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Abstract

Background: Discriminating membrane proteins based on their functions is an important task in

genome annotation. In this work, we have analyzed the characteristic features of amino acid

residues in membrane proteins that perform major functions, such as channels/pores,

electrochemical potential-driven transporters and primary active transporters.

Results: We observed that the residues Asp, Asn and Tyr are dominant in channels/pores whereas

the composition of hydrophobic residues, Phe, Gly, Ile, Leu and Val is high in electrochemical

potential-driven transporters. The composition of all the amino acids in primary active transporters

lies in between other two classes of proteins. We have utilized different machine learning

algorithms, such as, Bayes rule, Logistic function, Neural network, Support vector machine,

Decision tree etc. for discriminating these classes of proteins. We observed that most of the

algorithms have discriminated them with similar accuracy. The neural network method

discriminated the channels/pores, electrochemical potential-driven transporters and active

transporters with the 5-fold cross validation accuracy of 64% in a data set of 1718 membrane

proteins. The application of amino acid occurrence improved the overall accuracy to 68%. In

addition, we have discriminated transporters from other α-helical and β-barrel membrane proteins

with the accuracy of 85% using k-nearest neighbor method. The classification of transporters and

all other proteins (globular and membrane) showed the accuracy of 82%.

Conclusion: The performance of discrimination with amino acid occurrence is better than that

with amino acid composition. We suggest that this method could be effectively used to discriminate

transporters from all other globular and membrane proteins, and classify them into channels/pores,

electrochemical and active transporters.

Background
Membrane proteins perform a diverse variety of functions,
including the transport of ions and molecules across the
membrane, bind to small molecules at the extra cellular
space, recognize the immune system and energy transduc-
ers. The functional annotation of membrane proteins in

genomic sequences is an important problem in bioinfor-
matics and computational biology. Membrane transport-
ers are a large group of proteins that span the cell
membrane and form an intricate system of pumps and
channels through which they deliver essential nutrients,
eject waste products and assist the cell to sense environ-
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mental conditions. Transporters represent a large and
diverse group of proteins that differ in membrane topol-
ogy, energy coupling mechanism and substrate specifici-
ties [1]. They play indispensable roles in the fundamental
cellular processes of all organisms [2].

Several methods have been proposed to discriminate
membrane proteins from amino acid sequence informa-
tion. These methods include statistical analysis [3-5], hid-
den Markov models [6,7] and machine learning
techniques [8-10]. However, the discrimination of mem-
brane proteins based on their functions is not yet explored
and it is still at the infant stage.

In this work, we have analyzed the characteristic features
of amino acid residues in major transporters, such as,
channels/pores, electrochemical potential-driven trans-
porters and primary active transporters. We have utilized
different machine learning techniques for discriminating
these classes of proteins and achieved the 5-fold cross-val-
idation accuracy of 68%. The sensitivity of correctly iden-
tifying channels/pores, electrochemical and active
transporters are, 55%, 70% and 76% respectively, in a set
of 510, 502 and 706 proteins. The classification of chan-
nels and pores has been carried out, which showed the
accuracy of 92%. In addition, we have discriminated
transporters from other α-helical and β-barrel membrane
proteins, and from all other proteins (globular and mem-
brane) to the accuracy of 85% and 82%, respectively. Fur-
ther, the influence of chain length for discrimination will
be discussed.

Methods
Data sets

We have constructed datasets for channels/pores, electro-
chemical transporters and active transporters from the
information available in Transport Classification Data-
base, TCDB [11]. The TCDB has seven groups of transport-
ers in which three of them have insufficient data for
analysis and one is for incompletely characterized pro-
teins. Hence, we have used the three major transporters,
channels/pores, electrochemical and active transporters.
The number of proteins belonging to these classes of
transporters deposited in TCDB are 720, 989 and 1216,
respectively. From these proteins, we have removed the
redundant sequences using blastclust program [12] so
that no two proteins have the sequence identity of more
than 20%. This algorithm showed only one sequence in
most of the clusters and we have randomly picked up one
sequence for the clusters with many sequences. The final
dataset contains 1718 proteins, which have 510 channels/
pores, 502 electrochemical and 706 active transporters.

Computation of amino acid composition and occurrence

The amino acid composition for the set of transporters has
been computed using the number of amino acids of each
type and the total number of residues. It is defined as:

Comp(i) = Σ ni/N (1)

where i stands for the 20 amino acid residues, ni is the
number of residues of each type and N is the total number
of residues. The summation is through all the residues in
all the considered proteins. The same procedure was
repeated for all the three groups of transporters for obtain-
ing their amino acid composition. The total number of
residues in the datasets of channels/pores, electrochemi-
cal and active transporters are respectively, 259,143,
252,585 and 289,109.

The amino acid occurrence is the actual number of amino
acid residues of each type present in a protein without
normalizing with chain length.

5-fold cross-validation method and jack-knife test

We have performed a 5-fold cross-validation test for
assessing the validity of the present work. In this method,
the data set is divided into five groups, four of them are
used for training and the rest is used for testing the
method. The same procedure is repeated for five times and
the average is computed for obtaining the accuracy of the
method.

In jack-knife test, n-1 data are used for training and the
prediction is made on the left-out protein. This procedure
is repeated for n times and the average is computed for
obtaining the accuracy.

Calculation of specificity, precision, F-measure and 

accuracy

We have used different measures, such as specificity, pre-
cision, F-measure and accuracy to assess the performance
of discriminating channels/pores, electrochemical and
active transporters. The term sensitivity shows the correct
prediction of specific transporters and accuracy indicates
the overall assessment. F-measure is the balance between
sensitivity and precision, 1/F = [(1/Sensitivity) + (1/Preci-
sion)]/2. These terms are defined as follows:

Sensitivity = TP/(TP+FN)

Precision = TP/(TP+FP)

F-measure = (2 × Sensitivity × Precision)/(Sensitivity +
Precision)

= 2TP/(2TP+FP+FN)
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Accuracy = (TP+TN)/(TP+TN+FP+FN),

where, TP, FP, TN and FN refer to the number of true pos-
itives, false positives, true negatives and false negatives,
respectively.

Different machine learning algorithms used for 

discrimination

We have analyzed several machine learning techniques
implemented in WEKA program [13] for discriminating
membrane transporters from other proteins and classify-
ing them into channels/pores, electrochemical and active
transporters. This program includes several methods
based on Bayes function, Neural network, Logistic func-
tion, Support vector machine, Regression analysis, Near-
est neighbor, Meta learning, Decision tree and Rules. The
details of all these methods are available in our earlier arti-
cles [9,10] as well as in the book on data mining [13].

Results and Discussion
Amino acid composition for the 20 amino acid residues in 

different transporters

The amino acid composition for the 20 amino acid resi-
dues in channels/pores, electrochemical and active trans-
porters have been computed using Eqn. 1 and the results
are presented in Table 1. Although several residues
showed differences in their compositions, few residues
have the difference of more than one (|Difference| >1)
among the three classes of transporters. The residue Asn is
dominant in channels/pores among all the transporters.
Interestingly, Asn plays an important role to the stability
and function of β-barrel membrane proteins [4,14]. The

structural analysis on outer membrane cobalamin trans-
porter protein (BtuB) that transports substrates across the
outer membrane, showed that the residues, Asn185 and
Asn276 are important for the stability of the upper surface
of cyanocobalamin (vitamin B12; CN-Cbl) binding pocket
[15,16], which is important for its function. In glycerol
facilitator protein the residues Asn68 and Asn203 play
important roles to the stability by making hydrogen
bonds to form helical polar strips that connect the peri-
plasmic and cytoplasmic versibules [17]. Glu is another
amino acid that shows the difference of more than one
with electrochemical transporters. It has been showed that
the residues Glu166 and Glu148 are important for the
channel function in CIC chloride channel proteins [18].
The composition of residues Ala, Ile and Leu in channels/
pores are the least among the three transporters. Other
hydrophobic residues also show similar tendency. It
might be due to the fact that other two families are domi-
nated with hydrophobic residues owing the presence of
mainly transmembrane helical proteins.

The residues Phe and Leu are dominant in electrochemical
transporters. In addition, the composition of Ala, Ile, Val
and Trp are higher in this class of proteins compared with
other two transporters. Interestingly, in glycerol-3-phos-
phate transporter the space between helices 1 and 7 is
filled by nine aromatic side chains and the occurrence of
bulky aromatic residues helps to close the pore com-
pletely [19]. In lactose permease the substrate binding site
is composed of residues that include Trp151 [20]. The
higher occurrence of hydrophobic residues is due to the
presence of long stretches of these residues in membrane
spanning segments of α-helical membrane proteins. The
electrochemical transporters are mainly occupied with
multiple spanning transmembrane helical proteins,
which increased the occurrence of hydrophobic residues.
On the other hand, the charged residues showed the low-
est composition in this class of proteins. The composition
of residues Asp, Glu and Lys are much lower than other
transporters and Arg is also a less favored residue. How-
ever, the analysis of three dimensional structures showed
that these charged residues are important for function.
The residues Asp407, Asp480 and Lys940 are important
for drug resistance in bacterial multidrug efflux trans-
porter [21] and the charged residues E126, R144 and E269
are found to be in the substrate binding sites of lactose
permease [20].

In active transporters none of the residue has the highest
or lowest occurrence. All the residues have the composi-
tion, which lies between the compositions of channels/
pores and electrochemical transporters. However, Glu,
Gln, Phe, Arg and Lys are close to channels/pores whereas
Ala, Asn, Thr and Tyr are close to electrochemical trans-
porters. The structural analysis on high-potential iron-sul-

Table 1: Amino acid composition in channels/pores, 

electrochemical and active transporters

Residue Channels/pores Electrochemical Active

Ala 0.59 0.64 0.65

Asp 0.39 0.43 0.26

Cys 0.80 0.81 0.69

Glu 0.48 0.56 0.47

Phe 0.63 0.61 0.60

Gly 0.48 0.56 0.36

His 0.46 0.53 0.47

Ile 0.67 0.73 0.62

Lys 0.58 0.43 0.40

Leu 0.70 0.69 0.68

Met 0.63 0.63 0.49

Asn 0.41 0.36 0.38

Pro 0.26 0.44 0.28

Gln 0.49 0.51 0.56

Arg 0.52 0.60 0.47

Ser 0.49 0.44 0.43

Thr 0.59 0.62 0.48

Val 0.67 0.70 0.55

Trp 0.76 0.63 0.68

Tyr 0.71 0.67 0.54
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fur protein shows that the electron transfer is mainly
achieved by hydrophobic interactions [22]. In addition
aromatic residues are acting as binding site residues in
vitamin B12 binding protein [23].

Structural analysis of transporters

We have analyzed the three-dimensional structures of
transporters deposited in TCDB and derived the propen-
sity of the 20 amino acid residues to be in the membrane
part. This has been computed by the ratio between the
occurrence of each amino acid residue in the membrane
part and the respective residue in the whole protein. The
results obtained for channels/pores, electrochemical and
active transporters are presented in Table 2. We observed
that the membrane propensity of amino acid residues in
channels/pores, electrochemical and active transporters
have been partially reflected in their amino acid composi-
tions. Especially the residues Asn and Tyr are dominant in
channels/pores, the propensity of residues in active trans-
porters is not the highest among all the three transporters,
hydrophobic residues have high propensity in electro-
chemical transporters and so on. We noticed that the
transporters will have 52–59% of their residues in the
membrane part. It is noteworthy that the number of pro-
tein structures used to carry out the analysis is limited (a
representative set of 22, 3 and 13 proteins in channels/
pores, electrochemical and active transporters, respec-
tively) and hence there may be a possibility of minor
changes in results when more number of proteins are used
in the analysis.

Performance of different machine learning techniques for 

discriminating channels/pores, electrochemical and active 

transporters

We have analyzed the performance of different machine
learning methods for discriminating channels/pores, elec-
trochemical and active transporters and the results
obtained with amino acid composition are presented in
Table 3. We observed that the sensitivity, precision and F-
measure for electrochemical transporters is better than
other two classes of proteins. The sensitivity, precision
and F-measure for electrochemical transporters lies in the
ranges of 0.58–0.82, 0.55–0.67 and 0.58–0.70, respec-
tively. The values for channels/pores are 0.47–0.58,
0.53–0.68 and 0.51–0.59, and active transporters are
0.53–0.68, 0.55–0.62 and 0.56–0.65. The average accu-
racy of discriminating channels/pores, electrochemical
and active transporters lies in the range of 56–64% for dif-
ferent machine learning techniques. The highest accuracy
of 64% is obtained for neural network based method.
Interestingly, this method has similar values with all
measures indicating the ability of picking up the specific
class of transporters and eliminating others with similar
accuracy. In addition, we have tested the performance of
the present method with jack-knife test and the results
obtained with neural network are shown in Table 3. We
noticed that the jack-knife test and 5-fold cross-validation
showed similar results with a difference of 1.8%. We have
also carried out the computations with same number of
data in each class of transporters (502 proteins each) and
we observed that the net accuracy (66%) is marginally bet-
ter than that obtained with the original dataset.

Further, this analysis showed a moderate difference in the
performance of different machine learning methods (the
accuracy varies from 60% to 66% in most of the meth-
ods). The main cause of obtaining different prediction
results might be due to the usage of different adjustable
parameters in these methods.

Influence of chain length for discrimination

The performance of different machine learning methods
for discriminating channels/pores, electrochemical and
active transporters with amino acid occurrence as features
has been analyzed and the results are presented in Table
4. We observed that the average accuracy improved to
68% using neural network with amino acid occurrence. It
has been shown that neural network is an efficient
method for discriminating β-barrel membrane proteins
[9,10]. The sensitivity is 0.55, 0.70 and 0.76 for channels/
pores, electrochemical and active transporters, respec-
tively. The precision is 0.70, 0.78 and 0.62, and F-measure
is 0.61, 0.74 and 0.68. In addition, we have tested the per-
formance of the present method with jack-knife test and
the results obtained with neural network are shown in
Table 4. We noticed that the jack-knife test and 5-fold

Table 2: Membrane propensity of amino acid residues in 

channels/pores, electrochemical and active transporters

Residue Channels/pores Electrochemical Active

Ala 7.95 9.16 8.96

Asp 5.37 3.39 4.63

Cys 1.22 1.34 0.96

Glu 5.51 3.95 5.57

Phe 4.30 5.91 4.49

Gly 7.71 7.98 7.32

His 1.91 1.70 1.66

Ile 5.60 7.46 6.63

Lys 5.39 3.80 5.26

Leu 9.30 12.08 10.77

Met 2.21 2.99 2.74

Asn 5.34 3.39 4.04

Pro 4.13 4.39 4.48

Gln 4.03 2.89 3.81

Arg 4.74 3.85 4.66

Ser 7.64 7.36 6.47

Thr 5.94 5.60 5.62

Val 6.66 7.90 7.36

Trp 1.37 1.73 1.47

Tyr 3.58 3.13 3.00
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cross-validation showed similar results with a difference
of 2.7%. We have also carried out the computations with
same number of data in each class of transporters (502
proteins each) and we observed that the net accuracy
(68%) is similar to that obtained with the original dataset.

The comparison of results presented in Tables 3 and 4
reveals that amino acid occurrence is better than compo-
sition for discriminating transporters. Recently, similar
trend has been reported for discriminating different fold-
ing types of globular proteins [24]. These studies indicate

the importance of chain length for discrimination in such
a way that the normalization with chain length reduced
the prediction accuracy.

When compared the performance of different machine
learning methods, unlike amino acid composition, sev-
eral methods showed poor sensitivity for channels/pores
with occurrence. For example, Naïve Bayes showed the
sensitivity of 0.20 and 0.76, respectively for channels/
pores and electrochemical transporters. However, several
methods (E.g. k-nearest neighbor, bagging, neural net-

Table 3: Discrimination of channels/pores, electrochemical potential-driven transporters and primary active transporters using 

different machine learning approaches with amino acid composition as features

Method 5-fold cross-validation

Sensitivity Precision F-Measure Accuracy

F1 F2 F3 F1 F2 F3 F1 F2 F3 (%)

Bayesnet 0.582 0.777 0.538 0.606 0.643 0.612 0.594 0.703 0.573 62.1

Naive Bayes 0.496 0.823 0.534 0.626 0.597 0.606 0.554 0.692 0.568 60.7

Logistic function 0.535 0.695 0.619 0.615 0.638 0.601 0.572 0.665 0.610 61.6

RBF network 0.543 0.735 0.625 0.640 0.666 0.603 0.587 0.699 0.614 63.3

Support vector machine 0.469 0.757 0.642 0.675 0.620 0.603 0.553 0.682 0.622 62.4

k-nearest neighbor 0.525 0.707 0.572 0.586 0.588 0.615 0.554 0.642 0.593 59.8

Bagging meta learning 0.541 0.679 0.677 0.646 0.660 0.618 0.589 0.669 0.646 63.6

Classification via Regression 0.492 0.695 0.630 0.599 0.628 0.599 0.540 0.660 0.614 60.8

Decision tree J4.8 0.506 0.580 0.572 0.529 0.581 0.554 0.517 0.580 0.563 55.5

NBTree 0.512 0.669 0.569 0.569 0.610 0.568 0.539 0.638 0.569 68.2

Partial decision tree 0.473 0.649 0.550 0.544 0.551 0.568 0.506 0.596 0.559 55.6

Neural network 0.549 0.717 0.642 0.636 0.659 0.619 0.589 0.687 0.630 63.6

Jack-knife test 0.571 0.709 0.676 0.664 0.660 0.644 0.571 0.709 0.676 65.4

Equal data 0.635 0.713 0.624 0.689 0.698 0.591 0.661 0.705 0.607 65.7

F1: channels/pores; F2: electrochemical potential-driven transporters; F3: primary active transporters. Equal data: Results obtained with a dataset of 
502 proteins each in all the three classes of transporters.

Table 4: Discrimination of channels/pores, electrochemical potential-driven transporters and primary active transporters using 

different machine learning approaches with amino acid occurrence as features

Method 5-fold cross-validation

Sensitivity Precision F-Measure Accuracy

F1 F2 F3 F1 F2 F3 F1 F2 F3 (%)

Bayesnet 0.329 0.735 0.567 0.554 0.515 0.572 0.413 0.606 0.569 54.6

Naive Bayes 0.202 0.757 0.575 0.477 0.512 0.534 0.284 0.611 0.554 51.8

Logistic function 0.533 0.713 0.705 0.689 0.717 0.604 0.601 0.715 0.651 65.

RBF network 0.247 0.727 0.633 0.486 0.593 0.530 0.328 0.654 0.577 54.6

Support vector machine 0.163 0.727 0.826 0.847 0.705 0.529 0.273 0.716 0.645 60.0

k-nearest neighbor 0.629 0.705 0.640 0.634 0.683 0.651 0.632 0.694 0.646 65.6

Bagging meta learning 0.553 0.685 0.737 0.676 0.733 0.625 0.608 0.709 0.676 66.7

Classification via Regression 0.465 0.721 0.721 0.686 0.702 0.602 0.547 0.711 0.656 64.5

Decision tree J4.8 0.543 0.625 0.555 0.526 0.592 0.593 0.534 0.609 0.574 57.2

NBTree 0.471 0.570 0.659 0.553 0.656 0.548 0.508 0.610 0.598 57.7

Partial decision tree 0.520 0.647 0.623 0.551 0.645 0.600 0.535 0.646 0.612 60.0

Neural network 0.549 0.701 0.761 0.695 0.780 0.622 0.613 0.739 0.684 68.1

Jack-knife test 0.500 0.703 0.729 0.639 0.749 0.607 0.561 0.726 0.663 65.4

Equal data 0.723 0.743 0.574 0.691 0.712 0.630 0.707 0.727 0.601 68.0

F1: channels/pores; F2: electrochemical potential-driven transporters; F3: primary active transporters. Equal data: Results obtained with a dataset of 
502 proteins each in all the three classes of transporters.
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work etc.) showed good performances with similar sensi-
tivity in all three classes of transporters.

Comparison between the present method and the results 

obtained with BLAST search

We have analyzed the capability of BLAST to discriminate
the three different types of transporters based on homol-
ogy search. For each protein we have computed the
sequence identity with all proteins in the three transport-
ers and assigned the group, which has the highest
sequence identity or best e-value. The calculations have
been repeated for all the 1708 proteins and computed the
overall accuracy. This method showed an accuracy of
51.6% in discriminating channels/pores, electrochemical
and active transporters. Our method showed the accuracy
of 75%, which is superior to simple BLAST search and the
analysis revealed the better performance of the present
method.

Discrimination between two different classes of 

transporters

The amino acid composition of active transporters is in
the range between that of channels/pores and active trans-
porters (Table 1). Hence, we have examined the discrimi-
nation performance of two different transporters whether
the discrimination accuracy is the highest between chan-
nels/pores and electrochemical transporters. The results
are presented in Table 5. As expected the difference of
amino acid compositions has been reflected in the per-
formance of discrimination. The amino acid occurrence
could discriminate the channels/pores and electrochemi-
cal transporters to the accuracy of 87%. The discrimina-
tion accuracy is 73% between channels/pores and active
transporters, and 81% between electrochemical and active
transporters. As discussed in previous sections, the dis-
crimination accuracy with amino acid composition is less
than that obtained with occurrence. However, we
observed the same trend that the channels/pores and elec-

trochemical transporters are discriminated with the high-
est accuracy.

Discrimination of channels and pores

Proteins in the category of channels/pores have trans-
membrane channels, which consists of α-helical and β-
strand spanning segments [11]. Hence, we have tested dif-
ferent machine learning algorithms to discriminate the
channels (mainly α-helices) and pores (mainly β-
strands). The results obtained with amino acid composi-
tion are shown in Table 6. We found that most of the
machine learning methods discriminated the channels
and pores with the accuracy in the range of 88–92%. The
neural network and support vector machine showed the
highest accuracy of 92.4%. The sensitivity and specificity
are, 93% and 92%, respectively using neural network. We
observed similar level of accuracy using amino acid occur-
rence. The classification via regression and logistic func-
tion methods discriminated the channels and pores with
the accuracy of 90%. The similar performance with amino
acid composition and occurrence might be due to the dif-
ference in amino acid residues in the membrane spanning
regions of α-helical and β-barrel membrane proteins. The
α-helical membrane proteins are dominated with the
stretches of hydrophobic residues whereas the polar and
charged resides are intervened in the membrane spanning
segments of β-barrel membrane proteins. The high accu-
racy obtained for discriminating channels and pores is
consistent with other methods for discriminating α-heli-
cal/β-barrel membrane proteins [3-10].

Discrimination of transporters from other membrane 

proteins and all other proteins

We have developed a dataset of 3336 membrane proteins
with less than 20% sequence identity that includes recep-
tors and all other types of α-helical and β-barrel mem-
brane proteins except transporters from SWISS-PROT
database. Using a dataset of 3336 non-transporters and
1718 transporters we have analyzed the performance of
different machine learning algorithms and the k-nearest
neighbor could discriminate the transporters with the 5-
fold cross-validation accuracy of 79.1%. The sensitivity
and specificity are 69.2% and 84.2%, respectively. Fur-
ther, we have repeated the computations with equal
number of transporters and non-transporters and
obtained the accuracy of 85.0%. The jack-knife test also
showed similar results that we obtained with 5-fold cross-
validation method.

In addition, we have set up a dataset for 5048 proteins,
which include membrane transport proteins and other
membrane and globular proteins. We obtained a 5-fold
cross-validation accuracy of 78.7% in discriminating
transporters and non-transporters. Further, we have used
the same number of proteins in transporters and non-

Table 5: Discrimination accuracy between two different 

transporters

5-fold cross-validation accuracy (%)

F1 F2 F3

Occurrence

F1 - 86.8 73.2

F2 86.8 - 80.5

F3 73.2 80.5 -

Composition

F1 - 81.4 71.8

F2 81.4 - 77.1

F3 71.8 77.1 -

Highest accuracy is shown.
F1: channels/pores
F2: electrochemical potential-driven transporters
F3: primary active transporters
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transporters and repeated the calculations. We obtained
the accuracy of 81.5% in distinguishing them, and both
jack-knife test and 5-fold cross-validation method showed
similar performance on discrimination.

Discrimination on the web

We have developed web servers for (i) discriminating
membrane transport proteins from all other membrane
and globular proteins [25] and (ii) distinguishing chan-
nels/pores, electrochemical and active transporters [26].
These servers take the amino acid sequence as input and
predict whether the protein is membrane transporter or
not, and the type of the membrane transport protein.
Both the servers can be freely accessible from our web site
[27].

Applications of the present method for new sequences

The following procedure may be used to detect the type of
a new protein. First the new sequence can be identified as
a transporter or non-transporter using the discrimination
method to classify them (previous section). It has been
shown that the transporters and non-transporters are dis-
criminated with the highest accuracy of 82%. For a trans-
porter, it can be further identified into channels/pores,
electrochemical and active transporters with an accuracy
of 68%. Alternatively, several methods have been reported
in the literature for discriminating globular proteins from
α-helical [3,28-30] or β-barrel [4-10,31] membrane pro-
teins. These methods can be used to detect the membrane
proteins. The membrane proteins of any kind can be clas-
sified into transporters and non-transporters with the
maximum accuracy of 85%, and the transporters can be
further classified into three groups. Hence, the two-way/
three-way prediction system can be used to detect differ-
ent types of transporters in genomic sequences. The work
on the integration of prediction methods is on progress.

Conclusion
We have systematically analyzed the amino acid composi-
tions of channels/pores, electrochemical and active trans-
porters and revealed the similarities and differences
among them. Different machine learning algorithms have
been tested to discriminate these transporters and we
achieved the highest accuracy of 68% using neural net-
work with amino acid occurrence. Further, we have exam-
ined the discrimination performance between two classes
of transporters, which showed the highest accuracy of
87% between channels/pores and electrochemical trans-
porters. In addition, the channels and porins are discrim-
inated with the accuracy of 92%. On the other hand, the
transporters and other membrane proteins/all other glob-
ular and membrane proteins are discriminated with the
accuracy of 85% and 82%, respectively. We suggest that
this method could be effectively used to discriminate
transporters and different classes of transporters in
genomic sequences.

Availability and Requirements
Project name: Functional discrimination of membrane
proteins

Project home page: http://tmbeta-genome.cbrc.jp/disc-
function/

Operating system(s): Platform independent

Programming language: Java

Licence: No restriction

Any restriction to use by non-academics: No restriction
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Table 6: Discrimination of channels and pores using different machine learning approaches

Method 5-fold cross-validation

Sensitivity (%) Specificity (%) F-measure Accuracy (%)

Channel Pore

Bayesnet 94.1 81.4 0.910 0.857 88.9

Naive Bayes 92.5 88.4 0.923 0.887 90.8

Logistic function 92.0 89.1 0.922 0.888 90.8

Neural network 93.0 91.5 0.935 0.915 92.4

RBF network 92.5 88.4 0.923 0.887 90.8

Support vector machines 95.2 88.4 0.937 0.905 92.4

k-nearest neighbor 89.8 86.8 0.903 0.862 88.6

Bagging meta learning 89.8 83.7 0.894 0.844 87.3

Classification via Regression 88.2 85.3 0.889 0.843 87.0

Decision tree J4.8 86.1 78.3 0.856 0.789 82.9

NBTree 90.9 83.7 0.899 0.850 88.0

Partial decision tree 87.2 79.1 0.865 0.800 83.9
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