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Abstract: Hydrothermal liquefaction (HTL) is a promising thermochemical process to treat wet

feedstocks and convert them to chemicals and fuels. In this study, the effects of final temperature

(300, 325, and 350 ◦C), reaction time (30 and 60 min), rice-straw-to-water ratio (1:1, 1:5, 1:10, and 1:15

(wt./wt.)), methanol-to-water ratio (0:100, 25:75, 50:50, and 75:25 (vol.%/vol.%)), and alkali catalysts

(KOH, NaOH, and K2CO3) on product yields, composition of bio-crude, higher heating value (HHV)

of bio-crude and bio-char, and energy recovery on HTL of rice straw are investigated. At the optimal

processing condition corresponding to the final temperature of 300 ◦C, 60 min reaction time, and

rice-straw-to-water ratio of 1:10 at a final pressure of 18 MPa, the bio-crude yield was 12.3 wt.%

with low oxygen content (14.2 wt.%), high HHV (35.3 MJ/kg), and good energy recovery (36%). The

addition of methanol as co-solvent to water at 50:50 vol.%/vol.% improved the yield of bio-crude

up to 36.8 wt.%. The selectivity to phenolic compounds was high (49%–58%) when only water was

used as the solvent, while the addition of methanol reduced the selectivity to phenolics (13%–22%),

and improved the selectivity to methyl esters (51%–73%), possibly due to esterification reactions.

The addition of KOH further improved the yield of bio-crude to 40 wt.% in an equal composition of

methanol:water at the optimal condition. The energy-consumption ratio was less than unity for the

methanol and catalyst system, suggesting that the process is energetically feasible in the presence of

a co-solvent.

Keywords: hydrothermal liquefaction; rice straw; bio-crude; methanol; phenols; esters;

energy-consumption ratio

1. Introduction

Rice straw is one of the abundant lignocellulosic agro residues in the world. India is the second

largest producer of rice in the world, with 106 million tons per year, and an annual production of

roughly 160 million tons of straw [1]. Owing to mechanized farming, open field burning of rice straw

and its stubble has become a common scene in India, especially in the state of Punjab, and this has

led to severe greenhouse gas emissions and pollution in the major cities [2]. In Asian countries, rice

straw is often burnt in the open fields, leading to airborne emissions that are hazardous to living

organisms and the environment. This also leads to the killing of small animals in the fields and a

decline of biodiversity [1]. Hence, there is increased attention toward conversion of rice straw to

valuable products, such as chemicals, fuels, energy, and bio-products.
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Thermochemical techniques, such as pyrolysis, gasification, combustion, and hydrothermal

liquefaction (HTL), are used to convert biomass into valuable chemicals, liquid fuels and oils, and

gaseous fuel (syngas) [3–5]. Among these, HTL is the only processing technique that can handle

wet biomass feedstocks with as high as 50 wt.% moisture, to produce high-quality bio-crude. HTL

is generally carried out at 200–350 ◦C and between 5 and 30 MPa [5,6]. High-pressure operation

ensures that water from the biomass does not get converted into a gaseous phase, thus saving the

energy required for enthalpy of vaporization. HTL is an accelerated version of geological formation of

fossil fuels [5]. While the formation of fossil fuels underneath the earth’s surface takes many years,

HTL yields liquid crude in a minutes-to-hours timeframe [5]. Unlike water at ambient conditions,

the physicochemical properties of water at near-critical and supercritical conditions make it an excellent

solvent. Owing to the fewer and weaker hydrogen bonds in hot compressed water than in water

at ambient conditions, better solubility of organic molecules is achieved due to the low dielectric

constant of the medium. Moreover, the high ionic product of water near the critical temperature aids

in acid/base-catalyzed ionic reactions [6,7]. HTL bio-crude is superior to pyrolysis bio-oil, especially in

terms of low oxygen content, high carbon content, high calorific value, and low moisture content [6].

HTL of a variety of feedstocks, such as pine wood [8,9], corn stalk [10], lignin [11,12], sewage

sludge [13], corn stover [14], switch grass [15], Nannochloropsis sp. [16,17], and spirulina [17], for the

production of bio-crude is reported in the literature. HTL of rice straw has also been investigated

in the literature [18–22]. Yuan et al. [18] studied the subcritical and supercritical liquefaction of rice

straw with different solvent mixtures such as ethanol–water and 2-propanol–water. They conducted

the experiments at different temperatures (260–350 ◦C) and solvent mixture ratios (1:9 to 5:5), and

obtained 39.7 wt.% of bio-crude with 2-propanol:water at 5:5 ratio and 300 ◦C. Li et al. [19] investigated

the HTL of rice straw by using 1,4-dioxane:water mixtures and obtained 57 wt.% bio-crude at 300
◦C and equal composition of the solvent and water. Singh et al. [20] investigated the HTL of rice

straw in the presence of different gases, such as N2, O2, and CO2, at different temperatures, from 280

to 320 ◦C, at 15 min residence time, and rice-straw-to-water ratio of 1:6. The maximum bio-crude

yield of 17 wt.% was obtained in N2 ambience. The major components of the bio-crude obtained in

the presence of N2 and CO2 ambience were phenol, guaiacol, syringol, and their derivatives. Zhou

et al. [21] used Cu–Zn–Al catalyst for HTL of rice straw in presence of water–ethanol mixtures and

obtained a maximum of 26.8% monomeric phenols in the bio-crude at 300 ◦C, 30 min, 50:50 vol.%/vol.%

of ethanol:water, and 2 g of catalyst. In another study, glycerol was used as a co-solvent, along

with Na2CO3 as the homogeneous catalyst in HTL, to produce up to 50 wt.% of bio-crude from rice

straw [22]. The prospects of scale-up of HTL technology for continuous processing of feedstocks are

outlined in the review by Castello et al. [23].

Supercritical alcohols in HTL of biomass possess many advantages, such as ability of donating

hydrogen, better solubility, easier separation of bio-crude from kerogen-like residue, and lower

corrosivity. Brand and Kim [24] studied liquefaction of cellulose, xylose, and lignin in supercritical

ethanol and showed that the chemical composition of bio-crude from cellulose and xylose were quite

distinct from the bio-crudes obtained via fast pyrolysis and HTL under subcritical conditions. Methanol

possesses low critical temperature and pressure (239 ◦C, 8.09 MPa), and has established production

routes from coal, natural gas, and biomass. In India, it is projected as the future fuel, with blending at

up to 15% in transportation fuels. It is also expected to be available at a competitive price in India,

owing to its production from coal via a two-step process involving gasification, followed by catalytic

reforming of syngas [25]. Chemically, methanol is a hydrogen donor solvent, and hence, a study on

its use to improve the quality of bio-crude assumes importance. This study is novel in the following

respects: (1) This is the first study to report the use of methanol as a co-solvent in HTL of rice straw;

(2) this study exhaustively evaluates the effect of process conditions such as temperature, reaction

time, biomass-to-solvent ratio, solvent composition, and alkali catalysts on the yields and quality of

bio-crude from rice straw; and (3) this study reports the energetics of the process, to evaluate the
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feasibility at salient operating conditions. The quality metrics include organic composition, elemental

analysis and calorific value of bio-crude, and elemental composition of calorific value of bio-char.

2. Experimental

2.1. Materials and Feedstock Characterization

Rice straw was procured locally from a farm in Sullurupeta (13.7009◦ N, 80.0209◦ E), Andhra

Pradesh, India. Reagents like methanol, acetone, dichloromethane (DCM), potassium hydroxide

(KOH), sodium hydroxide (NaOH), and potassium carbonate (K2CO3) were purchased from Avra

Synthesis Pvt. Ltd., India. All the reagents were used as received. Rice straw was cut into fine pieces

of average size in the range of 1–1.5 cm, and stored in zip-lock covers.

Rice straw was characterized by using proximate and ultimate analyses. Proximate analysis

was carried out in a thermogravimetric analyzer (TGA) (SDT Q600, T.A. Instruments, Waters GmbH,

Austria), as per ASTM E1131-08 [26]. Elemental CHNS composition was obtained by using an elemental

analyzer (Thermo Flash 2000, Thermo Fisher Scientific, Austria) according to ASTM D5373-08. Higher

heating value (HHV) was determined by using a bomb calorimeter (IKA C2000, I.K.A., Germany)

according to ASTM D5865-13. The same analytical methods were adopted to characterize bio-crude and

bio-char. The total organic content in the aqueous phase was analyzed by using Karl Fischer Titrator

(Metrohm-870 KF Titrino plus, Metrohm AG, Switzerland) according to ASTM D-6304. The proximate

analysis, ultimate analysis, and HHV of rice straw are reported in Table 1. These characterization data

are in line with the literature [27].

Table 1. Characterization of rice straw.

Proximate Analysis (wt.%) * Elemental Analysis (wt.%) ** HHV

Volatile
Matter

Fixed
Carbon

Moisture Ash C H N S O (MJ kg−1)

Rice Straw 66.1 15.4 5.7 12.8 37.1 5.2 0.5 0.1 44.3 12.1

* Air dried basis; ** dry basis.

2.2. HTL Reactor

HTL experiments were conducted in a custom-built stainless-steel autoclave of 1.3 L volume

with 82 mm internal diameter, 25 mm thickness, and 210 mm height. The design temperature and

pressure of the reactor were 400 ◦C and 22 MPa, respectively. The schematic of the reactor setup is

provided in Figure 1. An electric coil was wrapped around its surface to provide uniform heat input.

The temperature of the reaction mixture was monitored by using a K-type thermocouple, which was

connected to a temperature controller. The thermocouple was placed inside the thermo-well, which

was fixed to the head of the reactor vessel. A pressure gauge connected to the reactor head was used to

monitor the reactor pressure, which was not controlled. Initially, the reaction mixture in the vessel

was pressurized by using inert nitrogen gas. The reactor was equipped with an internal cooling coil

to quickly bring down the temperature of the reactants. A four-blade turbine impeller was used to

thoroughly mix the reactants. The impeller was connected through a zero-leakage magnetic drive

with toque capacity of 1.96 N-m. The magnetic drive was cooled by using water circulation when the

autoclave reached temperatures higher than 350 ◦C. The maximum rated speed of the magnetically

driven stirrer was 1200 rpm. In order to withstand high pressures, graphite gaskets were used to seal

the reactor and its contents. After the reaction, the reactor contents were emptied through a 10 mm

diameter opening at the bottom, which was fitted with a flush valve.
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Figure 1. Schematic of the laboratory scale batch HTL reactor.

2.3. Experimental Procedure

In a typical experiment, 30 g of rice straw and 300 mL of solvent were taken in the reactor.

The solvent was either water or water:methanol mixtures (75:25, 50:50, and 25:75 vol.%/vol.%). In order

to investigate the effect of water content on bio-crude yield and its composition, rice straw:water

composition was also varied as 1:1, 1:5, 1:10, and 1:15 (wt./wt.) in some experiments. In certain

experiments, 5 wt.% of alkaline homogeneous catalysts (such as NaOH, KOH, and K2CO3) was mixed

with water. The autoclave was sealed and then pressurized with nitrogen (N2) gas. Typically, the

initial pressure was 2–6 MPa, which was set based on the final pressure (18 MPa) and temperature

(300, 325, and 350 ◦C) to be reached. The reactants were agitated, using the stirrer at 350 ± 25 rpm.

Finally, the reactor was maintained isothermal at the set temperature for 30 and 60 min. After the

reaction, the reactor was cooled down to room temperature by continuous circulation of water in

the cooling coil and by means of external fan. The gases were released through the release valve,

while the liquid product (or bio-crude) was separated from the solid residue (bio-char) by using a

solvent-extraction process. The temperature and pressure profiles during the HTL process are depicted

in Supplementary Materials Figure S1. It is evident that, in order to reach a final pressure of 18 MPa

and 300 ◦C, the reactor was initially pressurized to ~6 MPa, using N2. Within 50–60 min, the operating

conditions were attained with a variation of ±0.5 MPa or ±5 ◦C around the set-point value.

The typical procedure for the separation of products is available in Chopra et al. [28]. Briefly,

DCM solvent (50 mL) was used to flush the contents of the reactor, which was a viscous kerogen-like

mixture containing bio-char, bio-crude, and aqueous-soluble organics. The flushed contents were

collected in a beaker and were allowed to settle. The aqueous phase was then separated by decantation

in a separation funnel. The DCM-soluble organic fraction was then filtered using a Whatman filter

paper (pore size ~ 11 µm). The bio-char collected on the filter paper was dried at 105 ◦C and 24 h,

and then weighed to calculate its yield. The filtrate was evaporated at 40 ◦C to obtain the bio-crude.

DCM is a better extraction solvent over other common solvents like acetone or hexane, because of

its non-polar and volatile nature, and its miscibility with many organic molecules. The use of DCM

aids in maximum solubilization of the organics into bio-crude fraction, and easier separation of the

aqueous phase from the organic phase. The bio-crude was then weighed to calculate its yield. The

autoclave was thoroughly rinsed and washed with both DCM and acetone solvents, to eliminate traces

of viscous bio-crude sticking to the reactor wall, cooling coil tubes, and stirrer blades. Most of the HTL
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experiments were repeated two times, while some were repeated in triplicate. The standard deviations

in product yields are within 2%–5%.

The yields of bio-crude (YBC), bio-char (YBCh) and gas+aqueous fractions (YG+Aq), conversion of

rice straw, and energy recovered in bio-crude (ERBC) were calculated by using the following expressions:

YBC (%) =

(

MBC

MRS

)

× 100 (1)

YBCh (%) =

(

MBCh

MRS

)

× 100 (2)

YG+Aq (%) = (100−YBC (%) −YBCh(%)) (3)

Conversion o f rice straw (%) =

(

MRS −MBCh

MRS

)

× 100 (4)

ERBC(%) =

(

HHVBC ×MBC

HHVRS ×MRS

)

× 100 (5)

In the above expressions, MBC, MBCh, MG+Aq, and MRS denote the mass of bio-crude, mass of

bio-char, mass of gas+aqueous fraction, and mass of rice straw, respectively; and HHVBC and HHVRS

denote the HHVs of bio-crude and rice straw, respectively.

2.4. Product Characterization

The organic composition of the bio-crude samples was analyzed in a gas chromatograph/mass

spectrometer (GC/MS, Shimadzu QP 2020, Shimadzu (Asia Pacific) Pte. Ltd., Singapore). The bio-crude

samples were diluted in DCM solvent, and 1 µL was injected. The GC column, Rxi-5SilMS (30 m length

× 0.25 mm inner diameter × 0.25 µm film thickness), was used to separate the compounds. The flow

rate of helium gas (99.9995% purity) through the column was 1 mL min−1 with split ratio of 1:100. The

injector temperature was set at 280 ◦C. The GC column oven temperature was initially maintained

at 40 ◦C for 1 min, followed by a temperature ramp at 5 ◦C min−1 to 280 ◦C, and finally held at 280
◦C for 5 min. The electron impact ionization voltage was 70 eV, and the ion-source temperature was

set at 250 ◦C. The m/z range in the MS was 50–500 Da. Peak identification was done by comparing

the mass spectra with NIST14 and Wiley08 mass spectrum libraries, and the identified compounds

had a match factor greater than 85%. GC/MS peak area% (or percent selectivity) was used to quantify

the various organics in the bio-crude. The organic compounds were classified according to different

functional groups.

Non-condensable gases such as CO, CO2, and H2 from selected experiments were analyzed in a

GC (Agilent 7820A, Agilent Technologies, U.S.A.) equipped with a thermal conductivity detector (TCD).

The gas components were separated by using a molecular sieve-13X packed column. The carrier gas

was N2 (99.999% purity), and its flow rate through the column was 3 mL min−1. The gas concentrations

were measured by calibrating the column, using standard gas mixtures of different compositions.

3. Results and Discussion

3.1. Effect of Temperature and Reaction Time

Table 2 presents the mass conversion of rice straw and the yields of bio-crude, bio-char, and

gas+aqueous fractions at different temperatures (300, 325, and 350 ◦C) and residence time periods

(30 and 60 min), using water as the solvent. The mass conversion of biomass exhibits reasonable

trends with the operating conditions. At any reaction time, the conversion increases with increasing

temperature, as a result of the greater hydrolytic decomposition of rice straw at high temperatures.

Increasing the reaction time leads to only a marginal increase in conversion of the feedstock to bio-crude

and gas+aqueous fraction, which is evident by comparing the results of R1–R3 versus R4–R6. However,
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reaction time plays a major role in the distribution of bio-crude and gas+aqueous fractions. At 300 ◦C,

increasing the reaction time enhances the yield of bio-crude, while at 350 ◦C, significant enhancement

in the yield of gas+aqueous fraction is evidenced. It is also important to note that, owing to a high

amount of ash in rice straw, which adds to its recalcitrance, obtaining conversions more than 80 wt.%

may not be possible.

Table 2. Effect of final temperature and reaction time on conversion of rice straw and product yields,

using water as solvent at rice-straw-to-water ratio of 1:10.

Expt. Code
Temperature

(◦C)
Reaction

Time (min)
Conversion

(%)
Bio-Crude

Yield (wt.%)
Bio-Char

Yield (wt.%)
Gas + Aqueous

Yield (wt.%)

R1 300 30 75.5 10.8 ± 0.4 24.6 ± 0.5 64.6
R2 325 30 74.4 15.1 ± 0.6 25.6 ± 1.3 59.3
R3 350 30 78.6 12.9 ± 0.7 21.4 ± 0.8 65.7
R4 300 60 75.2 12.3 ± 1.5 24.8 ± 1.8 62.9
R5 325 60 77.1 9.2 ± 0.5 22.9 ± 0.7 67.9
R6 350 60 80.0 3.1 ± 1.2 20.0 ± 0.3 76.9

The effect of temperature on bio-crude yield is evident from Table 2 at similar processing times.

For example, after 30 min of processing time, the bio-crude yields followed the trend 15.1 wt.%

(325 ◦C) > 12.9 wt.% (350 ◦C) > 10.8 wt.% (300 ◦C). Increasing the temperature from 300 to 350 ◦C at

60 min processing time led to a significant decrease in the yield of bio-crude (12.3 to 3.1 wt.%), with a

concomitant increase in gas+aqueous yield (62.9 to 76.9 wt.%) and only a minor drop in bio-char yield.

This suggests that thermal decomposition and degradation of the organic components are predominant

at high temperatures. However, at a lower temperature of 300 ◦C, increasing the reaction time to 60

from 30 min leads to an enhancement in bio-crude yield, without significant change in conversion.

This shows that temperature and processing time do have a combined effect on bio-crude yields.

At 30 min processing time, a maximum bio-crude yield of 15.1 wt.% was achieved at 325 ◦C, while at

60 min, a maximum bio-crude yield was obtained at 300 ◦C. Run-dong et al. [29] studied HTL of rice

stalks at various reaction time periods (30–120 min) and temperatures (250–375 ◦C), in the presence of

ethanol. At 250 ◦C, a maximum bio-crude yield of 48 wt.% was obtained at an optimal reaction time

of 90 min, whereas the highest bio-crude yield, of 55 wt.%, was obtained at 60 min and 325 ◦C. This

shows that, at a high temperature, a shorter residence time may be sufficient to achieve high bio-crude

yield. However, the optimum operating condition is not only determined by bio-crude yield, but also

by other bio-crude quality markers, such as HHV, and elemental composition (H/C and O/C).

Table 3 depicts the elemental composition and HHV of bio-crude and bio-chars obtained from

experiments R1–R6. The HHVs of bio-crude were calculated by using the correlation developed by

Francis and Lloyd [30]: HHV (MJ kg−1) = (34 [%C] + 124.3 [%H] + 6.3 [%N] + 19.3 [%S] – 9.8 [%O])/100.

As explained earlier, 350 ◦C–60 min corresponds to a severe condition that leads to low carbon content

in bio-crude, in addition to low yield. As a result, the HHV of bio-crude is also the lowest as compared

to other experiments performed in this study. It is important to note that the quality of bio-crude is

better from experiment R4, corresponding to 300 ◦C–60 min. This is evident from the high carbon

(77.6 wt.%) and low oxygen content (15.3 wt.%). The HHV of the bio-crude obtained at this condition

is also high (35 MJ kg−1), and it is in accordance with the oxygen content. In order to further ascertain

which operating condition is the optimum, the energy recovery in bio-crude was assessed. Energy

recovery in bio-crude depends on both bio-crude yield and its HHV, according to Equation (5). At 300
◦C–60 min, the energy recovery of ~36% is due to both high HHV of bio-crude (35.3 MJ kg−1) and its

reasonable yield (12.3 wt.%). Moreover, the hydrogen content in bio-crude is maximum (8.4 wt.%) at this

condition, and the atomic H/C and O/C ratios are 1.31 and 0.14, respectively. The HHVs of bio-crudes

observed in this study are in line with that reported in the HTU® (Hydrothermal Upgradation) process

of Shell Research Laboratory for a variety of biomass feedstocks [7]. A preliminary analysis of the

non-condensable gases produced at this condition was performed, using GC–TCD. The major gases
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were CO2 (74 vol.%), CO (18 vol.%), CH4 (6 vol.%), and H2 (2 vol.%) on N2-free basis. The high amount

of CO2 generated can be attributed to the decarboxylation reactions, which are dominant than the

CO removal through decarbonylation during HTL. When compared to fast pyrolysis bio-oil from

rice straw, which contains 42%–49% of oxygen [31,32], HTL bio-crude from rice straw at the optimal

processing condition contains three times lower oxygen (14.2%), which demonstrates its superior

quality. Therefore, further experiments involving different rice straw:water ratios, and water:methanol

ratios were performed at a final temperature of 300 ◦C and 60 min residence time.

Table 3. Effect of final temperature and reaction time on elemental composition of bio-crude and

bio-char, HHV of bio-crude and bio-char, and energy recovered in bio-crude. The rice-straw-to-water

ratio is 1:10 wt./wt.

Expt.
Code

Temp.
(◦C)

Time
(min)

Elemental Composition of
Bio-Crude (wt.% db)

HHV of
Bio-Crude
(MJ kg−1)

Elemental Composition of
Bio-Char (wt.% db)

HHV of
Bio-Char
(MJ kg−1)

ERBC

(%)
C H N O * C H N O #

R1 300 30 72.9 7.9 0.3 18.9 32.7 51.6 4.5 0.4 30.7 20.1 29.4
R2 325 30 73.5 7.0 0.5 19.0 31.9 46.6 3.4 0.3 36.9 16.5 39.8
R3 350 30 69.2 6.9 0.6 23.2 29.8 53.4 3.8 0.4 29.6 20.0 31.7
R4 300 60 77.1 8.4 0.4 14.1 35.3 51.3 4.3 0.2 31.4 19.8 35.9
R5 325 60 73.3 7.0 0.4 19.3 31.7 39.5 3.2 0.3 44.2 13.1 24.1
R6 350 60 65.7 6.4 0.5 27.4 27.6 49.7 3.4 0.4 33.7 17.8 7.1

* %O = 100-(%C + %H + %N), # %O = 100-(%C + %H + %N + %Ash). db: dry basis. ER: energy recovered in
bio-crude (%).

The elemental composition of bio-char from various experiments is depicted in Table 3. It is clear

that most of the oxygen present in the feedstock is transferred to the bio-char in HTL experiments.

This is reflected in the high oxygen content (28–44 wt.%) in bio-char. The carbon content in

bio-chars is lower than that present in bio-crude, but certainly better than rice straw feedstock.

As a result, the HHVs of majority of bio-chars are higher (17–21 MJ kg−1) than that of the rice straw

(12.1 MJ kg−1). The production of bio-char can be attributed to both fixed carbon present in the

feedstock and the repolymerization reactions occurring at long residence periods during the process.

The repolymerization reactions are particularly important at high pressures and low temperatures.

At higher temperatures, there is a possibility of the oxygenates and hydrocarbons to get converted to

non-condensable gases.

3.2. Effect of Rice-Straw-to-Water Ratio

Figure 2 depicts the product yields when the mass ratio of rice straw to water is varied at the

optimal condition of 300 ◦C–60 min. It is evident that the bio-crude yield increases from 5.7 to 12.3 wt.%

when the rice-straw-to-water ratio is increased from 1:1 to 1:10 wt./wt. The further increase in water

content decreases the bio-crude yield to 5.8 wt.%. Generally, a high amount of the solvent leads to

better extraction of the organics produced during the HTL process by the denser solvent medium [33].

This is supported by the trend followed by bio-char yield: 35.5 wt.% (1:1 wt./wt.) > 25 wt.% (1:5

wt./wt.) ≈ 24.8 wt.% (1:10 wt./wt.) > 23.9 wt.% (1:15 wt./wt.). However, rice-straw-to-water ratio of

1:10 wt./wt. is found to be the optimal condition for maximum bio-crude production. The HHV of

bio-crude increased from 33.9 to 35.3 MJ kg−1 with the increase in rice-straw-to-water ratio from 1:1

to 1:10 wt./wt., and then decreased to 33.7 MJ kg−1 with further increase, up to 1:15 wt./wt. This is

attributed to the increase of oxygen content in bio-crude to 15.3 from 14.1 wt.% as the water content

was increased. Maximum gas+aqueous yield of 70 wt.% was obtained with 1:15 wt./wt. of rice straw:

water, which shows that small-molecule oxygenates of the bio-crude were probably converted to

gases. Moreover, it is possible that high water content in the feedstock can solvate the small molecule

oxygenates, and so they get transferred to the aqueous phase. Therefore, 1:10 wt./wt. is verified to be

the optimal rice straw:water composition.
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Figure 2. Effect of rice-straw-to-water ratio on product yields and HHV of bio-crude at a final

temperature of 300 ◦C and 60 min.

3.3. Influence of Methanol as a Co-Solvent

Co-solvents play a significant role in enhancing the production of bio-crude because of the strong

and specific interactions with biomass intermediates. Co-solvents are found to be more effective

than an individual solvent for bio-crude production from biomass via HTL [9]. In fact, the effect is

due to both physical and chemical factors. The critical point of methanol (239 ◦C, 8.09 MPa) is low

as compared to that of water (374 ◦C, 22.1 MPa). The critical temperature and pressure values of

various methanol:water mixtures (in vol.%/vol.%) were calculated by using ASPEN plus V8.6 software,

and they followed the trend 25:75 (352.7 ◦C, 19.9 MPa) > 50:50 (325.5 ◦C, 17 MPa) > 75:25 (289.5 ◦C,

13.3 MPa). The dielectric constant of methanol is low as compared to that of water. Therefore, methanol

can readily dissolve the high molecular weight organics generated from rice straw decomposition.

Moreover, at 50:50 and 75:25 compositions of methanol:water, supercritical condition prevails at the

operating condition. Therefore, these are expected to significantly affect the product yields and their

composition. The chemical effect of methanol is its ability to donate hydrogen. Pedersen et al. [34]

reported that radicals formed from hydrogen-donating solvents can act as radical quenching mediators

and prevent the lignin-derived radicals from participating in repolymerization reactions. Other studies

have reported that alcohols help to dissolve and stabilize the intermediates. This reduces their rate

of repolymerization, which eventually enhances the bio-crude yield [35,36]. The hydrogen donor

solvents enhance the hydrogenolysis reactions of biomass. In their absence, the formed radicals from

rice straw can recombine to form high-molecular-weight compounds, which eventually increase the

yield of bio-char.

Figure 3 depicts the yields of product fractions and the HHVs of bio-crudes obtained at different

water:methanol compositions. Clearly, the presence of methanol as co-solvent improves the yield of

bio-crude, which follows the trend 31.7 wt.% (50:50 water:methanol) > 16.4 wt.% (25:75) > 14.4 wt.%

(75:25) > 12.3 wt.% (100:0). The bio-char yield follows a clear trend with water:methanol composition,

as follows: 20.76 wt.% (25:75) > 18.5 wt.% (50:50) > 14.9 wt.% (75:25).
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Figure 3. Effect of water-to-methanol ratio on product yields and HHV of bio-crude at a final

temperature of 300 ◦C, 60 min reaction time, and rice-straw-to-solvent ratio of 1:10 wt./wt.

In order to ascertain the quality of bio-crudes obtained by using methanol as co-solvent, the

elemental composition and HHVs were analyzed. From Table 4, it is clear that the oxygen content

in bio-crude is, in fact, higher (17.8–22.3 wt.%) as compared to that obtained with only water as the

solvent. The carbon content in bio-crude is lower (69–72 wt.%) as compared to that when methanol was

not used. With equal composition mixture of water:methanol (experiment R11), the oxygen content is

reasonably low (17.8 wt.%), which leads to better HHV of bio-crude at this condition. Contrary to the

expectation, there is no significant improvement in hydrogen content of the bio-crude, while oxygen is

improved. This indicates the participation of methanol in reactions with the hydrolysis intermediates

from biomass during HTL. This is evident in the formation of high amounts of oxygenated compounds,

like esters in bio-crude, which is discussed in Section 3.5. The HHVs of bio-crudes are in line with the

oxygen content in them. The HHV recorded with 50:50 (vol.%/vol.%) water:methanol was 32.8 MJ kg−1.

Li et al. [37] conducted HTL of sludge in supercritical ethanol and showed that oxygen content in

bio-crude passed through a maxima as ethanol:water content was varied. They attributed this to the

competition between hydrogen donor reduction of oxygen, and CO–CO2 reduction of oxygen. In this

study, oxygen content is minimum with equal composition mixture of methanol:water, which then

increases with the addition of methanol. This shows that more methanol in the mixture possibly leads

to hydrogen donor reduction of oxygen, which leads to dehydration. Thus, a lower amount of oxygen

from biomass is lost as water, as compared to a higher amount of oxygen loss in the form of CO2

and CO.

The bio-char obtained from experiments conducted with methanol (R10–R12) contained a

high amount of oxygen and low amount of carbon in them. This is reflected in their poor HHVs

(<15.7 MJ kg−1). This shows that, besides getting converted to oxygenates in bio-crude, a significant

fraction of methanol is involved in the formation of bio-char. This occurs by the formation of

high-molecular-weight oxygenated polymerized fragments. The analysis of non-condensable gases

collected at the end of the HTL process conducted with equal composition of water:methanol

(experiment R11) showed 40 vol.% of CO2, 46.7 vol.% of CO, and 13.3 vol.% of H2. As compared

to experiment R4 conducted with only water as solvent, the CO2 production is significantly low in

this experiment. Methanol decomposition is reported to occur via two pathways. In one pathway,

methanol reacts with water under HTL conditions, to form CO2 and H2. In another pathway, methanol

initially decomposes, to form formaldehyde and H2. Formaldehyde further decomposes to CO and

H2 [38]. Finally, CO can get converted to CO2 by reacting with water. The observed gas composition

demonstrates that the second pathway is favored when methanol is added as a co-solvent.
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Table 4. Effect of water-to-methanol ratio and catalysts on elemental composition of bio-crude and

bio-char, and HHVs of bio-crude and bio-char at final process temperature of 300 ◦C, reaction time of

60 min, and rice-straw-to-solvent ratio of 1:10 wt./wt.

Expt.
Code

Water:
Methanol

(Vol.%/Vol.%)

Elemental Composition of
Bio-Crude (wt.% db)

HHV of
Bio-Crude
(MJ kg−1)

Elemental Composition of
Bio-Char (wt.% db)

HHV of
Bio-Char
(MJ kg−1)C H N O * C H N O #

R10 75:25 71.5 7.7 1.6 19.2 32.1 44.4 3.4 1.7 37.7 15.7
R11 50:50 72.7 7.8 1.7 17.8 32.8 36.4 3.1 1.3 46.4 11.7
R12 25:75 69.1 7.7 2.3 20.9 31.2 30.8 2.7 1.1 52.6 8.7

R13 50:50 (1) 71.7 7.7 2.3 18.3 32.3 27.4 2.7 1.0 56.1 7.2

R14 50:50 (2) 73.5 7.9 2.4 16.2 33.3 23.4 2.3 0.8 60.7 4.8

R15 50:50 (3) 73.8 7.7 2.3 16.2 33.2 23.3 2.3 0.8 60.8 4.9

* %O = 100-(%C + %H + %N), # %O = 100-(%C + %H + %N + %Ash), (1) KOH (5 wt.%), (2) NaOH (5 wt.%), and (3)

K2CO3 (5 wt.%) were employed as catalysts. In R10, R11, and R12, no catalyst was used.

3.4. Role of Alkali Catalysts

The addition of homogeneous catalysts, such as alkali salts, is known to improve the bio-crude

yield in the HTL process, owing to the inhibition of dehydration reaction of the carbohydrate fraction

of the biomass [7]. This is particularly evident at high pH values of the mixtures upon the addition

of alkali. Moreover, hydrothermal gasification and water–gas shift reactions are promoted by the

alkali catalysts [7]. Alkali catalysts such as KOH, K2CO3, Na2CO3, and NaOH have been tested

for HTL of agro residues, forest wastes, and municipal solid waste mixtures [39,40]. In this study,

5 wt.% of KOH, K2CO3, and NaOH was used as catalysts for HTL of rice straw at 300 ◦C–60 min,

rice-straw-to-solvent ratio of 1:10 (wt./wt.), and water-to-methanol ratio of 50:50 (vol.%/vol.%). Figure 4

depicts the product yields and the HHVs of bio-crudes. It is evident that the use of alkali catalysts

significantly improved the bio-crude yield, which follows the trend KOH (39.9 wt.%) >NaOH (34.5

wt.%) > K2CO3 (33.8 wt.%) > no catalyst (31.7 wt.%). Among the three catalysts, K2CO3 was most

effective for overall mass conversion of rice straw to bio-crude and gas+aqueous fractions. The

maximum conversion of 86.9% was obtained with K2CO3, followed by 84.6% for NaOH, 83.5% for

KOH, and 81.6% without any catalyst.
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Figure 4. Effect of alkali catalysts on product yields and HHV of bio-crude at 300 ◦C, 60 min, rice

straw:solvent ratio of 1:10 wt./wt., catalyst quantity of 5 wt.%, and 50:50 (vol.%/vol.%) methanol:water.
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Generally, carbonates are shown to be effective as catalysts for the HTL process, compared to

hydroxides. The mechanism of action of K2CO3 is proposed to follow the reaction sequence given

by [7]:

K2CO3 + H2O→ KHCO3 + KOH

KOH + CO→ HCOO− K+ (formate salt)

HCOOK + H2O→ KHCO3 + H2

2KHCO3 → H2O + K2CO3 + CO2

The high yield of gas+aqueous (53.1 wt.%) produced using K2CO3 substantiates its effectiveness

in improving the conversion of rice straw via hydrolytic decomposition of carbohydrates and lignin

components. The reported gas+aqueous yields are in line with the value reported by Zhu et al. [41].

Even though the bio-crude yield was high with KOH, the oxygen content is lower (16 wt.%) and

carbon content is higher (73–74 wt.%) in bio-crudes produced using NaOH and K2CO3. As a result,

the HHVs of bio-crudes are slightly better (33 MJ kg−1) with NaOH and K2CO3 catalysts as compared

to that from KOH (32 MJ g−1). The molar H/C and O/C content in bio-crudes vary in the range of

1.25–1.30 and 0.17–0.19, respectively. From the elemental composition of bio-char, it is clear that the

use of these alkali salts, along with methanol co-solvent, significantly improves the oxygen retained

in the bio-char. The high oxygen (56–60 wt.%) and low carbon (23–27 wt.%) lead to low HHVs of

bio-chars. Table 5 presents a comparison of bio-crude yields and their salient properties from rice

straw, using different solvent systems. It is evident that the yield of bio-crude obtained using methanol

as co-solvent is comparable with that using 2-propanol. Importantly, the HHV of bio-crude is better

and oxygen content in it is lower with the methanol–water system as compared to 2-propanol–water

and ethanol–water systems. This substantiates the positive effect of methanol as a co-solvent for HTL

of rice straw.

Table 5. Comparison of bio-crude yield and its properties reported in the literature with this study.

Temp.
(◦C)

Rice
Straw (g)

Solvent
(mL)

Solvent:
Water

(Vol./Vol.)
Solvent

Bio-Crude
Yield

(wt.%)

HHV
(MJ kg−1)

O
(wt.%)

C
(wt.%)

Ref.

300

20 300 - Water 29.1 27.2 45.3 47.4

Yuan et
al. [18]

20 300 - Ethanol 13.0 33.5 - -
20 300 1:1 Ethanol–water 38.4 29.7 - -
20 300 - 2-Propanol 15.1 35.8 18.5 71.3
20 300 1:1 2-Propanol–water 39.7 30.7 27.3 63.8

300

30 300 - Water 12.3 35.3 14.1 77.1
This

study
30 300 1:1 Methanol–water 36.8 32.8 17.8 72.7
30 300 1:1 Methanol–water+KOH 40.0 32.3 18.3 71.7

3.5. Bio-Crude Composition

Bio-crudes from selected experiments were analyzed, using GC/MS, to analyze the variation

of organic composition with respect to the process parameters. The various organic compounds

present in the bio-crude were classified according to the functional groups, namely simple oxygenates,

cyclo-oxygenates, aliphatic hydrocarbons, phenolics, other aromatics, indene derivatives, furan

derivatives, and esters. The category of other compounds includes N-containing organics and

those that were obtained with low match factor in GC/MS. Simple oxygenates were mostly

linear-chain-substituted ketones, while cyclo-oxygenates contained mostly cylopentenone and

alkyl-substituted cyclopentenones. Aromatics included primarily non-phenolic compounds like

aromatic hydrocarbons and aromatic oxygenates. Figure 5 depicts the selectivities to functional groups

when 1:10 wt./wt. of rice straw:water was used at various conditions. The major product groups were

found to be cyclo-oxygenates, phenolics, and other aromatics. It is evident that, with the increase in

residence time of the process, from 30 to 60 min, the selectivity to phenolic compounds decreased

slightly. The marginal decrease in selectivity to phenolics from 53.7% (30 min) to 50.4% (60 min) at
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300 ◦C, and 49.9% (30 min) to 49.3% (60 min) at 325 ◦C can be attributed to simultaneous formation

of phenolic compounds from the lignin fraction at longer processing time and the decomposition

of phenols to aromatic hydrocarbons via dehydration and demethoxylation pathways. Moreover,

a major reduction in selectivity to cyclo-oxygenates accompanied by an increase in the formation of

non-phenolic aromatic compounds were observed. In fact, the combined selectivity to non-phenolic

aromatics and indene derivatives increased significantly as the processing time was increased. For

example, at 300 ◦C, it increased from 6.6% to 21.2%, while at 325 ◦C, it increased from 6.6% to 18.8%.
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Figure 5. Selectivity to various functional groups in bio-crude obtained at rice-straw-to-water ratio of

1:10 wt./wt., at different operating conditions.

The major phenolic compounds in the bio-crude were phenol, 2-methylphenol (o-cresol),

4-ethylphenol, catechol, guaiacol, 4-ethylguaiacol, alkyl-substituted benzenediols, hydroxyl

acetophenone, and syringol. Phenolic compounds are derived from the decomposition of lignin, mainly

via hydrolytic cleavage of α-O-4 and β-O-4 linkages [42]. Pelzer et al. [43] proposed a mechanism of

acidolysis of lignin model compounds, which involved nucleophilic attack of water on α-carbon that led

to α-O-4 aryl-ether bond cleavage. This mechanism was commensurate with the protonation of ether

oxygen. Similar reactions in the HTL process are responsible for the formation of observed products.

An increase in processing time clearly decreases the selectivity to cyclo-oxygenates, which can

be attributed to their decomposition to form non-condensable gases, like CO and CO2, in addition

to other low molecular oxygenates, which were not detected in the gas phase in this study. For

example, at 300 ◦C, the decrease was from 26% (30 min) to 17.9% (60 min), while it was 27.6%

(30 min) to 20.6% (60 min) at 325 ◦C. The major cyclo-oxygenates were cyclopentanone,

2-cyclopentene-1-one, 3-methyl-2-cyclopentene-1-one, 2,3-dimethyl-2-cyclopentene-1-one,

2,3,4-trimethyl-2-cyclopentene-1-one, and 2-acetonylcyclopentanone. The cyclopentanones

are mainly produced by the decomposition of the pentanose sugars present in the hemicellulose
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fraction of biomass. A few cyclohexanone derivatives were also observed in the bio-crude, and

their formation can be traced to the successive hydrolytic dehydration of hexose sugars from

the cellulose fraction. Interestingly, the decrease in production of cyclo-oxygenates at 60 min is

accompanied by an increase in production of aromatic compounds such as methoxy-substituted

benzenes, naphthalenol, naphthol, hydroxy-substituted naphthalene derivatives, and methyl- and

hydroxy-substituted indanone. This indicates that, at long residence times, bimolecular condensation

reactions of cyclo-oxygenates with low-molecular-weight compounds are prevalent during HTL.

The temperature effect is not significant for the production of these compounds in the bio-crude

at similar processing periods. For example, at 60 min, the selectivities to phenolic compounds are

comparable (50.4% at 300 ◦C vs. 49.3% at 325 ◦C), while the selectivities of total aromatics (combined

non-phenolic aromatics and indene derivatives) are only slightly different (21.2% at 300 ◦C vs. 18.8% at

325 ◦C). Similarly, at 30 min, the selectivities to cyclo-oxygenates (26% vs. 27.6%) and total aromatics

(6.6% at 300 and 325 ◦C) are very much comparable. Therefore, the effect of increase in temperature, at

least in the range investigated in this study, is minimal on composition of major functional groups in

bio-crude. Figure 6 depicts the structures of the salient products produced from HTL of rice straw in

presence of water as the solvent. Supplementary Tables S1–S4 provide the list of classified organic

compounds detected in the bio-crude at different conditions, along with their composition. A number

of compounds identified in this study are in agreement with Liu et al. [44], who carried out HTL of

walnut shells in the presence and absence of alkali.

 

 

Figure 6. Scheme depicting the typical products produced from HTL of rice straw at different conditions.

The effect of water:methanol and alkali catalysts on bio-crude composition is shown in Figure 7a.

The detailed lists of classified organics under each product group at different water:methanol volume

ratios are available in Supplementary Tables S5–S7. It is evident that the addition of methanol to water

significantly alters the organic distribution in the bio-crude. Esters, mostly methyl esters, emerge as

the major organic compounds. Compared to the case with only water as the solvent, the addition of

methanol enhances the production of methyl esters, possibly via esterification/methanolysis reactions

of the carboxylic functional groups present in the biomass intermediates, which is similar to reported

results [10,45]. The subcritical/supercritical medium of methanol–water can catalyze these reactions,

owing to the strong acidic–basic nature. The selectivity to esters in the bio-crude follows the trend

72.9% (25:75 vol.%/vol.% water:methanol) > 59.6% (75:25) > 51.5% (50:50). Interestingly, a similar

trend is followed by the oxygen content in the respective bio-crudes (Table 4). This validates the

high HHV of bio-crude when an equal composition mixture of water:methanol is used as the solvent

system (Figure 3). The major esters include octadecanoic acid–methyl ester, hexadecanoic acid–methyl

ester, and tetradecanoic acid–methyl ester. Generally, the high selectivity to esters is accompanied by

lower selectivities to cyclo-oxygenates and phenolic compounds. More importantly, it is worthwhile
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to mention that with 25:75 water:methanol mixture, the operating condition of 300 ◦C–18 MPa is

supercritical, while for 75:25 and 50:50 water:methanol mixtures, the operating condition is still

subcritical and near critical, respectively. This can lead to significant differences in solubility of

the components in bio-crude, which has resulted in the observed distribution. The production of

simple/linear oxygenates, aliphatic hydrocarbons, furan derivatives, and indene derivatives was

negligible in the bio-crude when methanol was added as a co-solvent. Li et al. [37] observed ethyl esters

and butyl esters of long-chain carboxylic acids (C15–C20) and fatty acids (mainly octadecanoic acid)

as the major components in the bio-crude from sludge in the presence of supercritical ethanol. This

supports the organic distribution in bio-crude observed in this study. Figure 6 depicts the structures

of the salient esters and aromatic compounds produced from rice straw when methanol was used as

the co-solvent.
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Figure 7. Selectivity to various functional groups in bio-crude obtained at (a) different water-to-methanol

ratios and (b) different alkali catalysts at water:methanol of 50:50 (vol.%/vol.%). The final temperature

is 300 ◦C, reaction time is 60 min, and rice-straw-to-solvent ratio is 1:10 wt./wt.

Figure 7b depicts the organic distribution in bio-crude from rice straw when the alkali catalysts

were used in the presence of an equal composition mixture of methanol:water. The detailed lists of

products in the bio-crude classified according to functional groups are available in Supplementary

Tables S8–S10. It is evident that the selectivity to esters is greatly reduced upon the addition of the alkali

catalysts, which shows that these promote hydrolysis reactions over esterification, which is due to the

effect of methanol in the reaction mixture. The selectivities to esters follow the trend: no catalyst (51.5%)

> NaOH (34.5%) > KOH (29.7%) > K2CO3 (20.7%). Significant production of phenolic compounds

is observed in the presence of KOH (38.3%), followed by K2CO3 (33%) and un-catalyzed system
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(21.8%). The addition of NaOH, interestingly, favors the production of alcohols, mainly dodecanol

and tetradecanol, which shows that hydroxylation is favored in presence of NaOH. The production

of long-chain hydrocarbons is also favored (~8% selectivity in presence of NaOH), but the phenolics

were greatly suppressed. For HTL of woody biomass, it is reported that potassium salts exhibit better

catalytic activity as compared to sodium salts, which follow the trend K2CO3 > KOH > Na2CO3 >

NaOH [7]. Importantly, the role of alkali salt depends on the biomass type to a certain extent, and

the solvent medium to a great extent. Therefore, the observed variations in product distribution are

specific to the reaction mixture considered in this study. Between KOH and K2CO3, the former is

found to be effective for the hydrolytic cleavage of lignin to produce phenolics, while the latter exhibits

relatively better activity for hemicellulose hydrolysis to produce more of cyclo-oxygenates.

3.6. Process Energy Balance

In order to evaluate the energy consumed by various streams and the process as a whole, a

detailed energy balance of the process for experiments R4, R11, and R13 was performed. These

experiments were performed at a final temperature of 300 ◦C and residence time of 60 min. The

percent energy recovery and energy-consumption ratio were determined according to the following

expressions [46,47]:

Energy recovery (ER) (%) =
EP

EF + QS
× 100 (6)

Energy consumption ratio (ECR) =
EHTL

EBC
(7)

where EP, EF, EHTL, EBC, and QS denote the total energy of products, energy of the feedstock, heat

required for the HTL process, energy recovered in bio-crude, and heat of solvent, respectively. These

terms are defined as follows [46,47]:

EP = (MBC ×HHVBC ) + (MBCh ×HHVBCh ) + (MG ×HHVG) (8)

EF = (MRS ×HHVRS) (9)

EHTL =
(QS + QRS) × (1− ηh)

ηc
(10)

EHTL =
((mS ×Cp S × ∆T) + (mRS ×Cp, RS × ∆T)) × (1− ηh)

ηc
(11)

EBC = (MBC ×HHVBC ) (12)

In the above expressions, mS, mRS, Cp,S, Cp,RS, and ∆T denote the mass of solvent, mass of rice

straw, specific heat capacity of solvent, specific heat capacity of rice straw, and temperature difference,

respectively. QRS and QS denote the heat required to raise the temperature of rice straw and solvent,

respectively. When water–methanol mixtures were used as solvents, QS was calculated by mixture rule.

The factors ηh and ηc in Equation (11) denote the efficiencies of heat recovery and combustion energy,

respectively, and correspond to the scenario of bio-crude combustion. The values of these are modestly

assumed as 0.5 and 0.7, respectively [47]. The sample calculations are provided in Supplementary S11.

Table 6 depicts the energy values for three experiments. It is evident that the energy recovery

increases on addition of methanol as co-solvent, which is primarily attributed to the increase in yield

of bio-crude. Nearly two times improvement in energy recovery is recorded with experiment R13 as

compared to R4. This shows that the addition of methanol and the homogeneous catalyst play a vital

role. The ECR provides an estimate of the effectiveness of the HTL process compared to the energy that

can be recovered by combustion of bio-crude. ECR value greater than unity signifies that the process

consumes more energy than that generated in the bio-crude, and vice versa when ECR is lower than

unity. Therefore, ECR < 1.0 is preferred. It is evident from Table 6 that, with only water as the solvent,
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ECR is 2.03. This shows that the process may not be favorable from an energy perspective. However,

with the addition of methanol and the catalyst, a net-positive energy balance is obtained. It can be

concluded that both the processes (addition of methanol and catalyst) are energetically feasible. A

particular advantage of adding methanol as a co-solvent is reflected in the low energy required to raise

the temperature of the slurry to the required temperature, as compared to using only water as the

solvent. In addition to the energy advantage, the addition of co-solvent also improves the yield of

the bio-crude, which is reflected in energy recovery, which is nearly two times higher as compared to

that using only water. These are comparable with HTL of microalgae and defatted microalgae, and

certainly better than that of pyrolysis bio-oil [47]. An ensemble of the results demonstrates that HTL,

using methanol as a co-solvent, is a promising thermochemical technology to convert the abundantly

available waste rice straw to valuable bio-crude with low oxygen content and high HHV.

Table 6. Energy calculations to determine energy recovery and ECR in HTL of rice straw at 300 ◦C,

60 min, and rice straw:solvent ratio of 1:10 wt./wt.

Water
Water:Methanol 50:50

(Vol.%/Vol.%)
Water:Methanol 50:50
(Vol.%/Vol.%) + KOH

Energy content of rice straw (EF) (kJ) 363 363 363
Heat of rice straw (QRS) (kJ) 6.93 6.93 6.93

Heat of water (QH2O) (kJ) 362.62 181.30 181.30
Heat of methanol (QMethanol) (kJ) - 32.65 32.65
Heat required for HTL process

(EHTL) (kJ)
263.96 157.80 157.80

Total energy of products (EP) (kJ):
Energy recovered in bio-crude (kJ)
Energy recovered in bio-char (kJ)

Energy recovered in gases (kJ)

322.62
130.26
137.64
54.72

424.50
305.00
64.75
54.72

478.34
387.83
35.79
54.72

EF + Qsolvent (kJ) 725.62 576.96 576.96
Energy recovery (ER) (%) 44.5 73.6 82.9

Energy consumption ratio (ECR) 2.03 0.52 0.41

4. Conclusions

Through a series of systematic experiments, a better-quality bio-crude was obtained from rice

straw at 300 ◦C, 18 MPa, and a 60 min processing time, using only water as the solvent at rice

straw:water ratio of 1:10 (wt./wt.). At this condition, the bio-crude yield was 12.3 wt.%, HHV was

35.3 MJ kg−1, oxygen content was 14.2 wt.%, and energy recovery was 36%. The major organic

constituents in the bio-crude were phenolic compounds, cyclo-oxygenates like cyclopentenone and its

derivatives, and other aromatics. The selectivities to phenolic compounds, cyclopentenone, and its

derivatives and aromatics at this condition were 50%, 18%, and 21%, respectively. In order to

further improve the yield and quality of bio-crude, methanol was used as a co-solvent. The yields

of bio-crude increased up to 36.8 wt.% with the addition of methanol in equal volume ratio with

water. The oxygen content and HHV of bio-crude were 17.8 wt.% and 32.8 MJ kg−1, respectively.

Esters emerged as the major constituents of bio-crude, owing to the enhancement of esterification

reactions under acid/base-catalyzed conditions in presence of methanol:water. The addition of alkali

catalysts further improved the yield of bio-crude, with a maximum yield of ~40 wt.% obtained using

5 wt.% KOH. The catalysts promoted both hydrolytic cleavage of biomass components to produce

phenolics and cyclo-oxygenates, and esterification reactions to produce methyl esters. Energy recovery

was calculated to be in the range of 70%–80% for HTL conducted in presence of methanol:water.

The energy-consumption ratio was lesser than unity for the methanol:water system, suggesting that

the process produced more energy in the bio-crude than it consumed.

This study proves that recovery of valuable esters may be targeted from HTL bio-crude for their

use in various industries, such as soap manufacturing, cosmetics, food, detergents, and chemicals.

Moreover, an analysis of the energy-consumption ratio for the presented scenarios in a continuous
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HTL process with energy integration among multiple unit operations, and a detailed study on the

techno-economic aspects are essential to establish the commercial viability of the HTL technology for

biomass agro residue valorization.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/10/2618/s1.
Figure S1: Temperature and pressure profiles from selected experiments performed at rice-straw-to-water ratio of
1:10 wt./wt. Tables S1–S10: Detailed composition of bio-crude from experiments R1, R2, R4, R5, R10, R11, R12,
R13, R14 and R15, respectively. S11: Sample calculation to determine energy recovery (%) and ECR.
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