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Abstract. In the present work, free vibration characteristics of a spring-mounted beam is
studied. The objective is to determine the natural frequencies and mode shapes of this beam.
Towards this end, a novel semi-analytical method is developed. The methodology is based on
Green’s function of Euler-Bernoulli beam together with a Rayleigh-Ritz method. A minimal set
of basis functions for the Rayleigh-Ritz method is found, by generating the beam mode shapes
for extreme values (zero and infinity) of the connecting spring stiffnesses. Thus, for a beam
with n intermediate spring connections, 2n beam modes are generated as basis functions. The
Green’s function approach is used to extract the beam mode shapes for the extreme values of
the connecting spring stiffnesses. The results from the proposed formulation are compared with
those from a finite element (FE) simulation. For most cases, the results obtained by the two
methods are in excellent agreement. Guidelines for further improvement of the accuracy of the
present results have been proposed. Detailed parametric studies on the effect of spring stiffness
value and their location have been performed.
Keywords: Green’s function, Rayleigh-Ritz, Natural frequencies, Mode shapes.

1. Introduction
Beams with springs support have been studied extensively. Most investigators have solved the
problem by determining the roots of a frequency equation, which is usually transcendental in
nature. Nicholson and Bergman [1] derived the governing differential equation for a beam with
spring-mass attachment. The equation was solved using Green’s function method and analysis
was carried out for Simply supported and cantilever boundary conditions. Cha and Wong [2]
proposed a novel method to determine the frequency equation of a beam mounted on s spring-
mass system. The characteristic determinant is algebraically simplified such that the N ×N (N
number of terms considered in assumed mode method) generalized eigenvalue problem is reduced
to a s×s (s number of spring locations) problem. Lau [3] derived closed form expressions for the
fundamental frequency and mode shape of beam supported on n number of springs. The beam
is discretized into n+ 1 beam elements and continuity is enforced at each beam-spring interface.
Mohamad [4] extended the earlier research by deriving the governing differential equation for
a beam attached with linear spring, rotational spring and mass at different locations. This is
then solved using a Green’s function. Wu and Lin [5] used a combined analytical-numerical
method for finding the natural frequency of a beam with masses attached at multiple points.
The frequency equation was obtained using an expansion theorem and solved numerically for
frequencies and mode shapes.
Dowell [6] used a Lagrangian formulation for finding the natural frequency of a simply supported
beam connected with a spring-mass system. He employed the component modes of the beam
using the idea of a Lagrange multiplier at the interface. Gurgoze [7] derived a closed form



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1264/1/012026

2

solution for a cantilever beam with mass-spring-mass attached at the tip using Lagrangian
multiplier method. The frequency equation is solved numerically using regula-falsi method
for various values of spring and mass. Later, he studied [8] the effect of oscillators attached
to an Euler-Bernoulli beam at different locations using two methods: the first formulation
uses assumed mode method in conjunction with Lagrangian multipliers. While the second
formulation uses Euler-Lagrangian equation. Displacements of the beam at the point of spring
interface is expressed in terms of generalized coordinates which leads to system of differential
equations and are solved numerically.
Lin and Yang [9] developed a transfer matrix method for two beams connected by a spring-
mass-spring device, by expressing the compatibility at the point of connection. The method
is generalized to n spring-mass-spring devices at different locations for all classical boundary
conditions. Rezaiee and Mojtaba [10] investigated the dynamics of two horizontal beams
connected by a spring-mass system. The differential equations of the two beams are transformed
to frequency domain, and solved analytically for the natural frequencies and mode shapes.
Inceoglu and Gurgoze [11] employed the Green’s function approach to study the transverse
vibrations of a system consisting of two clamped-free beams carrying tip masses at their ends
and n spring-mass-spring devices attached across the span.
It is evident from the literature that, both Green’s functions and assumed mode methods are
predominantly used for solving beam on spring-support. The use of Green’s function involves
solving transcendental equation which is tedious. The assumed mode method uses mode shapes
of the beam without spring along with Lagrangian multiplier and requires inclusion of a large
number of terms for desired accuracy.
In this paper a new approach is proposed. A combination of the Green’s function approach
with Rayleigh-Ritz formulation is used to estimate natural frequencies and mode shapes. A
minimal set of basis functions are generated by assigning extreme values to the spring stiffness
(Ki → 0 and Ki →∞). Using these basis function in the Rayleigh-Ritz formulation, the natural
frequency and the mode shapes of the spring-supported beam are obtained for any set of values
for Ki.

2. Formulation
Consider a uniform beam connected by linear springs at multiple locations as shown in fig. 1.
Let L, I,A be the length, area and moment of inertia of the beam respectively. ρ,E are the
density and Young’s modulus of beam material, respectively. The spring connected to the beam
at jth location has a spring stiffness kj . The transverse displacement of the beam is denoted by
y(x, t). The governing differential equation of beam with springs attached is given by [1]

EIzz
∂4y (x, t)

∂x4
+ ρA

∂2y (x, t)

∂t2
=

n∑
j=1

kj y (ζj , t) δ(x− ζj), j = 1, 2....n, i = 1, 2 (1)

where n is the number of linear springs connected to beams. Assuming harmonic dependency
in time, Eq. (1) is non-dimensionalized to a form as shown below:

d4φ̄(x̄)

dx̄4
− β4φ̄(x̄) =

n∑
j=1

Kjφ̄ (ζj) δ(x̄− ζj) (2)

where x̄ =
x

L
, φ̄(x̄) =

y

L
, Kj =

kj L
3

E Izz
, β4 =

ρAω2

EIzz L4
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Figure 1: Simply supported beam with n linear springs attached in span with connecting stiffness
kj .

The solution of the differential equation is given by

φ̄(x̄) =

n∑
j=1

Kj φ̄(ζj)G(x̄, ζj) (3)

where the Green’s function G(x̄, ζj) should satisfy the following differential equation

d4G

dx̄4
− β4G = δ(x̄− ζj) (4)

From here on, x̄ and φ̄ are treated as x and φ respectively. The Green’s function for simply
supported boundary conditions is expressed as [1]

G(x, ζj) =

{
g(x, ζj) x ≤ ζj
g(ζj , x) x > ζj

(5)

where g(x, ζj) =
1

2β3

(
sin(β(L− ζj)) sin(βx)

sin(βL)
− sinh(β(L− ζj)) sinh(βx)

sinh(βL)

)
Similar expressions are available for other boundary conditions [4].

2.1. Shape functions
In the following section, we demonstrate the methodology for obtaining the shape functions for
a simply supported beam with single spring as shown in fig. 2a. In this case two shape functions
are used, namely φ1(x) and φ2(x). The former corresponds to highly compliant spring (K1 → 0)
whereas the later corresponds to stiff spring (K1 → ∞). These φ1(x) and φ2(x) represents the
two end points of a line spanning the range of K1 values see fig. 2b.

φ1(x) = K1,0G(x, ζ1) (6a)

φ2(x) = K1,∞G(x, ζ1), (6b)



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1264/1/012026

4

L

y

x
x = �1

k1

(a)

��
(K1�0) (K1���

��

(b)

Figure 2: (a) Simply supported beams connected with single linear springs placed at x = ζ1
with spring stiffness K1, (b) Two asymptotic shape function.

In the above equation K1,0 is an extremely small value ε (1e−6) and K1,∞ is an extremely large
value of say 1

ε . The key idea proposed in this paper is to assume that for any intermediate value
of spring stiffness K1, the beam shape function y(x, t) can be expressed as a linear combination
of the two extreme valued shape functions:

y(x, t) = {B1 φ1(x) +B2 φ2(x)}eiωt (7)

For ’2’ springs the asymptotic shape functions combinations represent the vertices of a square,
as shown in fig. 3, and are given by

Figure 3: Extreme combinations of K1 and K2 leads to shape function which represents the
vertices of the square.

y(x, t) = {B1 φ1(x) +B2 φ2(x) +B3 φ3(x) +B4 φ4(x)}eiωt (8)

where φi(x) =
2∑
j=1

KjG(x, ζj) i = 1...4

Eq. (8) contains a linear combination of four extreme valued shape functions, which correspond
to different combinations of extreme values of the two springs. For n springs the form of y(x, t)
can be expressed as .

y(x, t) =
2n∑
i=1

Bi φi(x)eiωt (9)
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The scaled kinetic energy and non-dimensional potential energy of the system are expressed as

V̄ =
1

2

∫ 1

0

(
∂2y(x, t)

∂x2

)2

dx+
n∑
j=1

1

2
Kj(y(ζj , t))

2 (10a)

T̄ =
1

2

∫ 1

0

(
∂y(x, t)

∂t

)2

dx (10b)

where V̄ =
V L
E Izz

T̄ =
T

ρAL3

The displacement of the combined system is expressed as a linear combination of basis functions
generated from the extreme values of each spring (Kj → 0 and Kj → ∞). The Rayleigh-Ritz
energy formulation is used to solve for the natural frequencies and mode shapes. The size of the
algebraic equations is given by 2n where n is the number of springs. For example, if 4 linear
springs exist then 16 shape functions are required. The shape functions are denoted by φi(x).
The form of y(x, t) is constructed using the derived shape functions. This form is substituted
in the kinetic energy and potential potential energy expressions. The Lagrangian is minimized
with respect to the undetermined coefficients leading to a system of homogeneous equation.[

K− ω2M
]
{B} = 0 (11)

where, K and M are the stiffness and mass matrices respectively, B is the unknown coefficient
vector. Solving this eigenvalue problem yields the natural frequencies and mode shapes. While
the results are presented only for a spring mounted simply supported beam, this procedure has
been found to work for other boundary conditions. These results are however not shown here.

3. Numerical Results
In this section several numerical results for a beam with single and two springs are presented to
demonstrate the advantages of the present method. In the present analysis all the results are
expressed in terms of a non dimensional frequency parameter β.

3.1. Beam with single spring
First as an illustration, a simply supported beam carrying single spring (j = 1) as shown in
fig. 2a is considered. The admissible functions used in the Rayleigh-Ritz formulation are derived
using Eq. (6) for two locations ζ1 = 1

2 and ζ1 = 1
3 . It is observed that the results obtained from

the present method are in good agreement with those obtained from FEM; see Tables 1 and 2
for comparison. The lowest three mode shapes of the beam carrying a single spring at ζ1 = 1

3
with stiffness ranging from (K1 = 0, γ,∞) are obtained from the present method. These mode
shapes shows excellent match with those obtained from FEM.
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Figure 4: The first three mode shape of simply supported beam with spring attached at ζ = 1
3 ,

for different values of K1, key: present method , FEM ◦◦
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Figure 6: Transition curves for simply supported beam with spring mounted at ζ1 = 1
3 .

The variation of the non dimensional frequencies of the system as the non dimensional
spring stiffness is increased is shown in figs. 5 and 6 for the springs at the two different
locations mentioned earlier. It is observed from these curves, that the frequency parameter is
insensitive to an increase in spring stiffness till it reaches a transition stiffness Kt,i; the associated
frequency is called as transition frequency βt,i. Beyond Kt,i the frequency parameter drastically
increases with increase in stiffness and then reaches a saturation value with the system frequency
parameter again becoming insensitive to additional increase in stiffness. This stiffness is called
as saturation stiffness Ks,i and the associated frequency is called as the saturation frequency
βs,i.

A quick estimate of the natural frequency of a beam with single spring can obtained by fitting
straight line equation to this log-linear plot.

βi(K1) =
βs,i − βt,i

logKs,i − logKt,i
(logK1 − logKt,i) + βt,i i = 1...4 (12)

Such an equation is very valuable as a design tool. The values of Kt,i and Ks,i are obtained
from the transition curves shown in figs. 5 and 6.

Table 1: Non-dimensional frequency parameter βi for a beam mounted on a spring at ζ1 = 1
2 .

Mode 1(β1) Mode 2(β2) Mode 3(β3) Mode 4(β4)
Non dimensional

stiffness K1

Present
method

FEM
Present
method

FEM
Present
method

FEM
Present
method

FEM

0.01 3.141 3.141 6.283 6.283 9.424 9.424 12.566 12.566
1 3.157 3.157 6.283 6.283 9.425 9.425 12.566 12.566
10 3.291 3.305 6.283 6.283 9.430 9.431 12.566 12.566
100 4.132 4.202 6.283 6.283 9.485 9.491 12.566 12.566
103 6.283 6.283 6.292 6.394 10.055 10.125 12.566 12.566
104 6.283 6.283 7.656 7.676 12.566 12.566 12.868 12.984
105 6.283 6.283 7.833 7.835 12.566 12.566 14.085 14.032
106 6.283 6.283 7.850 7.851 12.566 12.566 14.132 14.127
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Table 2: Non-dimensional frequency parameter βi of a beam mounted on a spring at ζ1 = 1
3 .

Mode 1 (β1) Mode 2(β2) Mode 3(β3) Mode 4(β4)
Non dimensional

stiffness K1

Present
method

FEM
Present
method

FEM
Present
method

FEM
Present
method

FEM

0.01 3.141 3.141 6.283 6.283 9.424 9.424 12.566 12.566
1 3.153 3.153 6.285 6.284 9.424 9.424 12.566 12.566
10 3.254 3.264 6.298 6.300 9.424 9.424 12.568 12.568
100 3.898 3.942 6.441 6.463 9.424 9.424 12.585 12.586
103 5.038 5.046 7.805 7.949 9.424 9.425 12.726 12.773
104 5.305 5.287 9.424 9.422 10.520 10.624 14.060 14.065
105 5.331 5.311 9.424 9.422 11.086 11.137 14.711 14.660
106 5.334 5.313 9.424 9.422 11.138 11.184 14.767 14.712

The effect of a hard spring on the frequency parameter β as a function of location on beam is
studied. The results for the first four modes of vibrations are shown in fig. 7. It is observed that
the ith mode natural frequency can be maximized by connecting the hard spring at the node of
the unrestrained (i+ 1)th mode.
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Figure 7: Effect of hard spring location on natural frequencies β′is; the corresponding
unrestrained (i+ 1)th mode is also shown. (a) i=1 (b)i=2, (c)i=3, (d)i=4.

3.2. Beam with two springs
Next, a simply supported beam with two springs mount is analysed. The two springs are
positioned symmetrically at 1

3 and 2
3 from the centre of the beam. The lowest three mode shapes

extracted from the present method are compared with FEM in fig. 8. Results are presented for
three different stiffness values. Good correlation of the results obtained from the present method
and FEM simulation is noted. Modal assurance criteria (MAC) is also computed from the results
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obtained from the present method and FEM. It is found that the MAC is always ≥0.95 for the
entire range of the stiffness values. This validates the the present methodology.
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Figure 8: The first three mode shape of simply supported beam with springs attached at ζ1 = 1
3

and ζ2 = 2
3 , for different values of K1,K2 key: present method , FEM ◦◦

Table. 3 presents the first four non dimensional natural frequencies obtained using the
present method and FEM. Four admissible functions are generated from the extreme values
of each spring. The effect of the variation of these non-dimensional stiffnesses on the frequency
parameter is presented in fig. 9. It is observed that surface has four flat regions, with the first
flat region associated with the lowest frequency indicating the negligible effect of both springs
stiffnesses. The second and third flat regions represent either K1 or K2 being very stiff and both
region have the same frequency. The fourth region is the region of highest frequency corresponds
to both K1 and K2 being very stiff.

Table 3: The first four non-dimensional frequency parameter βi’s of a beam mounted on two
spring at ζ1 = 1

3 and ζ2 = 2
3 .

Mode 1 (β1) Mode 2 (β2) Mode 3 (β3) Mode 4 (β4)

Stiffness
Present
Method

FEM
Present
Method

FEM
Present
Method

FEM
Present
Method

FEM

K1=0,K2=0 3.141 3.140 6.283 6.273 9.424 9.393 12.566 12.493
K1=0,K2=1e12 5.334 5.326 9.424 9.393 11.143 11.073 14.773 14.639
K1=1e12,K2=0 5.334 5.326 9.424 9.393 11.143 11.073 14.773 14.639
K1=40,K2=1e3 5.247 5.242 7.810 7.797 9.424 9.393 12.770 12.698
K1=2e3,K2=800 7.351 7.353 8.725 8.705 9.424 9.393 13.133 13.065
K1=500,K2=8e3 6.876 6.869 9.424 9.374 10.369 10.320 14.003 13.917
K1= 7e4,K2=4e4 9.424 9.393 10.575 10.516 12.551 12.436 18.849 18.608

K1=1e12,K2=1e12 9.424 9.393 10.669 10.608 12.892 12.763 18.849 18.608



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012026

IOP Publishing

doi:10.1088/1742-6596/1264/1/012026

10

2

K
1
 

4

1010
1010

6

 
  

K
2
  

8

100 100

(a)

6

K
1
 

1010
1010

8 
  

K
2
  

10

100 100

(b)

9

K
1
 

10

1010
1010

11

 
  

K
2
  

12

100 100

(c)

12

K
1
 

14

1010
1010

 
  16

K
2
  

18

100 100

(d)

Figure 9: Variation of the natural frequency parameter (βi) as K1 and K2 varies from 0 to ∞.
(a) β1, (b) β2, (c) β3, (d) β4.

4. Conclusion
The transverse vibration of a spring-mounted beam is studied. A novel method to determine
the eigensolutions based on the basis functions generated from the two extreme values of each
spring stiffness has been proposed. The proposed method is much simpler to use and removes
the need for solving the transcendental equation for every stiffness value as in the case of Green’s
function approach. Design guideline equations are presented for a spring mounted at middle and
one third of beam length; these enables in estimating the first four natural frequencies efficiently.
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