
Discrete Applied Mathematics 154 (2006) 1264–1278
www.elsevier.com/locate/dam

Graph splicing systems�

Rahul Santhanam, Kamala Krithivasan∗

Department of Computer Science and Engineering, Indian Institute of Technology, Madras, 600 036, India

Received 10 August 1998; received in revised form 5 December 2002; accepted 14 November 2005
Available online 28 February 2006

Abstract

In this paper, extended graph splicing systems are defined. It is shown that when strings are represented as linear graphs,
any recursively enumerable set can be generated by an extended graph splicing system. It is also shown that the computational
completeness of extended graph splicing systems can be proved under some constraints too.
© 2006 Published by Elsevier B.V.

Keywords: Extended graph splicing systems; Computational completeness; Constrained splicing systems

1. Introduction

Splicing systems were introduced by Head in [5] to investigate the power of computing with DNA [8]. Some
decidability results about splicing systems were studied in [2]. One of the recent developments in this field is the
generalization of the concept of “splicing system” to graphs by Rudolf Freund in [3]. Freund’s formulation is interesting
because it is quite an accurate model of a system consisting of biochemical units and the interactions between them.
In this paper, we present results concerning the generative capacity of certain versions of the splicing system defined
in [3]. We prove that, if a distinction between terminals and nonterminals is made in the system, then these graph
splicing systems with finite sets of axioms and rules are computationally complete in a certain sense. If we consider
a graph language consisting only of directed paths to be equivalent to the corresponding string language, then these
systems can generate all recursively enumerable sets of strings.

Graph splicing systems have various parameters like number of axioms, number of rules etc. We examine, in this
paper, the effect of constraints upon these parameters on the computational completeness of splicing systems. We find
the minimum values of these parameters for which the resulting (constrained) class of systems is still computationally
complete. These results have practical significance since the values of the parameters will be bounded in practical
biochemical situations. The completeness of the splicing systems even for small bounds on the parameters provides a
good indication for the feasibility of practical bio-computers.

The layout of the paper is as follows. In Sections 2 and 3 we give a few concepts from the literature which are required
for the understanding of the paper. In Section 4, we prove the computational completeness of graph splicing systems.
In Section 5, we study the effect of imposing some constraints on graph splicing systems in terms of computational
power. We conclude the paper in Section 6.

� This work was partially supported by a project from the Department of Science and Technology, Government of India.
∗ Corresponding author.

E-mail address: kamala@iitm.ernet.in (K. Krithivasan).

0166-218X/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.dam.2005.12.005

http://www.elsevier.com/locate/dam
mailto:kamala@iitm.ernet.in

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1265

2. Preliminaries

Let � be any finite alphabet. �∗ denotes the set of all strings over �. A graph G over � is a triple (V , E, f) where V

is the node set, E ⊆ V × V is the edge set and f is the vertex labelling function (f : V → �). Given a graph G, V (G)

denotes the vertex set of G and E(G) the edge set of G. A path in G between vertices v0 and vn belonging to V (G) is
a set of vertices v0, v1, . . . , vn such that there is an edge between vi and vi+1 for i = 0, . . . , n − 1. A graph G is said
to be connected if there is a path in G between every pair of vertices that belong to V (G). A graph language is a set of
labelled graphs.

The graphs, G1 = (V1, E1, f1) and G2 = (V2, E2, f2), are said to be equivalent if there is a bijective function
g : V1 → V2 such that,

• for x, y ∈ V1, (x, y) ∈ E1 iff (g(x), g(y)) ∈ E2,
• for all x ∈ V1, f1(x) = f2(g(x)).

The above relation induces an equivalence relation creating equivalence classes on the set U of all graphs. Each such
equivalence class is called an abstract graph. The abstract graph that corresponds to a graph G is represented by [G].
When we consider graph languages, we mean languages of abstract graphs. When we deal with unlabelled graphs, this
notion is called Isomorphism.

We now define the notion of a Turing machine [6].A Turing machine is defined by the tuple M=(Q, �, �, �, q0, B, F)

where Q is the set of states, � is the input alphabet, � is the set of tape symbols, � is a mapping from Q × �
to Q × � × {L, R}, q0 is the initial state, B is a symbol in � called the blank symbol and F is the set of final
states.

We denote an instantaneous description (ID) of the Turing machine by �1q�2. Here q, the current state of M, is in
Q; �1�2 is the string in �∗ that is the contents of the tape. The tape head is assumed to be scanning the leftmost symbol
of �2, or if �2 = �, the head is scanning a blank symbol. We denote the moves of the Turing machine by the relation �

defined on the IDs of the machine. The relation, �∗, denotes the reflexive transitive closure of �. We refer the reader to
[6] for further details. The language accepted by a Turing machine, M = (Q, �, �, �, q0, B, F), denoted by L(M), is
defined as

L(M) = {w|w ∈ �∗ and q0w�∗�1p�2 for some p in F, and �1 and �2 in �∗}.

3. Definitions

Definition 1 (Graph splicing system). A graph splicing system � is a pair (�, P) where � is an alphabet and P is a
finite set of rules of the form, ((h[1], E′[1]), . . . , (h[k], E′[k]); E), where

• h[i] = (V [i], E[i], L[i]), 1� i�k, is a graph (L[i] is the vertex labelling function),
• E′[i] ⊆ E[i], 1� i�k. E′[i] is called the set of cut-edges;
• the node sets, V [i], are mutually disjoint;
• E must obey the following rules:

◦ Each edge (n, m) ∈ E′[i] is supposed to have been divided into two parts, i.e. the start part (n, m] and the
end part [n, m) (refer to Fig. 1).

◦ The elements of E are pairs of the form ((n, m], [n′, m′)), where (n, m) and (n′, m′) are edges from
⋃

E′[i].
◦ Every element from {((n, m], [n, m))|(n, m) ∈ ⋃

E′[i]} must appear exactly once in a pair of E. �

mn
(n, m]

[n, m)

Fig. 1. View of a cut-edge.

1266 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

Definition 2 (Graph splicing step). Let � = (�, P) be a graph splicing system. Let p = ((h[1], E′[1]), . . . , (h[k],
E′[k]); E) be a rule in P. We say that a set R of graphs derives a set S of graphs through the splicing rule p if there exist
graphs g[1], g[2], . . . , g[k] ∈ R and graphs g′[1], g′[2], . . . , g′[m] ∈ S such that,

• For all i with 1� i�k, h[i] is an induced subgraph1 of g[i].
• From g[1], g[2], . . . , g[k] we delete all edges corresponding to edges in

⋃
E′[i] but add each edge corresponding

to the edge (n, m′) such that ((n, m][n′, m′)) ∈ E, which yields the uniquely determined union of m connected
graphs g′[1], g′[2], . . . , g′[m]. �

Here we are implicitly using multisets of graphs. g[j] may be another copy of g[i]. The basic idea of a graph splicing
rule is to cut various edges in some connected graphs and rejoin the edges in another fashion.

We give below the definition of an extended graph splicing system. It is slightly different from the definition given
in [3].

Definition 3 (Extended graph splicing system). Let � = (�, P) be a graph splicing system and I be a finite set of
graphs, called the set of axioms. The quadruple, (N, T , P, I) where N and T are disjoint sets of nonterminals and
terminals, respectively, and N ∪ T = �, is called an extended graph splicing system (in an ordinary graph splicing
system, no distinction between terminals and nonterminals is made). �(I) is the minimal set of graphs obtained by
applying some splicing rules to some subset of I. �n(I) is defined iteratively as �(�n−1(I)); �0(I) is defined to be I.
We also define �∗(I) = ⋃

n�0 �n(I). The graph language, L(F), generated by an extended graph splicing system F,
F = (N, T , P, I), is

L(F) = {g = (V , E, f) ∈ �∗(I)|f (n) ∈ T ∀n ∈ V (g)}. �

The form of the splicing rules in a graph splicing system places a restriction on the structure of the corresponding
graph language. We define a graph language L to be of bounded degree if there is an integer k such that no vertex of
any graph in L has degree greater than k. For example, the set of all binary trees is a graph language of bounded degree
while the set of all complete graphs is not. All graph splicing languages are graph languages of bounded degree. This
is because the degrees of vertices of graphs participating in splicing are preserved in a graph splicing step. Thus, if
S = (N, T , P, I) is an extended graph splicing system then,

Maximum degree of any vertex of a graph inL(S)� max{degree of v|v is a vertex of a graph in I }.
Since the axiom set I is finite, the maximum exists and is an integer that bounds the degree of any vertex of a graph
in L.

A graph language is said to be Turing machine representable if the set of effective representations of the graphs in the
language is recursively enumerable (r.e.). Here “effective representation” means a representation that can be generated
from the standard set representation of a graph by a Turing machine. The adjacency matrix of a graph, if considered
in a linearized (row-major or column-major) form, is an example of such a representation. It is obvious that there are
graph languages that are Turing machine representable but not degree-bounded, for example the set of complete graphs.
A Turing machine could easily be designed that accepts all sequences of n2 1’s for integer n and such a sequence is
an effective representation of a complete graph. Thus the class of Turing machine representable graph languages does
not coincide with the class of graph splicing languages. It is an open question whether the class of Turing machine
representable graph languages of bounded degree is identical to the class of graph splicing languages.

We next consider a subclass of graph languages called linear graph languages. A linear graph language is a graph
language that consists only of directed paths. The effective representation of a linear graph can be the string they
represent. For example, the graph shown in Fig. 2 represents the string abc · · · n. Example 1 gives a graph splicing
system which has all its graphs to be linear.

1 A graph H = (V ′, E′) is an induced subgraph of a graph G, G = (V , E) if,

∀a, b ∈ V ′, (a, b) ∈ E′ iff (a, b) ∈ E.

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1267

a b c n

Fig. 2. A linear graph.

a a b b

Fig. 3. The graph in the set of axioms, I.

a a b b
1 2 3 4

Fig. 4. The graph, h[1].

a a b b
5 6 7 8

Fig. 5. The graph, h[2].

Example 1. Consider the graph splicing system � defined as, � = (N, T , P, I) where the set of axioms, I, is given in
Fig. 3. The set P consists of the rule, R = ((h[1], E′[1]), (h[2], E′[2]), E), where the graphs h[1] and h[2] are shown
in Figs. 4 and 5, respectively. The cut-edges are shown in dotted lines in the figures.

The set E is defined as

E = {(2, 6), (7, 3), (5, 8)},
where the labelling is as in the Figs. 4 and 5. The language generated by the system consists of the linear graphs
representing the language, {anbn|n�1}.

In the next section, we prove that for every r.e. language L, there is a graph splicing system that generates the linear
graph language representing the language L.

4. A completeness result

Computational completeness of extended regular H systems is provided in [7]. In this section, we prove the computa-
tional completeness of graph splicing systems. We prove that, for every r.e. language L, there is a graph splicing system
that generates the linear graph language corresponding to L. The basic idea of the proof is to simulate the working
of a one-tape Turing machine M accepting L using a graph splicing system. Since every r.e. set is accepted by some
one-tape Turing machine, the simulation establishes the result.

Let M = (Q, �, �, �, q0, B, {qf }) be a Turing machine (without loss of generality, we can assume that there is only
one final state). We construct an extended graph splicing system F = (N, T , P, I) to simulate the working of M as
follows. We define, V = � ∪ Q ∪ {C, D, E, X, Y, Z}, N = V \� and T = �. The graphs in the set I are given in the
Fig. 6.

The prime idea behind the simulation of the working of the Turing machine on a string in �∗ is as follows. For each
string in �∗, we generate a graph with two copies of the string, i.e., a graph of the form shown in Fig. 7. Then, we
simulate a Turing machine on one of the copies of the string. If a halting state is reached, the part of the graph involved
in the simulation is cut off and the linear graph representation of a string belonging to the r.e. set is generated.

We now describe the rule set P. The set P consists of nine classes of rules. The classes are described in the Tables
1 and 2. Each class of rules are such that every rule in the class has exactly two graphs, h[1] and h[2]. For the sake
of brevity, we have given the graphs, h[i]’s and the resultant graphs obtained from these graphs after the splitting and
recombining for each class of rules. We depict the cut-edges as dotted lines in the graphs h[i]’s.

1268 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

a a ZX C a a

a

D E

C Y q D C B D

C b q D C q b c D

C D Cq

0

f

;

;

;

;

;

;

;

Fig. 6. The graphs in the set I. Here, a ∈ �, b, c ∈ �, q ∈ Q.

a Xa a Z1n 1 anaa a23 3a2

Fig. 7. Graph generated during the simulation. Here the string is w = a1a2 · · · an.

Table 1
Classes of rules in P

Class 1 of rules is used for generation of a graph containing two copies of a string. Class 2 is used for beginning the
simulation, by bringing a symbol for the start state into the graph. Classes 3 and 4 are used for introducing blanks, as
and when needed. Classes 5 and 6 are used for the actual simulation, each application of a rule simulating one step of
a Turing machine. Class 5 is used for the left moves of the tape head and Class 6 for the right moves. Classes 7 and 8
are used for incrementally deleting the second copy of the string from the graph if a halting state is reached. Class 9 is
used for finally generating a string that has been accepted by the Turing machine.

To elaborate further, Class 1 rules generate the graph as shown in Fig. 7. Class 2 starts the simulation by introducing
q0 after X and simultaneously changing X to Y . Successive IDs of the Turing machine occur between X and Z. Rules

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1269

Table 2
Classes of rules in P

c b p a d

Fig. 8. Linear graph of the ID before applying the rules in Class 5.

c dq b a’

Fig. 9. Linear graph of the ID after applying the rules in Class 5.

b p a d

Fig. 10. Linear graph of the ID before applying the rules in Class 6.

b da’ q

Fig. 11. Linear graph of the ID after applying the rules in Class 6.

in Class 5 simulate a left move namely, �(p, a) = (q, a′, L). The corresponding portion of the ID in the linear graph as
shown in Fig. 8 is changed accordingly to obtain the linear graph representation of the resultant ID as shown in Fig. 9
by splicing using these rules. Rules in class 6 simulate a right move, �(p, a) = (q, a′, R). The corresponding portion
of the ID in the linear graph as shown in Fig. 10 is changed accordingly to obtain the linear graph representation of
the resultant ID as shown in Fig. 11 by splicing using these rules. By this simulation, successive IDs appear between
Y and Z. Once the final state qf is reached, symbols next to qf are consumed by the rules in Classes 7 and 8 ending
up with the linear graph shown in Fig. 12. The 9th class rules remove the Y, qf and Z ending up with w = a1a2 . . . an

in the linear graph.

1270 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

. . .a a a Y q Z12n f

Fig. 12. Linear Graph obtained after applying rules in Classes 7 and 8.

A proof of the equivalence between the language accepted by the Turing machine and the language generated by
the graph splicing system is straightforward. It can be seen that any string accepted by the Turing machine is also
generated as a linear graph by the graph splicing system as described above. The graph language consists of graphs
having terminal symbols as node labels produced by the system. Only strings accepted by the Turing machine will be
produced by the system with terminal node labels. The form of the rules and the form of any byproducts generated
during a splicing preclude the possibility of extra strings (strings not accepted by the Turing machine) being generated.
Those graphs will have nonterminal node labels. Therefore, the equivalence holds.

5. Results on constrained splicing systems

Consider a class C of graph splicing systems with finite sets of axioms and rules. The family of graph languages,
L(C), corresponding to C is defined as

L(C) = {L(F)|F ∈ C}.
If L(C) contains the class of recursively enumerable languages represented as linear graphs, then C is said to be
computationally complete. We proved earlier that the class U of all graph splicing systems with finite sets of axioms
and rules is computationally complete.

Next we define the following terms:

�(C) = max{|I ||F = (N, T , P, I) ∈ C for some N, T , P },
�(C) = max{|P ||F = (N, T , P, I) ∈ C for some N, T , I },
�(C) = max{|N ||F = (N, T , P, I) ∈ C for some T , P, I },
�(C) = max{k|k graphs occur in a rule of P for some F = (N, T , P, I) ∈ C},
	(C) = max{k|k edges are split in some rule of P for some F = (N, T , P, I) ∈ C}.

Most of the results in this section are obtained by slightly modifying the simulation of a Turing machine that yielded the
earlier completeness result. Therefore, instead of giving the detailed simulation for each result, we specify the changes
to be made to the original simulation.

Theorem 1. There is a set C1 of graph splicing systems with �(C1) = 1 that is computationally complete.

Proof. In order to prove the theorem, we shall show that any r.e. language represented as linear graphs can be generated
by a graph splicing system with a single axiom. We mainly use the simulation techniques used in the previous section.
The basic idea of the proof is to encode many axioms by one axiom, from which the original axioms can be derived by
the application of a special rule.

Let L be a r.e. language. Then, by the result in the previous section, there exists an extended graph splicing system, F =
(N, T , P, I), which generates L (represented as linear graphs). We construct a graph splicing system F ′=(N ′, T , P ′, I ′)
from F such that L(F) = L(F ′) and |I ′| = 1.

Let the axioms in I be I1, I2, . . . , In. Then F ′ has N ′ =N ∪{c1, c2} where c1 and c2 are symbols not in N. I ′ consists
of a single axiom which encodes the information in all the axioms I1, I2, . . . , In of F. Let us abuse notation by referring
to the single graph in I ′ as I ′. Then, I ′ is given in Fig. 13. The subgraphs Ji refers to the graphs shown in Fig. 14.
In the subgraph Ji , ai is the first symbol of Ii and a′

i is the last symbol of Ii , for each i. The symbol a in I ′ is any
symbol in N. Each Ji is attached transversely in I ′, i.e., each Ji is connected to its neighbours only through the node
labelled c2.

The rule set P ′ of F ′ is defined as,

P ′ = P ∪ Q1 ∪ Q2 ∪ · · · ∪ Qn,

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1271

2J Jn-1accc1 1 1I1 2I 1J

Fig. 13. The new axiom, I ′. Here Ik’s are the subgraphs representing the old axioms. The subgraphs Jk’s are shown in Fig. 14.

a
i+1

c a’i2
a
i+1

c a’i2

Fig. 14. The subgraph Ji , 1� i �n − 1.

a’i i+1
a

b’i
a

i+1
b

i+1
a’i c

c

1

2

b’i
a

i+1
b

i+1
a’i c

c

1

2a’i i+1
a

Fig. 15. The rule Qi , 1� i �n.

where the rule Qi , is as shown in Fig. 15. In the rule Qi , b′
i is the penultimate symbol of Ii and bi is the second symbol

of Ii .
First, we prove that L(F) ⊆ L(F ′). It is enough to prove that I1, I2, . . . , In can be derived in F ′. To do this, we

successively apply the rules Q1, Q2, . . . , Qn to I ′. When Q1 is applied to I ′, I1 and I2 → · · · are derived. When Q2
is applied, I2 and I3 → · · · are derived. Thus, by successively applying the rules Qi , the axioms of F can be derived.
By applying the rules in P to these axioms, all graphs that belong to L(F) can be derived in F ′.

The reverse inclusion, L(F ′) ⊆ L(F), is much more difficult to prove. The proof is by induction. We show that, if
a certain set of properties is true of graphs derived in n or fewer steps, it is also true of graphs derived in n + 1 steps.
We also show that this set of properties constrains graphs with only terminal nodes that are derivable in F ′ to also be
derivable in F.

The set of properties is as below.

1. If the graph does not contain the nonterminals c1 and c2, it is derivable in F.
2. If the graph contains the nonterminal c1 but not c2, it is of the form w1 → c1 → · · · → wr → c1, r �2 where the

wi’s are linear graphs derivable in F.
3. If the graph contains the nonterminals c1 and c2, it is of the form w1 → c1 → · · · → c1 → a → K1 · · · Kn−1.

Here, each Ki is either equal to Ji or it is Ji with a node labelled c1 attached to a′
i and ai+1. Also, the wi’s are

linear graphs derivable in F.

We now show that the properties above are conserved in an application of a graph splicing rule.
Let the splicing rule be applied to graphs G1 and G2. If neither of the graphs has property 3, only rules in P can be

applied and the resultant graphs will have either property 1 or property 2. If a rule in P is applied to graphs having any
of the three properties, it is easily seen that one of the properties holds good for each of the resulting graphs. The only
remaining case is the situation where one or both of G1 and G2 have property 3 and one of the rules Qi, 1� i�n is
applied. If the Ki’s are equal to the Ji’s, we obtain one graph with either property 1 or property 2 and two graphs with
property 3. Otherwise,we get the same graphs G1 and G2. In either case, one of the three properties holds for each of
the resultant graphs.

For the case n= 0, the property 3 holds. Since the properties are preserved by a splicing step, one of the 3 properties
holds for any graph derived in F ′. We are interested only in graphs with all nodes having terminal labels. Such graphs
can only have property 1, therefore they are derivable in F, i.e., L(F ′) ⊆ L(F). �

Theorem 2. There does not exist a computationally complete set C3 of graph splicing systems such that �(C3) = 0.

Proof. This result is given in [4]. It is obvious that languages such as the regular language (aa)∗ cannot be generated
by a graph splicing system without nonterminals. �

Theorem 3. There exists a set C3 of graph splicing systems with �(C3) = 1 such that C3 is computationally complete.

1272 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

S S Sai

Fig. 16. Replacement subgraph for Ni .

u u uv v n+11 2 21

Fig. 17. The graph h[1] of p′.

u u un+11 2
N
f(1)

N
f(2)

Fig. 18. The graph h[1] of p.

;

;

;

E a X a Z

Z Z1 2

C a a C

b

Fig. 19. Axiom set I. Here a ∈ �, and b ∈ V .

Table 3
Classes of rules in P

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1273

Table 4
Classes of rules in P

Proof. We simulate a graph splicing system F = (N, T , P, I) with a graph splicing system F ′ = (N ′, T ′, P ′, I ′) which
has |N ′| = 1. The simulation is a slight modification of the standard Turing machine simulation. Consider a symbol
a ∈ T . Let |N | = k. We code the nonterminals in N using only a and a single nonterminal S. Let N1, N2 · · · Nk be
an enumeration of the members of N. Then Ni is coded as SaiSS. P ′ is the same set of rules as P except that Ni

is replaced by the subgraph shown in Fig. 16, wherever it occurs. I ′ is the same set of axioms as I except that Ni is
replaced appropriately wherever it occurs.

First, we prove that L(F) ⊆ L(F ′). This is obvious, since axioms and rules used in the derivation of a graph in
F can be replaced by corresponding axioms and rules of F ′ with the derivation still holding.

The proof that L(F ′) ⊆ L(F) is slightly more difficult. The proof is by induction on the number of steps required
to derive a graph in F ′.

Consider the function f : N → {S, a}∗ defined by

f (Ni) = SaiSS.

Extend the function to f : (N ∪ T)∗ → ({S} ∪ T)∗ in the usual way.
The induction hypothesis is as follows. If a linear graph w is derivable in F ′ in n steps or less, there is a unique graph

w′ corresponding to it in F that is derivable in F in the same number of steps.
The base case is n = 0. The graphs of F ′ derivable in zero steps are the axioms in I ′. These obviously correspond to

unique axioms of I (by construction).

1274 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

Table 5
Classes of rules in P

Let us assume that the induction hypothesis is true for n=n0. Consider a linear graph that is derivable in n0 +1 steps
in F ′. This implies that there are linear graphs w1 and w2 in F ′ and a rule p′ of F ′ such that w1 and w2 are derivable
in n0 or fewer steps and the application of p′ to w1 and w2 yields w.

Consider the linear graph h[1] of p′. Let this graph be as given in Fig. 17. In the graph, ui’s belong to T ∗ and vi’s
are codings of nonterminals in F. If vi is a coding of Nf (i) for each i, then this rule corresponds to a rule p of F which
has h[1] as given in Fig. 18. h[1] is an induced subgraph of w1. In w1, the subgraph in Fig. 17 can only be a code of the
graph in Fig. 18. This is because the first character of v1 is an S and it is followed by a terminal. This can only indicate
the beginning of a code for a nonterminal. Similar reasoning holds for the graph h[2] of p′ and w2. Thus, if w1 and w2
yield w by splicing using p′, then their corresponding graphs in F yield the corresponding graph of w in F by splicing
using p. Thus, this graph is derivable in F in n0 + 1 steps.

In particular, linear graphs with only terminal labels code for themselves. Therefore, if a string w ∈ T ∗ is derivable
in F ′, it is derivable in F. This implies L(F ′) ⊆ L(F). �

Theorem 4. There does not exist a set C4 of graph splicing systems with �(C4) = 1 that is computationally complete.

Proof. If there is only one graph in each rule, then the size of graphs in the corresponding splicing language is bounded.
This means that the splicing language is finite. Therefore, no infinite set of strings can be generated by a splicing system
with maximum 1 graph per rule. �

Theorem 5. There exists a set C5 of graph splicing systems with �(C5) = 2 that is computationally complete.

Proof. Graph splicing systems used in the Turing machine simulation of Section 5 are precisely of this form. �

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1275

Table 6
Classes of rules in P

Theorem 6. There exists a set C6 of graph splicing systems with 	(C6) = 3 that is computationally complete.

Proof. We prove this by actually constructing, for every Turing machine M, a splicing system in which no more than
three edges are cut and which simulates the Turing machine. The splicing system generates, for each string, a graph
containing a copy of the string and a copy of the reverse of the string. Then we make use of the property that, for each
Turing machine M, there exists a Turing machine MR such that w ∈ L(M) iff wR ∈ L(MR). We simulate the machine
MR on a copy of wR and generate w iff wR is accepted by MR .

Let MR = (Q, �, �, �, q0, B, {qf }). Then we construct a graph splicing system (N, T , P, I) as follows:

V = � ∪ Q ∪ {E, X, X′, Y, Z, C, Z1, Z2} ∪ {[q, a]|q ∈ Q, a ∈ �} ∪ {(q, a)|q ∈ Q, a ∈ �} ∪ {a′|a ∈ �}.
The axiom set I is given in Fig. 19. The rule set P has 29 finite classes of rules. We describe each class pictorially in

Tables 3–7. Each rule has two graphs, h[1] and h[2]. We describe these graphs and the resultant graphs obtained from
these graphs after splitting and recombining. The cut-edges of the rules are shown in dotted lines (Table 8).

The rules in Classes 1–6 generate the graph shown in Fig. 20. Rules in Classes 7–9 introduce q0 after X and change
X into Y to start the simulation in wR . Rules in Classes 10 and 11 are used to introduce blank B after Y or before Z.
Rules in Classes 12–17 simulate the right move of the Turing machine of the form �(q, a) = (q ′, a′, R). The subgraph
shown in Fig. 21 is changed to the subgraph shown in Fig. 22 by the rules in Class 12. a is removed by the rules in
Class 13 and a′ is introduced in that place by the rules in Class 14. q is removed by the rules in Class 15 and q ′ is
introduced by the rules in Class 16. Rules in Class 17 remove [q ′, a′]. After using the rules in Class 17, we end up
with the graph as shown in Fig. 23. Rules in Classes 18 to 23 simulate a left move of the form �(q, a) = (q ′, a′, L)

in a similar manner. When a final state qf is reached, rules in Classes 24 to 29 remove from the subgraph as shown

1276 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

Table 7
Classes of rules in P

Table 8
Classes of rules in P

R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278 1277

E X ZwRw

Fig. 20. Graph generated by rules in Classes 1–6.

b q a c

Fig. 21. Subgraph modified by rules in Class 12.

[q’,a’] cb q a

Fig. 22. Subgraph obtained after using the rules in Class 12.

b ca’ q’

Fig. 23. Graph obtained after using the rules in Class 17.

E w Y Zq fα1 α2

Fig. 24. Graph before applying the rules in Classes 24–29.

in Fig. 24 all other nodes except the nodes representing w between E and Y and we end up with a linear graph
representing w.

It can be seen as in the previous section that the graph language generated consists of linear graphs representing
strings accepted by the Turing machine M and nothing else. �

6. Conclusions

The paper considers graph splicing systems and proves universality of the model with various restrictions. Graph
splicing systems seem to be a good abstract model of systems in which chemical/bio-chemical processes occur. They
are also very general in the sense that most formulations of string splicing systems in the literature can be obtained as
special cases of graph splicing systems. The result that extended graph splicing systems with only finite sets of axioms
and rules are computationally complete, even when some constraints are imposed on them, is a powerful result since
most completeness results concerning splicing systems in the literature use either infinite sets of axioms/rules (see [4])
or place artificial constraints on the form of the rules (see [1]).

It is an open problem to find the minimum number of rules required for obtaining computational completeness of
the model. It would be worthwhile to modify the definition of the graph splicing systems, for example, to allow for
only undirected graphs, and study their generative power.

Acknowledgements

The authors wish to acknowledge the help of Ms. K. Arthi in the preparation of this manuscript.

References

[1] D. Boneh, R. Lipton, C. Dunworth, J. Sgall, On the computational power of DNA, 〈http://www.cs.princeton.edu/∼dabo〉
[2] K.L. Denninghoff, R.W. Gatterdam, On the undecidability of splicing systems, Internat. J. Comput. Math. 27 (1989) 133–145.
[3] R. Freund, Splicing systems on graphs, in: Proceedings of Intelligence in Neural and Biological Systems, IEEE Press, New York, May 1995,

pp. 189–194.

http://www.cs.princeton.edu/dabo

1278 R. Santhanam, K. Krithivasan / Discrete Applied Mathematics 154 (2006) 1264–1278

[4] R. Freund, L. Kari, Gh. Paun, DNA computing based on splicing: the existence of universal computers, Theory of Comput. Syst. 32 (1999)
69–112.

[5] T. Head, Formal language theory and DNA: an analysis of the generative capacity of recombinant behaviours, Bull. Math. Biol. 49 (1987)
737–759.

[6] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
[7] Gh. Paun, Regular extended H systems are computationally universal, J. Automat. Languages and Combinatorics 1 (1) (1996) 27–37.
[8] Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing, New Computing Paradigms, Springer, Berlin, 1998.

	Graph splicing systems62626262
	Introduction
	Preliminaries
	Definitions
	A completeness result
	Results on constrained splicing systems
	Conclusions
	Acknowledgements
	References

