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Recent reports have shown that most of the genome is transcribed and that transcription frequently

occurs concurrently on both DNA strands. In diploid genomes, the expression level of each allele

conditions the degree to which sequence polymorphisms affect the phenotype. It is thus essential to

quantify expression in an allele- and strand-specific manner. Using a custom-designed tiling array

and a new computational approach, we piloted measuring allele- and strand-specific expression in

yeast. Confident quantitative estimates of allele-specific expression were obtained for about half of

the coding and non-coding transcripts of a heterozygous yeast strain, of which 371 transcripts (13%)

showed significant allelic differential expression greater than 1.5-fold. The data revealed complex

allelic differential expression on opposite strands. Furthermore, combining allele-specific

expression with linkage mapping enabled identifying allelic variants that act in cis and in trans

to regulate allelic expression in the heterozygous strain. Our results provide the first high-resolution

analysis of differential expression on all four strands of an eukaryotic genome.
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Introduction

Genetic variation is the basis of phenotypic variation, and the

degree to which this variation is transcribed conditions its

impact on phenotype. Up to 90% of the genome of eukaryotic

organisms is transcribed (Carninci et al, 2005; David et al,

2006; Manak et al, 2006; Birney et al, 2007). Therefore, a

significant portion of genetic variation, including that in non-

coding sequences, is represented in transcripts. In humans,

allelic differential expression (ADE) has been estimated to

affect 20–50% of genes (Yan et al, 2002; Bray et al, 2003; Lo

et al, 2003; Serre et al, 2008). In addition to affecting

phenotypic variation, ADE is involved in gene-dosage com-

pensation of sex chromosomes, and imprinting on autosomes

(Knight, 2004). Monoallelic expression with random choice

between paternal and maternal alleles has also been shown to

affect hundreds of autosomal genes and thus to contribute to

individual cell variability (Gimelbrant et al, 2007).

Recent reports have shown that transcription frequently

occurs on both DNA strands (Carninci et al, 2005; Katayama

et al, 2005; David et al, 2006; Engström et al, 2006). However,

so far, genome-wide assessment of allele-specific expression

has been carried out using single-nucleotide polymorphism

(SNP) arrays (Lo et al, 2003; Pant, 2006; Bjornsson et al, 2008)

and reference genome ORFarrays (Ronald et al, 2005a). These

studies have not targeted unannotated elements of the

genome, nor assessed expression on opposite strands of the

same chromosomal position. Therefore, despite the impor-

tance of allele-specific expression, the extent of ADE on

opposite strands or for non-coding sequences has remained

largely unaddressed.

Results and discussion

One tiling array for two genomes

To profile genome-wide allele-specific expression, we designed

a high-resolution yeast tiling microarray (David et al, 2006;

Mancera et al, 2008) (Figure 1A) that covers both strands of the

genomes of both the laboratory strain S288c (S strain)

(Goffeau et al, 1996) and the clinical isolate YJM789 (Y strain)

(Wei et al, 2007). This array allows simultaneous expression
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profiling of allelic variants in a heterozygous hybrid strain

(designated as Y/S) for coding and non-coding transcripts and

in a strand-specific manner. The array tiles both strands of the

S genome using 25-mer oligonucleotide probeswith 8-bp offset

and includes probes matching strain Y at positions of

polymorphisms (Figure 1A). Out of the 2.8 million perfect

match probes on the array, 86% are common to both genomes,

whereas 10 and 4% are specific to S and Y strains, respectively,

at insertions, deletions or single-nucleotide polymorphisms.

We hybridized cDNA from the heterozygous Y/S and from

the homozygous S and Y strains grown in rich media (YPD).

Strand specificity during sample preparation was maintained

by inclusion of actinomycin D during reverse transcription to

prevent spurious synthesis of second-strand cDNA (Perocchi

et al, 2007). A segmentation algorithm (Huber et al, 2006) was

applied to identify transcripts expressed in any of the three

strains. In addition to annotated transcripts (e.g., coding

genes, tRNAs, snoRNAs), we identified 359 unannotated

transcripts, i.e., they do not match any current feature in the

SGD database (http://www.yeastgenome.org). Most, if not all,

of these unannotated transcripts, are probably non-coding

(David et al, 2006; Xu et al, 2009). The unannotated transcripts

consisted of 163 intergenic transcripts and 196 transcripts,

which were overlapping annotated genes in antisense orienta-

tion. Out of these, 21 intergenic and 21 antisense transcripts

were expressed in strain S and not in Y, while 16 intergenic and
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Figure 1 Measuring allelic expression on a tiling array. (A) The array contains 25-mer probes (black and blue) that tile both strands of the genome of S288c with a
probe offset of 8 bp and a 4-bp shift between the two strands. The array also contains probes (red) complementary to the YJM789 sequence for polymorphic regions, as
shown here for a SNP marked by an asterisk. (B) Modeling the hybridization intensity. Consider a two-allelic transcript with two indels and one SNP as shown in the lower
part. The S allele is at expression level hS and the Y allele at hY. Hybridization intensities of the common probes are ideally expected to be proportional to the sum of the
two expression levels. Intensities measured for the probes specific to the S or Y alleles are expected to be proportional to their expression levels, hS or hY, respectively.
Owing to cross-hybridization, probes with sequence highly similar to the other allele yield higher intensities (shown here for a SNP). These properties are modeled in
equation (1) (Materials and methods). (C) Inferred expression level of transcripts in the mixture series. The circles show inferred expression levels for the S allele (blue)
and the Y allele (red). Dotted lines mark linear regression. The quality, in terms of both linear behavior and monoallelic calls, improves when moving from ZSP1 with only
two centered specific probes (CSPs) to the antisense of PHO5 with 20 CSPs. (D) Monoallelic calls and linearity of the method. Boxplots of the ratios of inferred
expression level of the absent allele over the present allele as a function of the number CSPs (top). In these parental samples, the true value is known to be 0 and the
ratio is expected to tend to 0 with increasing CSPs. Boxplots of the r2 coefficient of the linear fit for expressed alleles as a function of the number CSPs (bottom). Perfect
linearity should give r2 of 1. (E) Comparison of allelic expression ratios from tiling array and sequencing traces. For 21 transcripts (see supplementary table VII), allelic
expression ratios inferred from tiling array analysis (X-axis, log scale) plotted against allelic expression ratios inferred from sequencing traces (Y-axis, log scale). The y¼x
line (gray) is provided as a reference.
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35 antisense transcripts were expressed in Yand not in S. Only

three unannotated transcripts were specific to the hybrid.

Thus, most of the unannotated transcripts (64%) seem to be

expressed in both of the evolutionarily distant S and Y strains

(Wei et al, 2007), suggesting that, despite their low conserva-

tion at the sequence level (David et al, 2006), the transcription

of these unannotated sequences is conserved.

Quantitative estimation of allele-specific

expression

Accurate estimation of allele-specific expression was achieved

by using both specific and common probes, with the intensities

of the latter reflecting the total expression of the two alleles

(Figure 1B). One main challenge was accounting for off-target

effects. Part of contribution toward hybridization signal of

allele-specific probes comes from their cross-hybridization

with transcripts of the other allele (Figure 1B). Indeed, in most

cases, allele-specific probes have only one nucleotide mis-

match with the other allele and show significant hybridization

with it. Not accounting for this effect would lead to biased

estimation of allele-specific expression levels. This off-target

effect was accounted for by modeling the probe intensities as

noisy observations of weighted sums of the two allelic levels

(equation (1)). Theweights represent the affinities of the probe

with respect to each allele. They are equal for common probes

and can differ for specific probes, none being a priori

negligible. Hybridizations of genomic DNA yielded estimates

of relative affinities by providing a nominally uniform

concentration along the genome (David et al, 2006). Allele

expression levels and probe affinities in our non-linear,

heteroscedastic model were inferred using iterative weighted

least squares (see Materials and methods). Confidence

intervals were obtained by bootstrap re-sampling of the

residuals.

Although our tiling array targets both genomes, this is not a

prerequisite for the algorithm. The method can incorporate

heterozygous genomic DNA if available. It also works for

experimental designs that produce cDNA samples from

heterozygous strains only or in combinations with homo-

zygous cDNA samples (Supplementary information). Our R

package, allelicTxn (available at http://steinmetzlab.embl.de/

allelic and in Supplementary information), supports these

extensions.

To validate our method, we hybridized cDNAmixtures from

homozygous S and Y strains in varying proportions: 0:1, 1:3,

1:1, 3:1 and 1:0. The method was expected to first correctly

report monoallelic expression in the 0:1 and 1:0 cDNA

samples, and second, to estimate the expression level of each

allele in linear relationship with its dilution ratio. As the

number of centered specific probes (CSP, probes which

interrogate polymorphisms within±4 bp of their central base,

see Materials and methods) per allele increased, the accuracy

of monoallelic calls as well as the linearity of the relation

between inferred and actual log ratios improved (Figure 1C).

When the algorithm was run on the 0:1 cDNA samples, an

expression ratio close to 0 (o0.15) could be inferred for more

than 83% of the 5404 expressed alleles with at least eight CSPs

(Figure 1D, upper panel). In addition, the inferred cDNA levels

showed an accurate linear relationship with dilution ratios

(linear regression, r240.90) for more than 96% of these 5404

alleles (Figure 1D, lower panel).

Furthermore, the sensitivity of the method at different

degrees of ADE was evaluated. We considered transcripts with

both alleles expressed andwith eight CSPs or more. For 81% of

the transcripts with more than two-fold difference in expres-

sion between the parental strains (142 out of 176), and for 51%

(289 out of 570) of transcripts with more than 1.5-fold

difference, significant ADE was detected in the 1:1 mixture

when using a P-value threshold of 0.01. Altogether, these

results show that the method can accurately measure allele-

specific expression quantitatively for transcripts with a

sufficient number of CSPs and detect imbalanced allelic

expression levels down to 1.5-fold at a sensitivity of 51%.

Transcriptome profile on all four strands

Applying our method to the three biological replicates of the

Y/S heterozygous hybrid, we obtained allele- and strand-

specific expression estimates for 5069 transcripts with at least

one specific probe (Figure 2A), of which we considered 2914

(57%) to be confident because they had at least eight CSPs.

Allelic expression levels for all transcripts including signifi-

cance estimates for differential expression between alleles are

provided in Supplementary Table I and on our website http://

steinmetzlab.embl.de/allelic. In total, 454 transcripts showed

significant ADE at a false discovery rate (FDR) of 0.05. Among

them, 44 transcripts were unannotated (19 antisense and

25 intergenic transcripts). Overall, 371 (82%) of the 454

transcripts showed at least a 1.5-fold difference in allelic

expression (Supplementary Figure S1).

For experimental validation, 24 transcripts with significant

ADE (FDRo0.05) were selected (15 ORFs, three antisense and

six intergenic transcripts). These transcripts spanned a range

of expression levels (from the 4th to 82nd percentiles of

expressed transcripts) and allelic expression ratios (from 2.1 to

16 fold). We used a method based on sequencing (Ge et al,

2005), which estimated allelic expression ratios from relative

peak intensities at SNP positions in cDNA-sequence traces.

This method yielded informative data for 21 transcripts (see

Materials and methods). Allelic ratios inferred by sequencing

agreed well over the range of tested ratios with the array-

based estimates (Figure 1E, Pearson’s correlation¼0.8,

P-value¼3.1�10�5).

Having accurate measurements for allele-specific expres-

sion of transcripts on each strand, we compared ADE between

strands to identify instances of complex expression regulation.

Transcription on opposite strands can mediate regulatory

interactions (Hongay et al, 2006; Camblong et al, 2007; Uhler

et al, 2007). Expression analysis in the hybrid strain showed

196 pairs of expressed transcripts overlapping on opposite

strands (sense–antisense pairs, Supplementary Table II). Out

of these, 83 pairs contained 8 CSPs or more for both transcripts

and yielded confident estimates of transcript abundance.

Among them, 36 showed significant ADE (FDR o0.05, fold

change 41.5) for either the sense or the antisense transcript,

and two pairs showed significant ADE for both (Figure 2B).

The first, FET4, has a symmetric allele-specific expression

pattern: the Y-alleles for both the antisense and the sense are
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less expressed than the S-alleles. The second, DAP2, has an

anti-symmetric allele-specific expression pattern: one of the

two homologous chromosomes expresses strongly the sense

transcript and weakly the antisense transcript, whereas the

other chromosome shows the opposite pattern. One pair,

PHO81, showed significant ADE for the antisense transcript

whereas the sense transcript showed no strong ADE (95% CI

of S-allele level: [0.44, 0.52], and Y-allele: [0.46, 0.55])

(Figure 2B).

Hence, our strand-specific method allows assessing allele-

specific expression for transcripts overlapping one another on

opposite strands. As such sense–antisense pairs can show

asymmetric expression patterns (e.g., one expressed and the

other not), the two distinct expression levels would have been

confounded if strand specificity had not been taken into

account. As most earlier approaches have confounded

strandedness, either intentionally through the preparation of

double-stranded cDNA or unintentionally through sample

preparation artifacts (Perocchi et al, 2007), such confounding

is a property of existing microarray datasets and is a limitation

for their interpretation.

ADE correlates with polymorphism density in

promoters

ADE is a consequence of cis-regulatory variation, which by

definition, acts on the allele of the same chromosome (Knight,
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Figure 2 Expression profiles across four strands of a diploid genome. (A) Expression levels of all transcripts are shown as colored rectangles positioned with their
coordinates on either of the four strands (Y or S, Watson or Crick). One region on chromosome VII is enlarged in the inset. Data shown in this figure are available in
supplementary table I. (B) Allele-specific expression of sense–antisense transcript pairs. Scatter plot of allelic expression ratios (center panel) for sense (X-axis, log
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Allelic expression measurements of three sense–antisense pairs (bar plots) show instances of significant ADE (FDR o0.05) for an anti-correlated pair (DAP2),
a correlated pair, (FET4), and a pair with strong antisense ADE but no difference in sense expression levels (PHO81).
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2006; Rockman and Kruglyak, 2006). In yeast, local regulatory

polymorphisms have been shown to predominantly consist of

cis-regulatory polymorphisms and to be enriched in promoter

and 30-UTR regions of transcripts (Ronald et al, 2005b).

Although a single functional polymorphism might suffice to

affect the regulation of a transcript, the higher the density of

polymorphisms in a region, the more likely it is that one or

more of them have a regulatory impact. To determine whether

ADE depends on sequence variation within promoters, we

tested the association between ADE and polymorphism

density in promoter regions. We measured the degree of

differential expression between the two alleles of a transcript

by using the ADE coefficient, which ranges between 0 and 1

(Materials and methods). A value of 0 for the coefficient

indicates no ADE, whereas 1 indicates monoallelic expression.

Across the 2914 confident transcripts, ADE significantly

correlated with polymorphism density in promoter regions

(defined as the 500-bp interval upstream from the transcrip-

tion start site) (Kendall’s tau test, P-value¼4�10�5, Supple-

mentary Figure S2).

A striking example of a region with high ADE lies on

chromosome I covering the DUP240 gene family, which is one

of the most polymorphic regions between S288c and YJM789

(Wei et al, 2007). Without exception, all DUP240 genes in this

region (UIP3, YAR028W, YAR029W, PRM9 andMST28) showed

significant ADE (FDRo0.05, Supplementary Figure S2, inset).

These data indicate that sequence variation in the promoter

regions is probably a strong contributor to ADE.

Dissecting cis- and trans-regulatory variations

As opposed to cis-regulatory variants, which act on the allele of

the same chromosome, trans-regulatory variants act on both

alleles. The relative contribution of cis- versus trans-regulation

can be assessed by comparing ADE in a hybrid strain to the

gene-level differential expression between the homozygous

parents (Wittkopp et al, 2004). It can be measured as the ratio

of cis-regulatory divergence to the total regulatory divergence

(Materials and methods and Wittkopp et al, 2008). Among the

455 transcripts with at least 1.5-fold expression difference

between the S and the Y strains and confident ADE estimates,

205 were classified as mainly trans (proportion of cis effects

o1/3) and 144 as mainly cis (proportion of cis-effects 42/3),

with a median proportion of cis effects being 0.40 (Supple-

mentary Table I and Supplementary Figure S3). Hence, we

observed a slight preponderance for trans-regulatory effects,

similar to a study of 40 differentially expressed genes between

BY4741 (an S288c descendant) and RM11-1a in which trans-

regulation was also reported to have a major contribution

(Wang et al, 2007).

Although cis-acting variants are mostly gene specific, trans-

acting differences probably affect the level of several down-

stream genes. To identify which of the transcriptional

programs are under the control of trans-regulatory variants

in the hybrid, we considered transcription factor (TF) target

sets and tested them for enrichment in genes differentially

expressed between S and Y (FDR o0.05, fold change 41.5)

removing the 144 transcripts whose differential expression is

mainly attributed to cis-effects. Using a comprehensive

regulatory network integrating ChIP-chip data and TF binding

site predictions (MacIsaac et al, 2006), target sets for 17 TFs

showed significant enrichment (Fisher’s exact test, FDR

o0.05, Supplementary Table III). Notably, failing to remove

the 144 transcripts with mainly cis-effects leads to lower

significance levels and to a smaller number of TFs identified

(13 instead of 17). Thus, taking allele-specific expression into

account increases the power of this analysis. One of the TFs

identified was Hap1, an activator of nuclear-encoded mito-

chondrial genes that is known to be defective in S288c (Gaisne

et al, 1999); another was Pho4, an activator of the PHO

pathway (Oshima, 1997). Analysis of an extensive list of PHO-

pathway genes (Supplementary Table IV) showed differential

expression between the parental strains for 15 out of 32 genes

of this pathway (FDRo0.05, fold change41.5). All 15 genes,

except for the low-affinity phosphate transporter PHO87, are

highly expressed in S strain and expressed at low levels in both

Y and the hybrid strains, reflecting that the PHO pathway is

upregulated in the S strain and down-regulated in Y and the

hybrid strains.

PHO84-Y allele dominantly represses the PHO

pathway in rich media

To identify trans-acting factors causative for the differential

expression of the PHO pathway, we carried out linkage

mapping using a collection of 184 meiotic Y/S segregants

genotyped at 55 987 markers (Mancera et al, 2008). Resistance

to arsenate, a toxic analog of phosphate, was used to assay

PHO-pathway activity (Wykoff et al, 2007). Profiling of the

segregants showed a Mendelian segregation of the arsenate-

resistance phenotype (Supplementary Table V). The relative

risk factor peaks at a distinct genomic location, centered on

PHO84 (Figure 3A). Two reciprocal hemizygous strains in the

hybrid background (Steinmetz et al, 2002) were then

constructed, in which either the S allele or the Y allele of

PHO84 was deleted. The hemizygous strains carrying only the

S allele of PHO84 recapitulated the S phenotype—being

resistant to arsenate (Supplementary Figure S4) and showing

high expression of the PHO pathway (Figure 3B)—while the

strain carrying only the Y allele of PHO84 showed the

phenotype of the Y and hybrid strains. These results confirm

that PHO84 is the causative trans-acting factor, which exerts its

effect on both S and Y alleles in the hybrid. PHO84 encodes a

high-affinity inorganic phosphate transporter in the plasma

membrane. The non-conservative amino-acid substitution at

position 259 from leucine in S to proline in Y (a common

variant) has been linked to polychlorinated phenol resistance

and is probably essential for protein function (Perlstein et al,

2007). This interpretation is consistent with arsenate resis-

tance in the S strains, as these cells would be deficient in

arsenate uptake. Moreover, the PHO pathway is upregulated in

PHO84 knockout strains (Wykoff et al, 2007) because of

positive feedback. Hence, a loss-of-function PHO84-S allele

also explains the high expression of the PHO-pathway genes.

Conclusion

By assessing expression using a tiling array that contains

probes targeting polymorphisms, we were able to estimate
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genome-wide allele-specific and strand-specific expression

variation. We have shown using the PHO pathway

as an example that integrating allele-specific expression

with linkage mapping enables dissecting the genetic

variants that act in cis and trans to regulate allelic

expression in a diploid organism. Our computational

method is versatile and can be applied to other microarray

designs, as long as they contain probes overlapping

polymorphic positions of transcripts. Importantly, our

method is strand-specific and allows assessing allele-specific

expression for transcripts overlapping one another on

both strands. As such sense–antisense pairs can show

asymmetric expression patterns (e.g., one expressed and the

other not), the two distinct expression levels would have

been confounded if strand specificity had not been taken

into account. Altogether, our data show the importance of

assessing transcription on all four strands of a diploid genome.

As expression analysis by new sequencing technologies

becomes more routine and less expensive, we expect that this

expanded view of transcription will become increasingly

common.

Materials and methods

Genome sequence and annotation

Sequence and feature files (.gff files) for the S288c genome were
obtained from the Saccharomyces Genome Database (http://
www.yeastgenome.org) on 7 March 2007. The sequence for YJM789
was obtained from Wei et al (2007) and aligned to the S288c genome
using the procedure described by Wei et al (2007).

Microarray data

Microarray data are available at ArrayExpress (http://www.ebi.ac.uk/
microarray-as/ae/). The cDNA hybridizations are available under
accession number E-TABM-569 and the array design is available under
A-AFFY-116. We have also used genomic DNA hybridizations from
Mancera et al (2008) (accession number E-TABM-470). See Supple-
mentary information for details.

Array design

We designed a custom Affymetrix tiling array (product no. 520055)
with a total ofB6.5 million probes (25-mers) including perfect match
and mismatch probes. The probes tile both strands of the S288c
genome at a resolution of 8 bp, with a shift between the strands of 4 bp
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Figure 3 The genetic basis of trans-regulation of the PHO pathway in the hybrid. (A) Linkage mapping. Relative risk of arsenate resistance for segregants carrying the
S allele compared with the Y allele, plotted for markers across a 20-kb region on chromosome XIII around PHO84. (B) Scatter plot of transcript expression levels for the
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(David et al, 2006). The array also includes B106 000 probes
complementary to the YJM789 genome (Wei et al, 2007) at positions
of polymorphism between the strains. We also added 10 647 negative-
control probes of randomly generated sequences with GC content
ranging from 2 to 25 GCs.

Yeast strains and sample preparation

Laboratory and clinically derived S. cerevisiae strains used in this work
were isogenic to S288c and YJM789 andwere designated as ‘S’ and ‘Y’,
respectively. Three independent heterozygous hybrid strains (desig-
nated as ‘Y/S’) were obtained by crossing Y and S strains. Reciprocal
hemizygote strains for PHO84 alleles were constructed by crossing
relevant Y and S background strains. Supplementary Table VI lists all
strains used in this study.

Total RNAwas extracted from yeast cultures grown at 301C in YPD
medium (2% peptone, 1% yeast extract and 2% dextrose) and
processed for array hybridizations as described earlier (Perocchi et al,
2007). Importantly, to remove reverse transcription artifacts, first-
strand cDNA was synthesized in the presence of 6.25mg/ml
actinomycin D. As cDNA is chemically same as DNA, we did not
expect any systematic differences between cDNA and genomic DNA
labeling.

For making mixture series, cDNA from S and Y strains was mixed in
the following proportions, according to mass: 0:1, 1:3, 1:1, 3:1 and 1:0.

Probe filtering and classification

Using the following procedure, we classified each probe as common,
S-specific, Y-specific or control. Ungapped alignments of the probes to
the S288c genome and the aligned portion of the YJM789 genomewere
produced using the software exonerate (Slater and Birney, 2005). We
considered all perfect matches and near matches (up to two
mismatches). A common probe has a unique perfect match to both
parental genomes at the same alignment position and no near match.
An S-specific probe has a unique perfect match and no further near
matches to the S288c genome. It has no perfect match to the YJM789
genome and no near match to the YJM789 genome, except possibly at
the same aligned position as its perfect match position in S288c.
Y-specific probes were defined analogously. Specific probes whose
match overlaps a polymorphism at ±4 bp of its central base were
called ‘centered specific probes (CSP)’. Finally, we ensured that
each negative control probe had neither a perfect nor a near match in
either genome.

Normalization and background subtraction

Calibration of intensities between arrays was done using a variant
of quantile normalization (Bolstad et al, 2003), as follows. The sets
of cDNA and genomic DNA (gDNA) hybridizations were treated
separately. As specific probes are expected to have different behavior
depending on the strain, we restricted the quantile normalization to
the set of common probes and used linear interpolation to normalize
the intensities of the specific probes.

The background of cDNA hybridizations was subtracted as
described earlier (Huber et al, 2006). Briefly, probes were binned into
10 groups according to their intensity level in the gDNAhybridizations.
For each probe group and for each cDNA hybridization, probes falling
outside annotated transcribed regions were used to estimate a
background level. This level was then subtracted from the intensities
of all probes within the group. To subtract the background of DNA
hybridizations, we grouped probes by GC content. For each group and
hybridization, we estimated the background level as the 10% trimmed
mean of the negative control probes and subtracted it from all probes
of the group.

New transcript identification and transcript

probe sets

We ran a segmentation algorithm combining heterozygote cDNA
hybridizations with parental cDNA hybridizations using the R package

‘tilingArray’ (Huber et al, 2006). Segmentation was carried out on the
set of common probes, for which the assumption of a constant level
across the transcript can be made. For each chromosome, the
segmentation parameter S (number of segments) was set so that the
average segment size was 1500bp. Segments corresponding to
unannotated transcripts were then categorized as unannotated
intergenic or antisense as described earlier (David et al, 2006)
(‘intergenic’ were termed ‘isolated’ in the earlier study). Segments
with less than 20 probes were discarded. A subsequent manual
inspection discarded six dubious antisense segments and recovered 10.

We subsequently inferred the expression of a transcript from the
intensities of its probe set. We defined the probe set of a new transcript
as the probes for which the match entirely falls within the boundaries
of the segment. We defined the probe set of an annotated transcript as
the probes whose match entirely falls within the boundaries of an
annotated S288c exon.

Probe intensity model

We modeled yij, the normalized and background-subtracted intensity
of probe i in hybridization j, as

yij ¼ l1ic1ij þ l2ic2ij þ eij ð1Þ

where l1i and l2i are the affinities of the probe to its matches in
each genome, c1ij and c2ij are the expression levels of the respective
complementary sequences in the sample j and eij are the errors. The
affinities and the expression levels are non-negative real numbers
expressed in arbitrary units. For common probes, we have l1i¼l2i.

We considered five possible types of hybridization samples:
genomic DNA (gDNA) of the two homozygous strains S and Y, their
cDNA, and cDNA of the heterozygous Y/S. We set ckij¼2 if sample j
is homozygous genomic DNA of genome k. Moreover, we fixed ckij¼0
if sample j is genomic DNA or cDNA of homozygous strain different
from k.

Following Rocke and Durbin (2001), wemodeled the variance of the
errors eij as functions of the expected intensity Iij¼l1ic1ijþl2ic2ij:

varðeijÞ ¼
1

ðgbjÞ
2
ð1þ ðaj þ bjIijÞÞ

2 ð2Þ

The coefficients aj, bj and g were inferred using the R package vsn
(Huber et al, 2002) by treating the cDNA and the gDNA hybridiza-
tion as two separate groups. We assumed the scaled errors
e0ij ¼ eij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðeijÞ
p

to be independent and identically distributed and
of mean 0.

Least-squares regression

For the cDNA samples of each strain, we assumed a constant level of
each allele across one transcript’s probe set. The regression proceeds
with each transcript separately using probes only of the transcript
probe set.

We denoted p1 and p2 the nominal expression levels of the alleles in
the homozygous strains, h1 and h2 the levels of each allele in the Y/S
strain. From equation (1), We obtained a set of equations for all
hybridizations j and probes i that depend on the hybridization sample
types:

yij ¼

2l1i þ eij S gDNA
2l2i þ eij Y gDNA
2l1i � p1 þ eij S cDNA
2l2i � p2 þ eij Y cDNA
l1i � h1 þ l2i � h2 þ eij Y=S cDNA

8

>

>

>

>

<

>

>

>

>

:

ð3Þ

We fitted the model by weighted least squares. More precisely, we
searched for a set of affinities and expression levels that minimizes the
sum of squared scaled residuals:

min
k;p;h

Fðk;p;hÞ ¼ min
k;p;h

X

i;j

wij � e
2
ij ð4Þ

subject to kX0, pX0, hX0 and l1i¼l2i for common probes, where the
weights wij ¼ 1=varðeijÞ were estimated by using equation (2).
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We took advantage of the form of the model for the optimization
procedure. Indeed, assuming fixed weights, the cost function is a sum
of squared terms bilinear in k and (p, h). For a given expression-level
vector (p, h), there is a closed-form solution to the unique optimal
affinity vector k and vice versa. We thus devised a component-wise
optimization algorithm that iteratively optimizes expression levels
given affinities and reciprocally, updating the weights at each step
using equation (2).We considered that the algorithm had converged, if
all fitted expression levels of the last 2 iterations differ by less than a
value corresponding to 10% of the background level, and stopped the
algorithm if convergence did not occur before the 30th iteration.

Confidence intervals

We estimated confidence intervals per ORF probe set by resampling the
scaled residuals with replacement. The regression results in fitted
parameters and thus, according to the model, in an estimated intensity
Îij, an estimated weight ŵij and a scaled residual e0ij for each observed
intensity:

yij ¼ Îij þ
ffiffiffiffiffiffi

ŵij

q

ê0ij

We generated new synthetic data as noisy measurements of the fitted
intensities: y�ij ¼ Îij þ

ffiffiffiffiffiffi

ŵij

p

ê0sðijÞ where the function s is a random
sampling with replacement of the index pairs ij. We repeated this
B¼999 times and obtained B estimates of the parameters. For all
statistics of interest (expression level, allelic differential expression,
etc.), 95% equi-tailed confidence intervals were estimated according
to the non-parametric basic confidence limit as described in Davison
and Hinkley (1997).

P-values and false discovery rates

We estimated significance levels (P-values) by simulating data under
the null hypothesis for the two following hypotheses:

� H1: Levels in parent equal: p1¼p2
� H2: Levels in hybrid equal: h1¼h2

Wefitted an appropriately constrainedmodel for each probe set and for
each hypothesis (p1¼p2 and h1¼h2). Similar to the procedure for
estimating confidence intervals, we generated B¼999 new synthetic
data as noisy measurements of those fitted intensities. Here again we
sampled scaled residuals of the primary unconstrained fit, because
they reflect the true noise better than those of the constrained fits. On
each simulated dataset, we performed an unconstrained regression.
For each hypothesis respectively, we considered the T-statistic.

The P-value is then approximated by

p ¼
1þ#ft�i Xtg

Bþ 1

where t is the statistic value for the primary, unconstrained fit and ti
*,

I¼1, y, B are the bootstrap statistic values (Davison and Hinkley,
1997).

Treating each hypothesis H1 and H2 separately, q-values, i.e. false
discovery rates (FDR), were obtained using the R package qvalue
(Storey and Tibshirani, 2003) with default parameters.

Sequence validation of differentially expressed

transcripts

Quantitative estimates of allelic expression ratios by sequencing were
obtained using the method described by Ge et al (2005). Primers
(Supplementary Table VII) were synthesized such that they spanned
multiple SNPs between the two alleles of a transcript. From two
independent Y/S strains, XHS768 and XHS769, cDNAwas synthesized
using random hexamers and PCR was carried out on the resulting
cDNA for sequence analysis. PCR products using the same primers on
genomic DNA of a Y/S strain, XHS768, was used to provide reference
traces in situation of 1:1 allelic concentrations. The resulting sequence
traces were analyzed with the software PeakPicker (Ge et al, 2005),
which estimates allelic expression ratios from relative peak heights at

SNP positions. We calculated the allelic ratios of transcripts as the
median over all SNPs and traces (Supplementary Table VII). Out of the
24 transcripts tested, one (HOP1) did not confirm polymorphic
positions in the genomic DNA. Two others (ICL2 and YDL237W) were
rejected from further analysis for having ratio estimates derived from
less than two SNPs.

ADE coefficient

We defined the ADE coefficient as ð hY � hSj jÞ=ðhY þ hSÞ, where hY and
hS are the expression levels of the Yallele and S allele, respectively in
the heterozygote.

Proportion of cis- and trans-regulatory effects

The ratio of cis-regulatory divergence to the total regulatory divergence
(Wittkopp et al, 2008) is computed as Cj j=ð Cj j þ Tj jÞ where C, the
cis-regulatory effect, is the log ratio of the allelic expression levels in
the hybrid and T, the trans-regulatory effect, is the difference between
the log ratio of the parental gene expression levels and C.

Analysis of PHO84 reciprocal hemizygote strains

hybridizations

The hybridizations of the two PHO84 reciprocal hemizygote strains
were analyzed using the same model as described above. Total
transcript expression levels (i.e., hYþhS, the sum of the two allele
levels for each transcript) were considered for comparison.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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GaisneM, BécamAM,Verdière J, Herbert CJ (1999)A ‘natural’mutation in
Saccharomyces cerevisiae strains derived from S288c affects the
complex regulatory gene HAP1 (CYP1). Curr Genet 36: 195–200

Ge B, Gurd S, Gaudin T, Dore C, Lepage P, Harmsen E, Hudson TJ,
Pastinen T (2005) Survey of allelic expression using EST mining.
Genome Res 15: 1584–1591

Gimelbrant A, Hutchinson J, Thompson B, Chess A (2007)Widespread
monoallelic expression on human autosomes. Science 318:
1136–1140

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H,
Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW,
Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with
6000 genes. Science 274: 546, 563–567

Hongay CF, Grisafi PL, Galitski T, Fink GR (2006) Antisense
transcription controls cell fate in Saccharomyces cerevisiae. Cell
127: 735–745

Huber W, Toedling J, Steinmetz L (2006) Transcript mapping with high-
density oligonucleotide tiling arrays. Bioinformatics 22: 1963–1970
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