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Abstract — While applying regularization procedures for obtaining stable solutions
of ill-posed problems, one of the crucial step is the choice of the regularization param-
eter. Among the well considered discrepancy principles in the literature, Morozov’s
method and Arcangeli’s method are widely used because of their simplicity for the
purpose of applications. Although Morozov’s method and their variations have been
considered extensively in the literature for general class of regularization methods, the
Arcangeli’s method is known to have applied only for Tikhonov regularization. The
reason could be the belief that it can never yield a rate better than Morozov’s pro-
cedure, under any smoothness assumption on the solution. However, this belief was
misplaced as it has been showed by Nair (1992) that Arcangeli’s method do provide the
best rate O(δ2/3) for Tikhonov regularization under sufficient smoothness assumption
on the solution, while Morozov’s method gives the rate only up to O(δ1/2).

The purpose of this paper is to consider a generalized form of Arcangeli’s method
for a general class of regularization methods for the case when there is no error on the
modeling, and then extend the procedure which allow error in the modeling as well.

1. INTRODUCTION

Many inverse problems in science and engineering can be modeled as an operator
equation

Tx = y, (1.1)

where T : X → Y is a bounded linear operator between Hilbert spacesX and Y .
If R(T ), the range of T , is not closed then the problem of solving (1.1) is ill-
posed in the sense that the generalized solution x̂ = T †y is not stable under the
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perturbation in the data y. Here T † is the generalized inverse of T . A typical
example of such ill-posed equation is the Fredholm integral equation of first kind

∫ b

a

k(s, t)x(t) dt = y(s), a ≤ s ≤ b, (1.2)

where X = Y = L2[a, b] and k( · , · ) is a non-degenerate kernel belongs to
L2([a, b]× [a, b]).

To obtain a stable approximate solution for the ill-posed equation(1.1), one
has to go for regularization methods. In a regularization method, in place of
equation (1.1), one considers a family of well-posed equations. A class of such
regularization methods can be generated by a family {gα : α > 0} of Borel
measurable functions on [0, b] for certain b > 0, and taking

xα := gα(T
∗T )T ∗y, α > 0,

as candidates for the approximation of T †y.
While applying a regularization method in practical situations, what we have

at our disposal are approximations Tn, ỹ of T , y respectively. In such situations
of modeling error, one considers

x̃α,n := gα(T
∗
nTn)T

∗
n ỹ.

One of the crucial points in a regularization method is to choose the regulariza-
tion parameter α = α(ỹ, n, δ) such that

x̃α,n := gα(T
∗
nTn)T

∗
n ỹ → T †y

as ‖y − ỹ‖ → 0 and ‖T − Tn‖ → 0.
For the above general class of regularization method, many discrepancy prin-

ciple have been used in the literature as a parameter choice strategy, such as
the methods due to Morozov [8], Gfrerer [7] and some of their variants (cf. [2]
and references therein).

The purpose of this paper is to use a variant of the generalized Arcangeli’s
method [1] introduced by Schock [11] for the case of Tikhonov regularization
and further investigated by Groetsch and Schock [4], Nair [9], George and Nair
([5, 6]). Although it is shown by Nair [9] that Arcangeli’s method can yield the
highest possible rate for Tikhonov regularization (cf. also ([5, 6]) no attempt
has been made so far to extend this procedure for general class of regularization
methods. This paper is the first such successful attempt.

We consider the generalized Arcangeli’s discrepancy principle for the case of
exact as well as for the approximation Tn of T , namely,

‖T x̃α − ỹ‖ = δp/αq, p, q > 0

and

‖Tnx̃α,n − ỹ‖ = (δ + ǫn)
p/αq, p, q > 0,
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respectively, where it is assumed that

‖T − Tn‖ ≤ ǫn, ‖y − ỹ‖ ≤ δ.

For the convergence and error analysis, we have to impose some conditions
on gα, α > 0. First we assume the following on {gα : α > 0} with

b ≥ max{‖T ‖2, ‖Tn‖2} ∀n = 1, 2, . . . .

Assumption (1). For some ν0 > 0 and for 0 ≤ ν ≤ ν0, there exists cν > 0
such that

sup
0≤λ≤b

λν |1− λgα(λ)| ≤ cνα
ν ∀α > 0.

Assumption (2). For every µ ∈ [0, 1], there exists dµ > 0 such that

sup
0≤λ≤b

λ1/2|gα(λ)| ≤ dµα
−1/2 ∀α > 0.

These assumptions are by now very standard in the literature and general
enough to include many regularizations methods such as the ones given below
(cf. [10] for the verification of conditions (1) and (2)).

For applying our discrepancy principle, we would like to impose two addi-
tional conditions:

Assumption (3). There exists α0 > 0 and κ0 > 0 such that

|1− λgα(λ)| ≥ κ0α
ν0 , ∀λ ∈ [0, b], ∀α ≤ α0.

Assumption (4). The function f(α) = αq[1− λgα(λ)], as a function of α,
is continuous and differentiable and f ′(α) is an increasing function.

Now let us list a few regularization methods which are special cases of the
above procedure.

(a) Tikhonov Regularization:

(T ∗T + αI)xα = T ∗y.

Here
gα(λ) = 1/(λ+ α).

Assumptions (1)–(4) hold with ν0 = 1, and κ0 in (3) can be taken as greater
than or equal to 1/(α0 + ‖T ‖2).

(b) Generalized Tikhonov Regularization:

((T ∗T )q+1 + αq+1I)xα = (T ∗T )qT ∗y.

Here
gα(λ) = λq/(λq+1 + αq+1),

assumptions (1)–(4) hold with ν0 = q+1, q ≥ −1/2, and κ0 in (3) can be taken
as greater than or equal to 1/(αq+1

0 + ‖T ‖2(q+1)).
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(c) Iterated Tikhonov Regularization: In this method, the k-th iterated ap-

proximation x
(k)
α is calculated from

(T ∗T + αI)x(i)
α = αx(i−1)

α + T ∗y, i = 1, . . . , k,

with x
(0)
α = 0. Here, with

gα(λ) =
1

λ

[

1−
( α

α+ λ

)k]

,

assumptions (1)–(4) hold with ν0 = k and the constant κ0 in (3) can be taken
as any number greater than or equal to 1/(α0 + ‖T ‖2)k.

2. ANALYSIS WITHOUT MODELING ERROR

Let {gα : α > 0} be a family of Borel measurable functions satisfying the
assumptions (1), (2) of Section 1, and let

xα = gα(T
∗T )T ∗y, (2.1)

x̃α = gα(T
∗T )T ∗ỹ, (2.2)

where y ∈ D(T †), ‖y − ỹ‖ ≤ δ > 0. We also assume that ‖y‖ > δ.
In this section we apply the generalized Arcangeli’s method

‖T x̃α − ỹ‖ = δp/αq , p, q > 0, (2.3)

to choose the regularization parameter α. In order to do this, we consider a
general estimate for the error ‖x̂− x̃α‖ in terms of α and δ, where

x̂ := T †y.

2.1. General error estimate

The following result is available in the literature (cf. Groetsch [3]). For the sake
of completeness, we supply its proof as well.

Theorem 2.1. Suppose x̂ ∈ R((T ∗T )ν), 0 ≤ ν ≤ ν0 and x̂ = (T ∗T )ν û for
some û ∈ X . Then

‖x̂− xα‖ ≤ cν‖û‖αν , (2.4)

‖xα − x̃α‖ ≤ d1/2δ/
√
α. (2.5)

Proof. By the definition of xα and x̃α and spectral theory, we have

x̂− xα = x̂− gα(T
∗T )T ∗y = [I − gα(T

∗T )T ∗T ]x̂

= (T ∗T )ν[I − gα(T
∗T )T ∗T ]û,

xα − x̃α = gα(T
∗T )T ∗(y − ỹ) = T ∗gα(TT

∗)(y − ỹ).
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Therefore, using the assumptions (1) and (2) on gα, we get

‖x̂− xα‖ = ‖(T ∗T )ν[I − gα(T
∗T )T ∗T ]û‖

≤ sup
0≤λ≤b

λν |1− λgα(λ)| ‖û‖ ≤ cν‖û‖αν ,

‖xα − x̃α‖ = ‖T ∗gα(TT
∗)(y − ỹ)‖ = ‖(TT ∗)1/2gα(TT

∗)(y − ỹ)‖
≤ sup

0≤λ≤b
λ1/2|gα(λ)| ‖y − ỹ‖ ≤ d1/2δ/

√
α.

Thus the proof is completed.

2.2. Discrepancy principle

We assume that the family {gα : α > 0} of Borel measurable functions satisfy
all the assumptions (1), (2), (3), (4) of Section 1. Further, we assume that

y ∈ R(T ), ‖y‖ > δ.

We make use of the following notations :

rα(λ) := I − λgα(λ), f(α, ỹ) := αq‖T x̃α − ỹ‖.

For functions ϕ(δ, n) and ψ(δ, n) we use the notation ϕ(δ, n) = O(ψ(δ, n)) to
state the fact that there exists a positive real number c, independent of the
arguments δ, n, such that

ϕ(δ, n) ≤ c ψ(δ, n).

Lemma 2.1. There exists a unique α = α(ỹ, δ) > 0 satisfying the discrep-
ancy principle (2.3), and

α = O(δp/(q+ν0)).

Proof. It is seen that

f(α, ỹ) := αq‖T x̃α − ỹ‖ = αq‖rα(TT ∗)ỹ‖.

By assumption (1) on gα, it follows that {‖rα(TT ∗)‖ : α > 0} is bounded, and
therefore

lim
α→0

f(α, ỹ) = 0, lim
α→∞

f(α, ỹ) = ∞.

Hence by intermediate value theorem and assumption (4) on gα, there exists a
unique α satisfying the discrepancy principle (2.3). By using the assumption (3)
on gα, and spectral theorem,

‖T x̃α − ỹ‖2 = ‖rα(TT ∗)ỹ‖2 =

∫ ‖T‖2

0

(rα(λ))
2 d‖Eλỹ‖2

≥
∫ ‖T‖2

0

(κ0α
ν0)2 d‖Eλỹ‖2 ≥ (κ0α

ν0‖ỹ‖)2.



286 M.T. Nair and M.P. Rajan

Since ‖ỹ‖ = ‖y − (y − ỹ)‖ ≥ ‖y‖ − δ, it follows that

δp/αq = ‖T x̃α − ỹ‖ ≥ κ0α
ν0(‖y‖ − δ),

so that α = O(δp/(q+ν0)).

Lemma 2.2. Let x̂ ∈ R((T ∗T )ν), 0 < ν ≤ ν0, and û ∈ X be such that
x̂ = (T ∗T )ν û. Then

‖rα(TT ∗)T x̂‖ ≤ ĉν‖û‖αω,

for some ĉν > 0, where
ω = min{ν0, ν + 1/2}.

Proof. By spectral theory for bounded self adjoint operators and the as-
sumption (1) on the functions gα, α > 0,

‖rα(TT ∗)T x̂‖ = ‖Trα(T ∗T )x̂‖ = ‖(T ∗T )1/2rα(T
∗T )x̂‖

= ‖(T ∗T )1/2rα(T
∗T )(T ∗T )ν û‖ = ‖(T ∗T )ν+1/2rα(T

∗T )û‖
≤ ĉνα

ω.

Theorem 2.2. Suppose x̂ ∈ R((T ∗T )ν) with 0 < ν ≤ ν0, and α is chosen
according to the discrepancy principle (2.3). Let

ω = min{ν0, ν + 1/2}, s = min{1, pω/(q + ν0)}.

If p < 2q + s, then

‖x̂− x̃α‖ → 0 as δ → 0,

‖x̂− x̃α‖ = O(δµ), µ = min{pν/(q + ν0), 1− p/2q + s/2q}.

Proof. Since y = T x̂, it follows from the assumption (1) and Lemma 2.2
that

δp/αq = ‖T x̃α − ỹ‖ = ‖rα(TT ∗)ỹ‖
≤ ‖rα(TT ∗)(ỹ − y)‖+ ‖rα(TT ∗)y‖
≤ c0δ + ĉν‖û‖αω ≤ max{c0, ĉν‖û‖}(δ + αω),

where ω and ĉν are as in Lemma 2.2. Since, by Lemma 2.1, α = O(δp/q+ν0 ), we
get

δp/αq = O(δs), s = min{1, pω/(q + ν0)}.
Hence

δ/
√
α = δ1−p/2q(δp/αq)1/2q = O(δ1−p/2q+s/2q)

Therefore from (2.4) and (2.5) we have

‖x̂− x̃α‖ = O(δµ), µ = min{pν/(q + ν0), 1− p/2q + s/2q}.

From this it also follows that ‖x̂− x̃α‖ → 0 as n → ∞.
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From the above theorem the following result can be easily deduced.

Corollary 2.1. In addition to the assumptions in Theorem 2.2, suppose

pω/(q + ν0) ≤ 1.

Then µ in Theorem 2.2 takes the form

µ = min
{ pν

q + ν0
, 1− p

2(q + ν0)

[

1 +
ν0 − ω

q

]}

. (2.6)

Moreover,

‖x̂− x̃α‖ = O(δpν/(q+ν0)) whenever
p

q + ν0
≤ 2

2ν + 1 + (ν0 − ω)/q
. (2.7)

In particular if

ν0 − 1/2 ≤ ν ≤ ν0, p/(q + ν0) = 2/(2ν0 + 1)

then
‖x̂− x̃α‖ = O(δ2ν/(2ν0+1)). (2.8)

3. ANALYSIS WITH MODELING ERROR

In this section, we carry out the analysis when there is a modeling error, that is,
we have only an approximation Tn of T . We assume that (Tn) is a sequence of
bounded operators such that ‖T −Tn‖ ≤ ǫn, where (ǫn) is a sequence of positive
real numbers such that ǫn → 0 as n → ∞. In this case, in place of (2.1) and
(2.2) we take

xα,n = gα(T
∗
nTn)T

∗
ny, (3.1)

x̃α,n = gα(T
∗
nTn)T

∗
n ỹ. (3.2)

As in (2.5) it is seen that

‖xα,n − x̃α,n‖ = ‖gα(T ∗
nTn)T

∗
n(y − ỹ)‖ ≤ d1/2δ/

√
α. (3.3)

For choosing the regularization parameter we use the discrepancy principle

‖Tnx̃α,n − ỹ‖ = (δ + ǫn)
p/αq, p, q > 0. (3.4)

3.1. General error estimate

We shall make use of the following result proved in Vanikko and Vereten-
nikov [12].

Lemma 3.1. Suppose that A,An : X → X are bounded positive self adjoint
operators with (An) uniformly bounded. Then

‖Aℓ −Aℓ
n‖ ≤ aℓ ‖A−An‖min{1, ℓ}, ℓ > 0,

where aℓ is independent of n.
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We make use of the above lemma to deduce the following.

Lemma 3.2. Let x̂ ∈ R((T ∗T )ν), 0 < ν ≤ ν0, and û ∈ X be such that
x̂ = (T ∗T )ν û. Then

‖rα(T ∗T )x̂‖ ≤ cν‖û‖αν ,

‖rα(T ∗
nTn)x̂‖ ≤ ‖û‖(cναν + 2 c0aν

√
b ǫmin{ν, 1}

n ),

where cν as in assumption (1) and aν as in Lemma 3.1.

Proof. By the assumption (1) on the functions gα, and spectral theory, we
have

‖rα(T ∗T )x̂‖ = ‖rα(T ∗T )(T ∗T )ν û‖ = ‖(T ∗T )νrα(T
∗T )û‖

≤ sup
0≤λ≤b

λν |rα(λ)| ‖û‖ ≤ cν‖û‖αν .

For the next estimate, observe that

‖rα(T ∗
nTn)x̂‖ = ‖rα(T ∗

nTn)(T
∗T )ν û‖

≤ ‖rα(T ∗
nTn)[(T

∗T )ν − (T ∗
nTn)

ν ]û‖+ ‖rα(T ∗
nTn)(T

∗
nTn)

ν û‖.

By assumption (1) on the functions gα, we have

‖rα(T ∗
nTn)(T

∗
nTn)

ν û‖ = ‖(T ∗
nTn)

νrα(T
∗
nTn)û‖ ≤ cνα

ν‖û‖,

and assumption (1) and Lemma 3.1 with A = T ∗T , An = T ∗
nTn and ℓ = ν, gives

‖rα(T ∗
nTn)[(T

∗T )ν − (T ∗
nTn)

ν ]û‖ ≤ c0aν‖T ∗T − T ∗
nTn‖min{ν, 1}‖û‖

≤ c0aν‖û‖2max{‖T ‖, ‖Tn‖}‖T − Tn‖min{ν, 1} ≤ 2 c0aν‖û‖
√
b ǫmin{ν, 1}

n .

Thus

‖rα(T ∗
nTn)x̂‖ ≤ cν‖û‖αν + 2 c0aν‖û‖

√
b ǫmin{ν, 1}

n

Theorem 3.1. Suppose x̂ ∈ R((T ∗T )ν), 0 ≤ ν ≤ ν0 and y ∈ D(T †). Then

‖x̂− x̃α,n‖ ≤ c(αν + (δ + ǫn)/
√
α+ ǫmin{ν, 1}

n ), (3.5)

where c > 0 is independent of α, δ, n.
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Proof. With xα, x̃α, xα,n, x̃α,n as in (2.1), (2.2), (3.1), (3.2) we have

‖x̂− x̃α,n‖ ≤ ‖x̂− xα‖+ ‖xα − xα,n‖+ ‖xα,n − x̃α,n‖ (3.6)

Recall from (2.4) and (3.3) that

‖x̂− xα‖ ≤ cν‖û‖αν , ‖xα,n − x̃α,n‖ ≤ d1/2δ/
√
α.

Also we note that

xα − xα,n = gα(T
∗T )T ∗y − gα(T

∗
nTn)T

∗
ny

= (gα(T
∗T )T ∗T − I)x̂+ (I − gα(T

∗
nTn)T

∗
nT )x̂

= −rα(T
∗T )x̂+ rα(T

∗
nTn)x̂ + gα(T

∗
nTn)T

∗
n(Tn − T )x̂.

Recall from Lemma 3.2 that

‖rα(T ∗T )x̂‖ ≤ cν‖û‖αν ,

‖rα(T ∗
nTn)x̂‖ ≤ ‖û‖(cναν + 2 c0aν

√
b ǫmin{ν, 1}

n ).

Now, by the assumption (2) and spectral theory we have

‖gα(T ∗
nTn)T

∗
n(Tn − T )x̂‖ = ‖T ∗

ngα(TnT
∗
n)(Tn − T )x̂‖

= ‖(TnT
∗
n)

1/2gα(TnT
∗
n)(Tn − T )x̂‖ ≤ ‖(TnT

∗
n)

1/2gα(TnT
∗
n)‖ ‖(Tn − T )x̂‖

≤ sup
0<λ≤b

λ1/2|gα(λ)| ‖(Tn − T )x̂‖ ≤ d1/2‖x̂‖ǫn/
√
α.

Thus we get

‖xα − xα,n‖ ≤ 2 ‖û‖cναν + 2 ‖û‖c0aν
√
b ǫmin{ν, 1}

n + d1/2‖x̂‖ǫn/
√
α.

Hence from (3.6),

‖x̂− x̃α,n‖ ≤ 3 ‖û‖cναν +2 ‖û‖c0aν
√
b ǫmin{ν, 1}

n + d1/2‖x̂‖ǫn/
√
α+ d1/2δ/

√
α

≤ max{3 ‖û‖cν , 2 ‖û‖c0aν
√
b, d1/2‖x̂‖+d1/2}(αν + ǫmin{ν, 1}

n +(δ+ ǫn)/
√
α).

3.2. Discrepancy principle

By following the procedure in Section 2 and making use of assumptions (1)–(4)
on gα, α > 0, it can be shown that there exists a unique α = α(ỹ, δ, n) satisfying
the discrepancy principle (3.4), and

α = O((δ + ǫn)
p/(q+ν0)).

Recall the notation:
rα(λ) := 1− λgα(λ).
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We shall make use of the following result.

Lemma 3.3. Let x̂ ∈ R((T ∗T )ν), 0 < ν ≤ ν0, and û ∈ X be such that
x̂ = (T ∗T )ν û. Then

‖rα(TnT
∗
n)Tnx̂‖ ≤ 2 c1/2aν

√
b ‖û‖α1/2ǫmin{ν, 1}

n + ĉν‖û‖αω,

where ĉν as in Lemma 2.2 and aν as in Lemma 3.1.

Proof. We observe that

‖rα(TnT
∗
n)Tnx̂‖ = ‖Tnrα(T

∗
nTn)x̂‖ = ‖(T ∗

nTn)
1/2rα(T

∗
nTn)x̂‖

= ‖(T ∗
nTn)

1/2rα(T
∗
nTn)(T

∗T )νû‖
≤ ‖(T ∗

nTn)
1/2rα(T

∗
nTn)[(T

∗T )ν − (T ∗
nTn)

ν ]û‖
+ ‖(T ∗

nTn)
1/2rα(T

∗
nTn)(T

∗
nTn)

ν û‖.

Now by the assumption (1) and Lemma 3.1 with A = T ∗T and B = T ∗
nTn, we

get

‖(T ∗
nTn)

1/2rα(T
∗
nTn)[(T

∗T )ν − (T ∗
nTn)

ν ]û‖
≤ c1/2α

1/2aν‖T ∗T − T ∗
nTn‖min{ν, 1} ‖û‖

≤ c1/2α
1/2aν max{‖T ‖, ‖Tn‖} ǫmin{ν, 1}

n ‖û‖ ≤ c1/2α
1/2aν2

√
b ǫmin{ν, 1}

n ‖û‖

Also, by the assumption (1),

‖(T ∗
nTn)

1/2rα(T
∗
nTn)(T

∗
nTn)

ν ]û‖ = ‖(T ∗
nTn)

ν+1/2rα(T
∗
nTn)û‖ ≤ ĉν‖û‖αω.

Therefore

‖rα(TnT
∗
n)Tnx̂‖ ≤ 2 c1/2aν

√
b α1/2ǫmin{ν, 1}

n ‖û‖+ ĉν‖û‖αω.

Theorem 3.2. Suppose y ∈ R(T ), x̂ ∈ R((T ∗T )ν) with 0 < ν ≤ ν0, and α
is chosen according to the discrepancy principle (3.4). Let

ω = min{ν0, ν + 1/2}, η = min{1, pω/(q + ν0), p/(2(q + ν0)) + min{ν, 1}}.

If p < 2q + η, then

‖x̂− x̃α,n‖ → 0 as δ → 0, n → ∞,

‖x̂− x̃α,n‖ = O((δ + ǫn)
ℓ + ǫmin{ν, 1}

n ), ℓ = min{pν/(q + ν0), 1− p/2q + η/2q}.

Proof. Using Lemma 3.3 and assumption (1) we have,

(δ + ǫn)
p/αq = ‖Tnx̃α,n − ỹ‖ = ‖rα(TnT

∗
n)ỹ‖

≤ ‖rα(TnT
∗
n)(ỹ − y)‖+ ‖rα(TnT

∗
n)y‖ ≤ c0δ + ‖rα(TnT

∗
n)T x̂‖

≤ c0δ + ‖rα(TnT
∗
n)Tnx̂‖+ ‖rα(TnT

∗
n)(T − Tn)x̂‖

≤ c0δ + ‖rα(TnT
∗
n)Tnx̂‖+ c0‖x̂‖ǫn.
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Now, using the estimate for ‖rα(TnT
∗
n)Tnx̂‖, we have

(δ + ǫn)
p/αq ≤ c0δ + 2 c1/2aν

√
b‖û‖α1/2ǫmin{ν, 1}

n + ĉν‖û‖αω + c0‖x̂‖ǫn
≤ max{c0, c0‖x̂‖, ĉν‖û‖, 2 c1/2aν

√
b‖û‖}(δ + ǫn + αω + α1/2ǫmin{ν, 1}

n )

Since α = O(δ + ǫn)
p/(q+ν0)), from the above inequality we obtain

(δ + ǫn)
p/αq = O((δ + ǫn)

η),

where
η = min{1, pω/(q + ν0), p/(2(q + ν0)) + min{ν, 1}}.

Hence

(δ + ǫn)/
√
α = (δ + ǫn)

1−p/2q [(δ + ǫn)
p/αq]1/2q = O((δ + ǫn)

1−p/2q+η/2q).

Therefore (3.5) becomes

‖x̂− x̃α,n‖ ≤ c[(δ + en)
pν/(q+ν0) + (δ + ǫn)

1−p/2q+s/2q + ǫmin{ν, 1}
n ]

so that if p < 2q + η, then 1− p/2q + η/2q > 0 and hence

‖x̂− x̃α,n‖ = O((δ + ǫn)
ℓ + ǫmin{ν,1}

n ),

where ℓ = min{pν/(q + ν0), 1− p/2q + η/2q}. From this it also follows that

‖x̂− x̃α,n‖ → 0 as δ → 0, n → ∞.

Recall that the quantity ℓ in the above theorem involves the quantities

ω := min
{

ν0, ν +
1

2

}

and η := min
{

1,
pω

q + ν0
,

p

2(q + ν0)
+ min{ν, 1}

}

.

Suppose ν is such that ν + 1/2 ≤ ν0. Then

pω

q + ν0
=

p

q + ν0

(

ν +
1

2

)

,

so that in this case

pω

q + ν0
≤ p

2(q + ν0)
+ min{ν, 1} whenever

p

q + ν0
≤ min

{

1,
1

ν

}

.

Next suppose that ν is such that ν + 1/2 ≥ ν0. In this case observe that

pω

q + ν0
=

pν0
q + ν0

≤ p

q + ν0

(

ν +
1

2

)

.

Hence, in this case also,

pω

q + ν0
≤ p

2(q + ν0)
+ min{ν, 1} whenever

p

q + ν0
≤ min

{

1,
1

ν

}

.
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Thus we can conclude that, if

p

q + ν0
≤ min

{

1,
1

ν

}

,

then
pω

q + ν0
≤ p

2(q + ν0)
+ min{ν, 1},

and consequently,

η = min
{

1,
pω

q + ν0

}

.

Again, we have

pω

q + ν0
≤ 1 provided

p

q + ν0
≤ min

{ 1

ν0
,

2

2ν + 1

}

.

Thus, if
p

q + ν0
≤ min

{

1,
1

ν0
,

2

2ν + 1

}

,

then

η =
pω

q + ν0
, 1− p

2q
+

η

2q
= 1− p

2(q + ν0)

[

1 +
ν0 − ω

q

]

,

consequently

ℓ = min
{ pν

q + ν0
, 1− p

2(q + ν0)

[

1 +
ν0 − ω

q

]}

.

Summing up the above observations, from Theorem 3.2, we obtain the fol-
lowing result.

Corollary 3.1. Suppose y ∈ R(T ), x̂ ∈ R((T ∗T )ν) with 0 < ν ≤ ν0, and α
is chosen according to the discrepancy principle (3.4). If in addition

p

q + ν0
≤ min

{

1,
1

ν0
,

2

2ν + 1

}

, (3.7)

then

‖x̂− x̃α,n‖ = O((δ + ǫn)
ℓ), ℓ = min

{ pν

q + ν0
, 1− p

2(q + ν0)

[

1 +
ν0 − ω

q

]}

.

In particular, the above conclusion holds if the condition (3.7) is replaced by

p

q + ν0
≤ min

{

1,
1

ν0
,

2

2ν0 + 1

}

.

Some special cases of the above corollary are listed in the following.

Corollary 3.2. Suppose y ∈ R(T ), x̂ ∈ R((T ∗T )ν) with 0 < ν ≤ ν0, and α
is chosen according to the discrepancy principle (3.4). If

p

q + ν0
≤ min

{

1,
1

ν0
,

2

2ν + 1 + (ν0 − ω)/q

}

, (3.8)
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then
‖x̂− x̃α,n‖ = O((δ + ǫn)

ℓ), ℓ = pν/(q + ν0).

In particular, the above conclusion holds if the condition (3.8) is replaced by

p

q + ν0
≤ min

{

1,
2

2ν + 1

}

, 0 ≤ ν0 −
1

2
≤ ν ≤ ν0

or
p

q + ν0
≤ 2

2ν0 + 1
, ν0 ≥ 1

2
.

Proof. It can be seen that

pν

q + ν0
≤ 1− p

2(q + ν0)

[

1 +
ν0 − ω

q

]

if and only if
p

q + ν0
≤ min

{

1,
1

ν0
,

2

2ν + 1 + (ν0 − ω)/q

}

so that under the conditions of the corollary, the quantity ℓ in Corollary 3.1
takes the form

ℓ =
pν

q + ν0
.

The first part of the particular case follows, since

ν0 −
1

2
≤ ν ≤ ν0 implies ω = ν0,

2

2ν + 1
≤ 1

ν0
.

For the second part of the particular case, we observe the following:

ν0 −
1

2
≤ ν ≤ ν0 implies

2

2ν0 + 1
≤ 2

2ν + 1
≤ 1

ν0
,

ν0 −
1

2
≥ ν ≤ ν0 implies

2

2ν0 + 1
≤ 1

ν0
≤ 2

2ν + 1
.

Remark. Note that by Corollary 3.2, if ν0 ≥ 1/2, then we obtain the rate

‖x̂− x̃α,n‖ = O((δ + ǫn)
2ν/(2ν0+1))

whenever

p

q + ν0
=

2

2ν0 + 1
and x̂ ∈ R((T ∗T )ν), 0 < ν ≤ ν0

resulting in the best optimal order O((δ + ǫn)
2ν0/(2ν0+1)) for the case ν = ν0.

Note that the condition p/(q + ν0) = 2/(2ν0 + 1) includes the Arcangeli’s
method, i.e., the case p = 1, q = 1/2.
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