilibrium condition (see Figure 2)

ðq1, q2, . . . , q8ÞT ¼ ½T �ðq5, . . . , q8ÞT , ð17Þ

where the transformation

T ¼

�1 0 0 �l 1 0 0 0

0 �1 l 0 0 1 0 0

0 0 �1 0 0 0 1 0

0 0 0 �1 0 0 0 1

2

6

6

4

3

7

7

5

T

:

4.1 Stiffness Matrix

The stiffness matrix of the cracked element is

written as [28],

½Kc� ¼ ½T �½C��1½T �T ð18Þ

When the shaft is cracked, during the rota-

tion the stiffness varies with time, or with angle.

The variation may be expressed by a truncated

cosine series,

½K � ¼ ½K0� þ ½K1� cos!tþ ½K2� cos 2!t
þ ½K3� cos 3!tþ ½K4� cos 4!t,

ð19Þ

where [K�], �¼ 0,1, . . . ,4, are fitting coefficient

matrices, determined from the known behaviour

of the stiffness matrix at certain angular locations

[28]. These are obtained from the compliance matri-

ces Co, Cop and CHC together with Equation (18).

5 Continuous Wavelet Transform

Wavelet analysis is similar to Fourier analysis

in the sense of breaking of the signal into its

constituent parts for analysis. The Fourier

transform breaks the signal into a series of

sine waves of different frequencies, whereas

the wavelet transform breaks the signal into

its scaled shifted versions of the mother wavelet.

The CWT of f(t) is a time-scale method of

signal processing that can be defined as the sum

over all time of the signal multiplied by scaled,

shifted versions of the wavelet function �(t).

Mathematically,

CWTðs, bÞ ¼ 1
ffiffiffiffiffi

jsj
p

Z 1

�1
f ðtÞ�� t� b

s

� �

dt ð20Þ

where �(t) denotes the mother wavelet. The

parameter s represents the scale index, which is

reciprocal of frequency. The parameter b indi-

cates the time shifting (or translation). The CWT

provides the time–frequency information of the

signal. This means that any non-stationary event

can be localized in time unlike Fourier analysis.

Additionally, the frequency content of these

events can be described for any position on the

time axis. This property of CWT has been used

in the present study to extract significant char-

acteristics, which are embedded in time domain

signal of the cracked rotor passing through its

critical speed.

The Morlet mother wavelet [29] with support

length of (�4, 4) has been chosen in the present

study for all the CWTs. A scale 4 of the CWT is

chosen such that the centre frequency of the

daughter wavelet in the frequency domain should

not coincide with the critical and sub-critical

speeds.

6 Results and Discussion

A rotor system with two flexible bearings and

two rigid disks as shown in Figure 4, has been

considered in the present analysis. The data for

the rotor system are given in Table 1. The

analysis has been carried out using FEM for

flexural vibrations. The eigenvalues are given in

Table 2, while the mode shapes are shown

in Figure 5. A crack at the mid of the rotor and

in the centre of the element 7 (see Figure 4) is

considered for the study. When the speed of

rotation is changing, the angular displacement

can be taken as �(t)¼!0tþ 1/2(at 2), where ‘a’ is

the angular acceleration ( €��) of rotor, ‘!0’ is the

initial angular velocity and a is chosen as 50 rad/

s2. Houbolt time marching technique is used to

model the system in time domain with a time step

300 Structural HealthMonitoring 2(4)
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of 0.001 s, due to better convergence of results

[28]. The time response has been modelled until

the system passes 1st the critical speed, which is

around 100 rad/s (see Table 2).

In the present study, in the beginning, the

vibrations are considered at all the 48 DOF of

the model, and this is considered as a reference

case. However, normally the vibrations are mea-

sured only with few sensors or transducers.

Hence, only for few DOF the measured vibration

data are available. Thus the study is done

considering less than 48DOF, such as with

24, 20, . . . , 4DOF. For such less DOF, the vibra-

tion data at all the DOF of the rotor are

estimated using the modal expansion as explained

in Section 2.2. The identification algorithm is

searched for crack.

The typical results with crack depths 4, and

1.4mm are given in the Tables 3 and 4 for

50 rad/s2. In all these tables and in subsequent

figures showing the results, one point is to be

noted. The measured data available at certain

DOF means, as explained previously, that only at

such number of DOF, the vibration data are

available. In this study no experimental data are

available, only it is simulated using modal expan-

sion for few DOF cases. In the absence of

experimental validations, the simulation results

Table 1 Rotor-bearing data.

Length of the rotor (L) 0.780m

Shaft
Diameter (D) 0.02m
Density 7850 kg/m3

Modulus of elasticity 2.1� 1011N/m2

Damping ratio 0.01

Discs
Masses: m1, m2 6.45, 4.27 kg
Unbalance eccentricity 0.01mm

Crack

Location 6 and 7 element
Depth (�) 1.4 and 4mm
Non-dimensional depth (�(�/D)) 0.07 and 0.2

Bearing stiffness (N/m)
Left bearing stiffness in horizontal direction 0.105� 106

in vertical direction 0.150� 106

Right bearing Stiffness in horizontal direction 1.06� 106

in vertical direction 1.02� 106

Acceleration of rotor (a) 50, 100 and 125 rad/s2

Figure 4 Typical rotor-bearing system considered.

Table 2 Eigen frequencies of rotor system.

Mode No.

Eigen frequencies

(Hz)

1 16.85 (H)

2 28.16 (V)
3 30.38 (H)
4 70.24 (V)

5 71.63 (H)
6 124.76 (V)
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are presented with several effects such as noise

etc. contaminating the simulations. The simula-

tions were done with the effects of measurement

noise; modelling error and calibration error for

one crack depth are given in Table 3. The results

showed their effects to be low (hence, these

effects are not considered in Tables 4 and 5) thus

showing the effectiveness of the identification

method/approach. These are discussed in the

following paragraphs (refer to Table 3).

Case 1: The time-histories of displacements,

velocities and accelerations were exactly measured

Figure 5 Mode shapes of rotor system.

Table 3 Results of crack identification (crack of depth 4mm in element No. 7), a¼ 50 rad/s2.

S. No

Measured Data

Available at

Estimated Crack

Location (Element No.)

Estimated Crack

Depth in mm (�)

Probability Measures in %

Coherence Intensity

1 48 DOF reference case 7 4.0 100 25.0
2 Noise Signals 7 3.98 99.89 24.98

3 Modelling error 7 3.92 99.90 25.0
4 Calibration error 7 4.0 99.99 25.0
5 24DOF 7 2.80 99.96 24.14

6 20DOF 7 2.62 99.96 18.86
7 8DOF 7 1.26 99.86 15.00
8 4DOF 7 1.20 94.78 25.0
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at all the 48DOF of the rotor system, so modal

expansion was not necessary. The crack depth

and location were identified exactly. This case

was considered as reference case.

Case 2: In this case all the measuring signals

were falsified by band-limited noise. The standard

deviation of the disturbances was about 2% of

the amplitude of the correct signal. The crack has

been identified exactly in element 7 with negligi-

ble error in estimating the depth.

Case 3: In this case 5% modelling error has

been introduced in both stiffness and mass

matrix. In this case also, the crack has been

identified exactly in element 7 with negligible

error in estimating the depth.

Case 4: In this case calibration errors of 10%

in the sensors at both bearings (also at disks

separately) were simulated. The crack depth and

location were identified exactly.

Cases 5–8: Normally the vibrations are mea-

sured only with few sensors or transducers. Hence,

only for few DOF the measured vibration data

are available. Thus the study is done considering

less than 48DOF, such as with 24, 20, . . . , 4DOF

in Cases 5–8. The modal expansion technique has

been used in these cases.

The results show that even for a small crack

(1.4mm or �¼ 0.07) and with fewer measured

data (less DOF such as 4, 8), the location of the

crack has been identified effectively. The results

show that with decrease in measured vibration

data (less DOF) the error in estimating the depth

has increased. This is expected as the full vibra-

tion data of unmeasured locations using the

mode shape of undamaged rotor system cannot

be accurately estimated from fewer data points.

However, the location has been identified success-

fully. From the practical point of view, if we have

a good number of sensors, the depth estimation is

not going to be a problem. For fewer DOF, the

rotor can be stopped and checked for exact depth

of the crack. However, one should not get misled

by the depth it has been estimated online and

proceed to continue running the rotor. The crack

depth should be estimated by considering this

error, if to determine when the machine must be

removed from service, since stopping the rotor

is very expensive and not always practical.

However, better expansion techniques or refined

modal expansion methods should be incorporated

to get better results and to finally implement this

scheme in practice.

The identification process is repeated for

acceleration of 100 rad/s2, the results of which

(see Table 5) are almost identical as that of

50 rad/s2. Thus even for the higher acceleration,

the crack identification is quite effective. The

crack identification process using model-based

method algorithm with the residual vibrations

Table 5 Results of Crack identification (crack of depth 1.4mm in element No. 7), a¼ 100 rad/s2.

S. No

Measured Data

Available at

Estimated Crack

Location (Element No.)

Estimated Crack

Depth in mm (�)

Probability Measures in %

Coherence Intensity

1 48DOF reference case 7 1.40 100 25.0

2 24DOF 7 1.06 99.99 24.23
3 20DOF 7 0.96 99.99 19.71
4 16DOF 7 0.46 99.99 15.0

5 4DOF 7 0.30 99.99 25.0

Table 4 Results of crack identification (crack of depth 1.4mm in element No. 7), a¼ 50 rad/s2.

S. No

Measured Data

Available at

Estimated Crack

Location (Element No.)

Estimated Crack

Depth in mm (�)

Probability Measures in %

Coherence Intensity

1 48DOF reference case 7 1.40 100 25.0

2 24DOF 7 1.06 99.99 24.24
3 20DOF 7 0.96 99.99 19.65
4 16DOF 7 0.46 99.99 15.0
5 4DOF 7 0.30 99.98 25.0
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estimated the equivalent loads for the reference

case (48DOF) for rotor acceleration of 50 rad/s2

and are shown in Figure 6. From this figure, it is

clear that the equivalent forces are observed only

at the nodes 7 and 8, which are the nodes of

the cracked element. Hence, this method identi-

fied the crack at the exact location and also

estimated the depth correctly (20% of the shaft

diameter¼ 4mm – see Table 3). Further, the

crack identification results with fewer measured

data (less DOF) are shown in Figures 7 and 8.

In all the cases including the case of 4 DOF (see

Figure 8(a) and (b) the equivalent forces are

observed domineeringly at the nodes 7 and 8 of

the cracked element no. 7. That means the crack

location has been identified successfully.

The location of the crack has been changed

from 7th to 6th. Then also the crack has been

identified at the correct location. The details are

shown in Figure 9(a) and (b). But, for the

Figure 8 (a) Estimated equivalent loads (4DOF), crack

of depth 1.4mm in element 7, a¼ 50 rad/s2; (b) estimated

equivalent loads (4 DOF), crack of depth 4mm in

element 7, a = 50 rad/s2.

Figure 9 Estimated equivalent loads (20DOF) for dif-

ferent crack locations, crack depth 4mm, a¼ 50 rad/s2:

(a) Crack in 6th element; (b) crack in 7th element.

Figure 6 Reference case (48DOF) : estimated equiva-

lent loads, for crack of depth 4mm in element 7,

a¼ 50 rad/s2.

Figure 7 Estimated equivalent loads (24DOF), for crack

of depth 4mm in element 7, a¼ 50 rad/s2.
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estimation of crack depth, the error has increased

with the few measured data, as explained before.

However, since the crack has been identified at

the correct location, the error in the estimation of

crack depth may not be a serious problem.

Further, the symptoms of the present fault are

found using the wavelet analysis. In the present

study continuous wavelet transform (CWT) as

explained in Section 5 is used. The details are

explained through the following figures.

The model-based technique with modal

expansion for the case of 4 DOF, has been

applied considering a small crack depth of 1.4mm

in the element 7, for different rotor accelerations.

The results are shown in Figures 10–12. In all

these figures, the residual vibrations due to crack,

measured at disk1 are shown in both time-

response and their wavelet coefficients. Since the

rotor is passing the critical speed, the vibrations

are non-stationary in nature, hence the CWT of

the response has been determined. In Figure 10,

a main peak at about 2 s, is observed correspond-

ing to critical speed (16.85Hz¼ around 100 rad/s)

when the rotor is accelerated with 50 rad/s2.

Apart from this, the 1/2 critical at 1s can be

observed from Figure 10, which is characteristic

of the crack. The sub-harmonic resonant peak is

observed even in the time-response (Figure 10(a)),

and quite clearly in the wavelet (Figure 10(b)).

Also the slight 1/3 critical (at around 0.65 s)

Figure 10 Residual vibrations at disk1, for crack

depth 1.4mm in element 7 (4 DOF), a¼ 50 rad/s2:

(a) Time; (b) CWT.

Figure 11 Residual vibrations at disk1, for crack depth

1.4mm in element 7 (4DOF), a¼ 100 rad/s2: (a) Time;

(b) CWT.
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speed can be noticed from the CWT (Figure

10(b)), indicating the presence of a crack.

The CWT is compared with time-response for

various rotor accelerations in Figures 10–12.

Similar to Figure 10, the crack behaviour for 1/2

critical are observed in Figures 11 and 12. At low

accelerations (Figure 10) the sub-harmonic reso-

nant peaks are clear from the CWT plot and even

in the time-response plot because the time taken to

pass through the critical and sub-critical speeds is

more. However, as the acceleration increases

(Figures 11 and 12) the sub-harmonic resonant

peaks are embedded in time-response and these

can be extracted by using CWT. Thus it is found

that CWT is a powerful tool for detecting cracks

particularly at high accelerations and low crack

depths compared to time responses.

Further, the symptoms of the present fault

are found using the CWT of the time-response of

estimated equivalent force from the identification

(Figure 13). From the Figure 13(b), which shows

the CWT of the estimated equivalent force, the

sub-harmonic peak, 1/2 of critical speed is

observed clearly. Thus a model-based method

together with the wavelet, can be used effectively

to identify and monitor the crack in a rotor

passing the critical speed.

If the experimental results are available, one

can easily use them as measured data and

apply the modal expansion to identify the crack

effectively, in this case of transient response also.

The model-based identification technique with

modal expansion has been successfully demon-

strated for crack location. For the better estima-

tion of crack depth, one can refine the modal

expansion, considering some weitage functions or

Figure 12 Residual vibrations at disk1, for crack depth

1.4mm in element 7 (4DOF), a¼ 125 rad/s2: (a) Time;

(b) CWT.

Figure 13 Identification of crack of depth 1.4mm in

element 7 (4DOF) at rotor acceleration, a¼ 100 rad/s2:

(a) Estimated Equivalent loads; (b) CWT of (a).
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some suitable curve fitting functions etc., together

with the mode shapes.

7 Conclusion

A complex rotor-bearing system has been mod-

elled using FEM. The model-based identification

technique with modal expansion has been success-

fully demonstrated for different crack locations

and depths at different rotor accelerations, pas-

sing the critical speed. In addition the advanced

signal processing such as the CWT has been used

to extract the sub-harmonic features of crack

successfully from the time-response. Thus the

nature and symptoms of the fault, that is crack,

are ascertained.

The effectiveness of the identification process

depends to a good extent on the number of measu-

red locations (DOF). However, this is for only to

the extent of estimating crack depth.
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