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1. Introduction

A closed subspace V C L?(R) is called shift-invariant if f € V = 7,f € V for any k € Z. Shift-invariant
spaces play an important role in modern analysis for the past two decades because of their rich underlying
theory and their applications in time frequency analysis, approximation theory, numerical analysis, digital
signal and image processing and so on. A shift-invariant space serves as a universal model for sampling
problem as it includes a large class of functions whether bandlimited or not by appropriately choosing a
generator. For a study of sampling in shift-invariant spaces, we refer to [1].

Shift-invariant spaces are also useful in obtaining a decomposition of a large class of functions. One such
illustration is from the theory of wavelets, where L?(R) is decomposed into shift-invariant subspaces using
the procedure called multiresolution analysis. A multiresolution analysis is a sequence of closed subspaces
{V;:j € Z} in L*(R) such that

(1) V; SV Ve
(2) UV; = L*(R) and NV; = {0}.
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(3) [ €V; = [(22) € Vj s

@) feVi= flx—k)eV,Vkel

(5) There exists a scaling function ¢ € Vj such that {¢(x — k) : k € Z} forms an orthonormal basis
for Vj.

oo
Let W; denote the orthogonal complement of V; in V;_;. Then one can show that L?(R) = @ W;.
j=—00
Here the spaces V;, W; are shift-invariant and Vj is usually called the principal shift-invariant space. We

refer to [8,12] for further details. Characterizations of shift-invariant spaces in L?(R") in terms of range
functions was studied by Bownik in [4].
A well known result on translates of a function in L?(R) states that the collection {7, : k € Z} forms

an orthonormal system in L?(R) iff > |3(£ + k)|? =1 a.e. £ € T. Similarly there are interesting character-
kEZ
izations of a Bessel sequence, frame, Riesz basis of shift-invariant spaces in terms of Fourier transform. We

refer to [6,11] in this direction. Frames were first studied by Duffin and Schaeffer in [9] in connection with
non-uniform sampling of bandlimited functions. The study of shift-invariant spaces and frames have been
extended to locally compact abelian groups in [5,13] and non-abelian compact group in [14].

A simple and a natural example of a non-abelian non-compact group is the famous Heisenberg group H".
It is a nilpotent Lie group whose underlying manifold is C™ x R, where the group operation is defined by

1
(z,t)(w,s) = (z+w,t+ s+ 511112.@) and the Haar measure is the Lebesgue measure dzdt on C" x R. By

Stone—von Neumann theorem, every infinite dimensional irreducible unitary representation on the Heisen-
berg group is unitarily equivalent to the representation my, A € R*, where m) is defined by

ma(2, ) p(§) = PTNETATE LIV (¢ 4 y),

where z = z + iy and ¢ € L?(R"). In order to study shift-invariant spaces on H", we need to make use of
the representation theory of H"™. The group Fourier transform on H" is defined to be

= / flz, )mx(z,t)dzdt

for f € L'(H"). Further L'(H") turns out to be a non-commutative Banach algebra under group convo-

lution . Define f(2) / f(z,t)e*™dt to be the inverse Fourier transform of f in the t-variable. Thus

j?()\) = /f’\(z)wA (2,0)dz. Hence it becomes natural to consider the operator of the form

(Cn
() = / F(2)ma (2, 0)dz
CTL

Further since f()\) = Wy (f?), for the t-variable the group Fourier transform is nothing but the Euclidean
Fourier transform. In many problems on H", an important technique is to take the partial Fourier transform
in the t-variable to reduce matters to the case of C™. We can also easily see that

f*g /f/\ 2w ( ) %Imz.mdw.
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The right hand side is called the A-twisted convolution of f* and g*. Now writing 7 (2,0) = 7(2), we can
define the Weyl transform W (f) as

and for f,g € L*(C") the twisted convolution is defined to be

[xg(z)= /f(z — w)g(w)e I oy,
Cn

Then L!(C™) turns out to be non-commutative Banach algebra under twisted convolution. The Weyl trans-
form of a function f € L'(C™) can be explicitly written as

W(f)p(&) = /f(2)62“i<x'5+%w'y)so(£ +y)dz, ¢ €L*R"), z=uz+iy,
(CTI

which maps L'(C") into the space of bounded operators on L?*(R"), denoted by B(L?*(R™)). The Weyl
transform W(f) is an integral operator with kernel K¢(&,n) given by

[ - gemietiaa,
Rn

This map W can be uniquely extended to a bijection from the class of tempered distributions S’'(C™) onto
the space of continuous linear maps from S(R™) into S’'(R™). Weyl transform has properties similar to
that of ordinary Fourier transform. For example, if f € L*(C"), then W(f) € Ba(L?*(R™)), the space of
Hilbert—Schmidt operators and satisfies the Plancherel formula

W (Hlso = £l 2cm)-

In fact, for f,g € L?>(C"), we have

W(f),W(g))s, = <fag>L2(<C") = <Kvag>L2(<C")~ (1.1)

The inversion formula is given by

f(z) = tr(x(2)"W(f)).

We refer to [10,15] for further information.
In [2], the authors considered the polarized Heisenberg group H7,, = C™ x R, where the group operation
is defined by

(z,8)(w,t) = (z 4+ w, s+t + (Rew).(Imz))

and studied the characterizations of orthonormal basis, Riesz basis and frames consisting of the left translates

n
pol

~

periodization of f(A) with respect to the variable A on R*, which is the unitary dual of H7 ;. In [7], the

on the group Hy , by introducing a bracket map on H,, using the group Fourier transform fand integer

authors generalized some results of [4] to shift-invariant spaces associated with a class of nilpotent Lie
groups.
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The concept of the bracket map has been generalized in [3] to include non-abelian discrete group T’
using its unitary representations and L! space over the non-commutative measurable space vNa(T'), which
is the compact dual of I' whose underlying space is a group von Neumann algebra. Using this bracket map
characterizations of orthonormal basis, Riesz basis, frames were obtained for shift-invariant spaces in a
Hilbert space H given by the action of a non-abelian countable discrete group T'.

In this paper we wish to obtain characterizations of orthonormal basis, frames, Riesz basis etc. of twisted
translates in terms of Weyl transform. Further, here we consider the integer periodization in the variable £
of the kernel K(&,n) of the Weyl transform. From the Heisenberg point of view, this approach is based on
periodization associated with projective representation of C™ instead of looking into integer periodization
in the unitary dual of the group which corresponds to the central variable as in [2].

As mentioned earlier, the aim of this paper is to introduce twisted shift-invariant spaces in L?(R?") and
obtain characterizations of frames, Riesz basis etc. in terms of Weyl transform. Unlike the classical case, it is
surprising to notice that the results become totally different when we move to this setting. A characterization
like {71 : k € Z} is an orthonormal system in L?(R) iff Z |P(€ +k)[* =1 ae. £ € T becomes false in our

kez
setting. In fact we show that if the twisted translates of ¢ form an orthonormal system in L?(R?"), then
Z |K, (& +m,n)|?dn = 1 a.e. &€ € T™. But the converse need not be true. This is illustrated with
mEZ"neRn

a counter example. Then naturally we go in for an additional condition, which we call “condition C” to
obtain the required result in the converse direction.

The paper is organized as follows. In Section 2, we provide the required definitions and prove the basic
results. In Section 3, we obtain characterizations of orthonormal system and Bessel sequence of twisted
translates in terms of Weyl transform in L?(R?"). In Section 4, we study Parseval frames in twisted shift-
invariant spaces. We also obtain a decomposition theorem for a twisted shift-invariant space in L2(R?")
using the Parseval frames. In Section 5, we study frames, canonical dual frames and Riesz basis in twisted
shift-invariant spaces.

2. Preliminaries

Let H be a separable Hilbert space.

Definition 2.1. A sequence {f; : k € Z} in H is called a Bessel sequence for H if there exists a constant
B > 0 such that

STUS S < BIFIR Ve H

kEZ

Definition 2.2. A sequence {fy : k € Z} in H is called a frame for H if there exist two constants A, B > 0
such that

AIFIP < DI f)P < BIFIP, VfeH.

keZ

In particular if A = B = 1, then {f : k € Z} is called a Parseval frame. Let S : H — H be defined by

Sf = S (f, fr)fx- Then S is bounded, invertible, self adjoint and positive. Further, {S™1f; : k € Z} is
kEZ
also a frame for A and is called the canonical dual frame of {f; : k € Z}.

Definition 2.3. A Riesz basis for # is a family of the form {Uey, : k € Z} where {ey, : k € Z} is an orthonormal
basis for H and U : H — H is a bounded invertible operator. Equivalently, a Riesz basis is a sequence
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{fx : k € Z} which is complete in H and there exist constants A, B > 0 such that for every finite scalar
sequence {ci}, one has

2
A el < <BY el (2.1)
k k

It is to be noted that if (2.1) holds for all finite scalar sequences, then it holds for all {c;, : k € Z} € (*(Z).

Definition 2.4. Let ¢ € L?(R?"). For (k,[) € Z?", we define twisted translation of ¢, denoted by T(tk,l)(p’ as

Thpe(ey) = eV o —ky - 1), (z,y) € R™™
Now, we shall introduce twisted shift-invariant spaces.

Definition 2.5. For ¢ € L?*(R?"), we define the twisted shift-invariant space of ¢, denoted by V*¥(y), as
span{T(, ¢« (k,1) € Z*} in L*(R?").

2.1. Properties of twisted translation

is T?

1) The adjoint (T}, (k. )" of T} (k1)
— 677”(’91 l2 kz ll)Tt

(1) (k)
Tt
(2> T(kl (k2 l2) (k1+k2,l1+12)"
3) T 1s a unitary operator on L?(R?") for all (k,1) € Z*".
(k1)
(4)

4) The Weyl transform of T(k )¢ 1s given by W(T(kyl)gp) =m(k, )W (p).
Proof of (4). Let f € L?(R?"). Then

m(k. W ()£ (€)
= ArETEEOW () f (€ + 1)

= erriterikd) [ [ o om0 i (¢ 4Ly y)dedy

R" Rn

://ewi[(m+k).l7(y+l)‘k]<p(x’y)€27ri[(a:+k).£+%(m+k) WHI£(¢ 41 + y)dady
R"'L R’Vl

_ //eﬂ'i(a:‘l—y.k)so(m o k,y _ l)e2ﬂi(w~5+%$~y)f(£ _|_y)dxdy
R’VL R‘H,

- / / Tl e, y)m(2) f(€)ddy
R™ R™

= W(T(tk,Z)W)f(f)- 0

We refer to §1.3 in [15] in this connection.

(5) For ¢ € L2(R?"), let F(x,y) = 62”i‘”'lT(tO’kfl)<p(x,y), (z,y) € R?". Then K,({ + k,n+1) = Kp(&,n),
where K, and Kr denote the kernel of W () and W (F') respectively. In particular, putting [ = 0, we
have

Ko+ k) = Ky, o(6m): (2.2)
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Proof.

r(&n) = /F(axn — g)e”x-(f-&-n)dw

_ /ezmmT{O,k_l)w(x,n—€)6mu€+n)d$

Rn

_ /eQ”ix‘le”m‘(k_l)@(x,n —E41— k)eWim‘(§+n)d.%'
R’n

/QO(JZ T]—|—l—£ k‘) Tiz. n+l+£+k)d
]Rn

The property (5) especially (2.2) will be used frequently in the sequel. The following lemmas will be
useful in due course.

Lemma 2.1. Let ¢ € L?*(R*"). Then the kernel of the Weyl transform of T(t,c e satisfies the following
relation. KT(tk l>tp(£a n) = eﬂ(Zf—H)'kKw (E+1,m). In other words,

TR (€ 4 L) = e T Ky (Em). (2.3)

Proof. Consider

e &) = [ Thopolam = 9= da
Rn

_ /gz‘[mk(n%)k](p(z oy — € — D)emim ) gy

Rn

= /eﬂi[(2€+l).k+x4(£+n+l)](P(x, n—¢&—1l)de
Rn
_ e?‘ri(?{-‘rl)kK@(E + l,’f])

This completes the proof. O

For ¢ € L?(R?"), we define

w(&) = 3 / K, (€ +m,n)2dn, € R™. (2.4)

mEZ"Rn

Lemma 2.2. The function w,,, defined in (2.4), is 1-periodic and it belongs to L*(T™). In particular w,, is
finite a.e. £ € T". Its Fourier coefficients are wy,(k) = <g0,T(tk_0)<p>, kez.

Proof. Clearly w, is 1-periodic. Now

/ /Z /IK (& + m, m)Pdnde

Tn Tn mEZ”

= [ [ 1Kt mPande

R™ R™

= [l¢ll3 < oo.
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Now, using (2.3), the Fourier coefficients are given by

Ty(k) = / wy(€)e k€

Tn

:/ > /IK¢(£+m,n)\2dn e 2mik-(Etm) ge

Tn mEZan

- / / K (€. m) 22" i%<dgdn
Rn RTL
= <Ktpa KT(thO)t,D>

= (¢, Tho.0))-

This completes the proof. O
3. Orthonormal system and Bessel sequence of twisted translates in L?(R2"™)

Theorem 3.1. If {T(tkyl)ga : (k,1) € Z*"} forms an orthonormal system in L?(R?*"), then w,(§) = 1 a.e.
£eTr.

Proof. Let ¢ € L?(R?"). Using Plancherel formula (1.1) and Lemma 2.1, we get

<T(tk1 1) P T(tkz,lz)<p>
= <S0’ (T(tk1,ll))*T{k2712)(p>

= C_Wi(kl'lz_kz.ll) <SD7 T(tk27k1 7l2711)80>

— efﬂ'i(kl-lQ*kz.ll) //K@(é‘,n)efﬂi(25+lgfl1).(k27k1)Kgp(é- + 12 _ ll,ﬂ)dfd’l?

R™ R™
_ e—ﬂi[(lz—l1).(k2—k1)+(k1.lz—kzll)] //K@(SV"?)KLP(&- i l2 _ ll; n)e—Zﬂ'i(kz—kl).&dfdn
Rﬂ, RTI,
= emmilllamt kit [ [N 7R (64 myn) K p (€ +m + 1o — 11,m)
Rn Tn MEL™

> €*2ﬂi(k2fk1)~(£+M)d£dn

— millla ) (ks k) s ks )] / 3 / K (€ +m,m Ko+ m+ 1 — 11, n)dn
Tn mEZ"Rn

x e 2milk2—=k1)£ge (3.1)
In particular, if we take Iy =ls =1 in (3.1), we have

(They 10> Ty 1y 0) = €~ 172 /ww(f)fw(krh)'éd{f = e MRl (kg — k).

Tn
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Since {T(tk’l)go : (k,1) € Z?"} forms an orthonormal system in L?*(R*"), we have w, (k) = k0. Let g(§) =

wy(€) — 1. Then g(k) = wy, (k) — /e*%ik'gdg =0,V k € Z". Hence g(§) = 0 a.e. £ € T™, from which it
’H‘n
follows that w, () =1 a.e. £ €T O

Remark 3.1. The converse need not be true. We shall illustrate it with a counter example.

Let ¢ = %X[O,I}X[OQ}- Here supp ¢ = [0,1] x [0,2] and supp T(0 N4 = [0,1] x [1,3]. So supp ¢ ()
supp T(0 n® = [0,1] x [1,2]. Now

(@, Tl 1y /2 /1 (€ me (6,7 — 1)dedn = & / / ey =
1 0

Hence {T(tk,l)cp : (k,1) € Z*} does not form an orthonormal system in L?*(R?). Now we shall show that
wey(§) = 1 ae. £ € T". Towards this end, it is enough to prove that w, (k) = d50. From Lemma 2.2,
w,(0) = |lpll3 = 1 and for k # 0, wy(k) = (@, T} o)) = 0, since supp ¢ [ supp T}, o) = ([0,1] x
[0,2) N([k, & + 1] x [0,2]) = 0.

So, it is natural to look for a proper condition under which one can obtain the converse part. Towards
this end, we have the following

Definition 3.1. A function p € L*(R?") is said to satisfy “condition C” if

S | Kolé+mn)K (E+m+1m)dn=0 ae €T, forall 1cZ"\{0}.
meZan

Theorem 3.2. Let p € L*(R?"). Assume w,(§) =1 a.e. £ € T". If, in addition ¢ satisfies condition C, then
{T! e (k1) € 72"} is an orthonormal system in L?(R?").

Proof. If 1 # Iy, from (3.1) it follows that (T (e 0 1 (kz l2)<p> = 0, as ¢ satisfies condition C. If ] =I5 =,
using (3.1) and the assumption w,(§) =1 a.e. f € T™, we have

(Tler1y#s Ty ) = e ™Rk o
Hence {T} (ky® (K, [) € Z?"} is an orthonormal system in L?(R?"). O

Remark 3.2. If {T, (k) (k,1) € Z*"} is an orthonormal system in L?(R?"), then ¢ satisfies condition C.

Proof. For Iy # la, let F(& Z /K (& +m,n)K,(§+m+ls —l1,n)dn. Then using (2.3), we get
mGZ”Rn

Bk = / F(€)e 2k

Tn

:/ Z /K &+ m,n) %0<§+m+l2—11,77)d77 e—27rik.(§+m)d£

Tn mEZ"

- / / K (6K, + T = L, m) e Ededy
R"L R"'L
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— —ﬂ'i(lg—ll).k‘
= <K¥,,€ K (tk,LQ—Ll)‘p>

— eﬁi(lzfll).k <90’ T(tk712_ll)gp> .
Since {T(tk’l)go : (k,1) € Z*"} is an orthonormal system in L2(R2") and Iy # Iy, it follows that F(k) = 0 for
all k € Z™. Then F(§) = 0 a.e. £ € T™. Thus condition C' is satisfied. O

Combining Theorem 3.1, Theorem 3.2 and Remark 3.2, we obtain the following result.

Theorem 3.3. {T} k)P (k,1) € Z*"} is an orthonormal system in L*(R®") if and only if wy(§) = 1 a.e.
£ € T" and ¢ satisfies condition C.

Remark 3.3. Condition C is weaker than the orthonormality of {T(tkwl)go : (k1) € Z*"}. We shall illustrate
this with an example.

Let ¢ = X[o,2]x[0,1]- Then it is easy to show that (@,T(tm)cp) = —2 £ 0, from which it fol-

T

lows that {T(tk’l)go : (k,1) € Z*} is not an orthonormal system in L?(R?). For Iy # I, let F(§) =

Z K, (& 4+ m,n)K,(§+m+ 1y — l1,n)dn. Following the same proof of Remark 3.2, we have F(k) =
meZ”Rn

e”(lrll)'kw,Tfk7l27ll)¢>. Now supp ¢ = [0,2] x [0, 1] and supp T(, ,, ;¢ = [k, k+2] x [la = 11,12 — I +1].
Since ¢ and T(thz—ll)‘P have disjoint support, we get F'(k) = 0 for all kK € Z"™. Then F(§) =0 a.e. £ € T,
from which it follows that ¢ satisfies condition C.

Theorem 3.4. If {T}, ke (k1) € 7"} is a Bessel sequence in L*(R*™) with bound B, then w,(¢) < B a.e.
EeTr.

Proof. We have to prove that Z | K, (€ + m,n)|?dn < B a.e. £ € T™. In order to show the result, we
mEZ"Rn
claim that for any f € L?(R?"),

2

S| Kp6+mm)K (E+m,n)dn| de

Tn |MEL RN

<B [ > [IKp(&+m,n) dndg. (3.2)
Tn mEZ"Rn

Since {T{, ;)¢ : (k,1) € Z*"} is a Bessel sequence in L?(R*") with bound B,

2
> [ Thne)| < BISIE forall f e L2®R?"). (33)
k,lezn
Now using Plancherel formula (1.1) and Lemma 2.1,

Z (£, 1 kl)‘p>’2

klezn

= Z <Kf’KT(tk,z)‘/’>

k,lezn

‘ 2

2

-y / / K (&, n)e ™ DR e T m)dédn

k€L | i i
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> > K&+ m, e MREEHIRE (€ m 41, n)dEdn
kJEZ™ | Bn g MEL"

DS / / K€+ mn)K & +m+ Ldn | e > *<dg

€L K€L | . \mELP

Now for fixed I,

Z /Kf(f +m,n)Ky(§+m+1,n)dn =2k g
T meZan

is the kth Fourier coefficient for the 1-periodic function

Y | Kp(€+mn)K €+ m+1,n)dn.
meZ"Rn

Thus using Parseval’s formula,

2

Yo L ThpeP =Y / > /Kf£+m77 Ko(§+m+1,n)dn| dE.

k,lezn l€Lr g, |mELnR

But the right hand side of the above equation is
2

2/ /Kf §E+m,n)Ky(&+m,n)dn| d.
Tn mGZ”

On the other hand,

1913 = [ [ 1stemPagan= [ [ 3 16+ mon) ey

R» R Rn Tn meL™

/Z /IKf§+m77|dnd£

Tn MEL"Rn

Thus it follows from (3.3) that

2

> [ Kile+mKermaan| s < 3 1Tyl

T |MEZTRn k,l€zn
< B| f|?
=B [ > [ K&+ m,n)| dnde,
o MELP,
thus proving our claim (3.2). In order to prove our main result, we assume by contradiction the set M =

{{ € T : Z |Ky,(€ + m,n)|?dy > B} has positive measure. Let g(¢) = xa(€) and extend g to a
meL pn
1-periodic function on R™. Define f € L*(R?") such that K;(&,n) = xm(§) K, (&, n). Now
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2

Z/Kf§+mn K (E+m,n)dn Z/XM K (& +m,n)|*dn

meL g, mELEy,

—w© | X [ 1Kt mnPan)

mEZ”]Rn
and
/IKf§+mn\dn— /\XM o(&+m,n)|*dn
mEZ"Rn meZ"Rn
—xw© 3 [ 1Kol + mon)
mEZ"Rn
Thus
2
/ /Kf +m,n) Ky (§+m,n)dn| dE
Tn mEZ"

2

:/ Z/|Kv(f+mm)|2d77 de

i \mezrg,

25 [ S0 [ 1Ko+ mon) e

mGZ"Rn

=5 [xu© Y [ 1K€+ m)Pdndg

Tn meZan

=B/ > /\Kf(€+m,n)|2dnd§,
Tn mEZ"Rn

which is a contradiction to our claim (3.2). Hence M has zero measure, from which the required assertion
follows. O

Theorem 3.5. Let w,(§) < B a.e. £ € T™. In addition, if ¢ satisfies condition C, then {T(tk ne: (k,1) € Z*"}
is a Bessel sequence in L*(R?").

Proof. Let {c,i}k,yez2» be a finite sequence. It is enough to show that there exists a constant 0 < B < oo
2

Y Tl
2

(k,l)eF

<B ¢k1|?, where F denotes a finite set. Consider
s )

such that ‘
(k,l)eF

2
HK Z Ck,lT(tk.’l)V;) 9

Z Ck lT(k I

(k,l)eF

2

chlK kz)‘P
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2
:// chl 1 o&om)]| dgdn
R’!L R’IL
2
= / / D eGR4 )| ddn
Brpn | kol
2
:/ / Y o> aae™CHOFK (¢4 1m)| dédn.
Rrgn | LK
Now we break the summation appearing in the last line and get
‘ > Clekl)‘P //Z chze CEHDFR (€ +1,m) dfdn
(k,1)eF Rn Rn
+// D> 2Re Y cp, e FIFK (4 1y,n) Y G M HDFK (€ 4Ty, n)dEdn
R™ R" l1<12 k k

The first term on the right hand side of (3.4) is equal to

>

2
Z Cp €T H2EHD R

|K (€4 1,m)*dédn

Rn R’ﬂ l k
mi2(E+m)+].k \K (& +m+1,n)|*dedn
R~ Tn mezn
wil.k 2mk§ Z /|K E4+m+1,n)|*dnde
A mezng
mil .k 27rzk§ Z /|K £+m 7’ |2d77d£
MmEL pn
§BZ/ ch’le”“'ke%ik'f d{
k

U Tn

_ BZZ'Q&,leﬂ—il'kF
Ik

=B |erl*.
k,l

The second term on the right hand side of (3.4) is equal to

> 2Re /Ckl,zlckz,lzeﬂ(szrll)'kl6_m(25+l2)'k2K¢(§+l1,77)Kgo(€+12,77)d5d77
11<la R» Rn

— 2Re § Ckl,ll—ck27l2eﬂ'l(ll.klflz‘ktg)

l1<l2,k1,k2

><//' 27i(k1—k2) EK (54—[17 )mdfdn
RTL ]R7L

1453

(3.4)

(3.6)
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—— wi(ly.k1—1s. ke
= 2Re E Cky 1, Chy, 15 € (k1 —l2-k2)
l1<l2,k1,k2

X/ > /K (E+m+1L,n)K (§+m+la,n)dn | ™ F17F2)44¢ =0, (3.7)

Tn MEL pn
as @ satisfies condition C. Then the required assertion follows from (3.4) and (3.6). O

Remark 3.4. From the above theorem it is clear that if w,({) < B a.e. £ € T", then condition C is
sufficient to prove that {T )P (k,1) € Z*"} is a Bessel sequence. But condition C' is not necessary for
{T} e (k1) € € Z*"} to be a Bessel sequence. We shall illustrate this by an example.

Before providing the example, we observe the following. From (3.7), using (2.3) the second term of (3.4)
is equal to

2Re Z ckl’ll—ckz’beﬂ'i(ll.kl—l2<k?2) / / 62m(k1_k2)'5K¢(§ + 117 n)Kp(g + 12’ n)dé-dn

l1<l2,k1,k2 R™ R™

— —_— Tri(ll.kl—lg.kz) —‘n"l(lz l)(k‘Q kl)

= 2Re E Cky,l1Ckso 1€ <K¥, 5 KT(tkz kyiig— Ll)‘»@>
l1<lz2,k1,k2

_ —— mi[(lo—11).(ko—k1)+11.k1—12.k t

= 2Re E Ck1,11Cky,15€ [(ta=t)- (k2 =ka)+l-ka =l 2]<90 ) T(kz_kl,lz_ll)<ﬂ>-
l1<l2,k1,k2

Now take ¢ = %X[O’l]X[O’Q]. Then supp ¢ = [0,1] x [0,2] and supp T(tkrkl’lfll)cp = [ka — k1, ko —
ki + 1] x [la = l3,lo — 11 + 2]. For ky # ko, supp ¢ () supp T(tkrkl,lrll)go = (. For Iy — 11 > 2,
supp ¢ ()supp T(’fkrkhlrll)@ = (). We have to take the sum over ki = ko and [y < lo, Is — 11 = 1.
Then the second term becomes

) a1
2Re Z Ck’lck,l+1emk<g0, T(t0,1)(,0> =2Re ( Z Ck,lck,l+1emkg>

k.l kil
mik 2

—C,|
T

2
+ }Ck7l+1’ >

2
1
Then ch lTk el <\ B t3 5+ 1) > |ck.1]?, showing that {Tk 0P}k pezzn is a Bessel sequence. We

have seen in Remark 3.1 that {T(k N (k l) € Z?} is not an orthonormal system in L?(R?) and w,(£) =1
a.e. £ € T". So it follows from Theorem 3.3 that ¢ does not satisfy condition C.

4. Parseval frames of twisted shift-invariant spaces

Let ¢ € L%(R?") be such that ¢ satisfies condition C. Suppose A!(p) = span {Ttkl 2 (k,1) € 22}

and V¥(p) = At(p). Consider f € A'(p) ie., f = (k lz; }-ck/ Ry (k/ 1% where F is a finite set. Define
r1e
(&) = {ry (&) }rezn for £ € T™, where

rv(§) = Z Ck/,lfem(zﬁl’)'k,- (4.1)
kJ

Then we have the following proposition.
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Proposition 4.1. Let p € L*(R?") be such that ¢ satisfies condition C. Then the map f — r initially
defined on A*(p) can be extended to an isometric isomorphism of V() onto L*(T™, (2(Z"), wy).

Proof. Here f € A(p) ie, f= 3 cwwTf, e, where F is a finite set. Using Lemma 2.1 and (4.1),
(k" 1)EF ’
we have

Ke(&m= Y. v Ky, o(€m) = > e FHIF K (641, m)

(k' 1)eF kU

= Z ry (€)K€ +1,1). (4.2)

Define r(&) = {ry (&) }rezn for £ € T™. Conversely, suppose (&) = {ry (&) }rezn for £ € T™, where {r; (£)}
is given by (4.1) for finitely many I’. Notice that r(£) is a trigonometric polynomial for each I’ € Z™.

Define f = > ck:)l/T(tk, py®- Then f € At(p) and Kp(&,m) = > rv(§)Kp(§ +1',n). Thus we see a one
(k' 1eF ’ l’
to one correspondence between A’(p) and the collection of functions of the form 7. Further, as ¢ satisfies
condition C, from (3.4) and (3.5), using (4.1) and (2.4), we get

1113 =

ch/ l/e 2£+l )- k/ Z /|K £+ m 77 |2d77d£

Tn MEL pn

- / S (6) P (€)de
T U

— [ 1€ nywa (1€

T7L
= ||7’H%2(1rn,42(2n),w¢)-
Thus f —— r is an isometry. Then by density argument, this isometry can be extended to the whole of
V() onto L3(T", ¢*(Z™), w,,). More explicitly, this means f € V*(¢) iff K¢(&,n) = Z (&) Ky (E+1,m),

ez
where r(€) = {ru(€) vz and r(€) € LX(T™, 2(Z7),w,). O )

Theorem 4.1. Let ¢ € L?(R?™) be such that ¢ satisfies condition C. Then (T} 0 (K1) € Z*"} is a Parseval
frame for V(@) iff wy(€) =1 a.e. £ € T™ on Q, where Q, = {£ € T™ : w,(£) # 0}.

Proof. Let f € A'(p) ie., f = > T, (k/ 11y, where F is a finite set. Then from (4.2), Kf(&n) =
(k"1 eF

;rl/(f)Kq,(f +1',n), where r;/(€) is given by (4.1).

Now, using (4.2), Lemma 2.1 and Plancherel formula (1.1), we get

<faT(tk,z)<P> <Kf’KT(kl)ga>

= [ [ Kt Er, ey

R™ R™

Zm/ HEF U m)e DR (€41 m)dedn

R™ Rn
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SO i+ mE (E+m+1n)

Bn o MEZN U

e—Tri[Q(f+77L)+l].kK (é— +m+l ﬁ)dfdﬁ

- mlk/Z(Z/K (E+m+1,n) @(£+m+l,n)dn>

meLmy

X 1Ty (g)e—ka,gdg

_ —7'ml k / Z 7‘1 Fl l —27rik.§d§7

T

where FUV(¢) = Z Ko +m+1',n)K,(&+m+1,n)dn.
mEZan

Let F(¢ Zrl, YFLE(€). Then

Z ’<f7 T(tk,l)¢>‘2

k,lezn

= ( /Zrl/ Fll e 2mik. Edg) (/Z7"1'(E’)FW(5’)6—2”ik'5’d§/)
klezn a 14
"= (/ Fl(f)“”’“fdé) ( / Fl(f’)e%ik-s’d@)

T ™

> e (©F ()

14

de.

zz/

leZm

Since ¢ satisfies condition C, Pt (&) =0a.e. £ €T for [y # lo. Further, using (2.4) we can observe that
FUHE) = wy(€). Hence we get

> [T /(Zm/ >|w¢ (©)F de

k,lezn

- / 1 ()12 oy [0 (€)1 dE. (4.3)
']I‘TI,

Again since @ satisfies condition C, it follows from the proof of Proposition 4.1 that

112 = / Sl )P (€1 = / 17(6) 2 gy 10 (€) . (4.4)

Tn Tn
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Now, suppose {T(tk’l)ga : (k,l) € Z?"} is a Parseval frame for V!(y). Then it follows from (4.3), (4.4) and
Proposition 4.1 that

/ ()12 030(€) ? dE = / 1O o w0 (E)E, ¥ 7 € LT, (2(Z7), w,).
Tn Tn

This means, / 1) 2y wo (©)xe, (€) — w,(€)] = 0¥ 1 € LA(T™, £2(Z7), w,).
’]1‘71

In other words, / Hr(§)||?2(zn)w¢(£)[l —wy,(§)]dE =0V r e LT, (*(Z"), w,). Hence for all r € L*(T",
Q‘P
2(Z7),w,,), we get

1@ mea(©)l1 = wo@de + [ I amyuwa©L1 — wio(e)lde = 0 (1)

M, Mo
where M; = {Q, : w,(£) > 1} and My = {Q, : w,(€) < 1}. Define 7@ (¢) = (...,0,...,0,1,0,...,0,...)
with 1 in the Oth position, for & € M; and r(¢) = (...,0,0,0,...), for £ € M¢, where i = 1,2. Then
/\|r<“(§)||§2(zn)w¢(g)d§ = /w¢(§)d§ < oo, thus proving that ) € L*(T", (3(Z"),w,) for i = 1,2. Put
Tn M,
r =), Then it follows from (4.5) that /w¢(§)[1 —wy,(§)] = 0, from which it follows that w,(§) =1 a.e.

My
¢ € M. Similarly, if we take 7 = r(®), then w, (&) = 1 a.e. £ € M. Hence w,(£) =1 a.e. £ € Q.

Converse is almost trivial. In fact, if we assume that w,(§) =1 a.e. £ € Q,, then \|T(§)||§2(Zn)w¢(§)[1 —

Q‘P
w,(€)]dE =0V r € L*(T", ¢2(Z"), w,). Then retracing the steps back, one gets {T(th)go (k1) €72} is a
Parseval frame for V(¢). O

Corollary 4.1. Let ¢ € L*>(R?*") be such that ¢ satisfies condition C. Let ¢ € L*(R?") be such that

Ky(em) = {%(&n)%(ﬁ)% geq,, (46)

0, otherwise.
Then {T} ;¢ : (k,1) € Z*"} is a Parseval frame for V*(¢p).
Proof. From Proposition 4.1, we have f € V'(p) iff K¢(&,n) = Z r () Ky (& + U, n) where r(§) =
ez

{rl,(g)}ll,ezn and (&) € L2(T", (*(Z"),w,). Take rO(¢) = (...,0,...,0,w,(£)"2,0,...0,...) with
w, (€)™ in the Oth position, for & € Q, and 7V (&) = (...,0,0,0,...), otherwise. Thus

/ 17O (€))% 10 () = / dt < oo,
Tn Q,

thus proving that r(*) € L2(T", £2(Z"),w,). Further, from (4.6), K (&,1) = K, (&,n)ro(€), where

ro(€) = {w“’@“’ £ €9,

0, otherwise.

This implies that ¢ € V*(¢). Further, wy(§) = xq, (§). Then the result follows from Theorem 4.1. O
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This result helps us to obtain a decomposition theorem for a twisted shift-invariant space in L?(R?").

Definition 4.1. Let V() be a twisted shift-invariant space. If the system {T(tk,l)go : (k,1) € Z*"} is a Parseval
frame for V'(¢p), then the function ¢ is called Parseval frame generator of V' (y).

Theorem 4.2. If V is a twisted shift-invariant space in L?(R?"), then there ewists a family of functions

{Vatacr in L2(R?™) (where I is an index set) such that V.= @ V(pa). In addition, if all the p, satisfy
aecl
condition C, then there exists a family of functions {1a}acr in L*(R*™) such that each 1, is a Parseval

frame generator of V'(¢.). Moreover, in this case, if f € V, then || f|3 = 26:[ Hra||%2(w,€2(zn
To € L*(T™, 3(Z™),wy,,).

where
)awapa )’

Proof. The existence of ¢, will follow from a proof which is similar to that of Theorem 3.10 in [13]. Now
as each ¢, satisfies condition C, from Corollary 4.1, there exists 1, € V¥(p4) such that 1, is a Parseval
frame generator of V*(yp,). Now let f € V. Let P, be the orthogonal projection of L?(R?") onto the space

Vi(¢a). Then f = 3 P,f. As ¢, satisfies condition C for each «, it follows from Proposition 4.1 that
acl

1713 =D I1Pafll3 = Z/Ilra( @y wen () =Y Iralltemn @ w,.) O

ael aGITn ael

5. Frames and Riesz basis of twisted shift-invariant spaces

Theorem 5.1. Let ¢ € L*(R*") be such that ¢ satisfies condition C. Then {Tk ne (kD) e Z*"} is a frame
for V() with frame bounds A, B iff A <wy,(£§) < B a.e. £ € Q,, where Q, = {& € T" : wy,(§) # 0}.

Proof. Let {T e (k1) € Z2"} be a frame for V() with frame bounds A, B. Then it follows from (4.3),
(4.4) and Proposition 4.1 that

A [ IO anywn©)dg < [ 1Oy 0ol d < B [ (€ rqanywe)
T T T

for all » € L*(T",¢*(Z"),w,). Now we shall consider only the left hand side of the above inequality.

This means, [ [1r(€) 0o () Axa, (6) = w,(€))dE < 0, which implies that [ () zywa(1A -
Tn Qkp

w,(€)]dE < 0, for all r € L*(T™, (*(Z"),w,). Assume that M = {£ € Q, : w,(§) < A} has positive

measure. Define () (¢) = (...,0,...,0,1,0,...,0,...) with 1 in the Oth position, for & € M and () (¢) =

(...,0,0,0,...) for € € M¢. Then clearly #(©) € L?(T", ¢2(Z"), wy). Then by taking r = 7 and proceeding

similarly as in the proof of Theorem 4.1, we get / we(&)[A — wy(€)] < 0, which is a contradiction because
M
m(M) > 0 and wy(£) > 0, A —w,(§) > 0 on M. Hence M has 0 measure, thus proving that A < wy (&)

a.e. £ € Q. Similarly, one can show that w,(¢§) < B a.e. { € Q. Converse is again trivial as in the case of
Theorem 4.1. O

Theorem 5.2. Let ¢ € L*(R*") and a,b > 0. Suppose {T(tbk i (k1) € Z*"} is a frame for L2(R2") with
frame operator S. Then the canonical dual frame also has the same structure and is given by T, (bk al) S,
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Proof. Since { (tbk ay® : (k1) € € Z*"} is a frame, the frame operator S is invertible. Now in order to show
the required result, it is enough to prove that S—! (bk al) = T(bk al)S*1 for all (k,1) € Z*". Let f € L*(R?").
Then using property (2) in Section 2.1, we have

ST(tbk,al)f: Z (T, bkal)f7 (bk’ az')‘P>T(bk/ al’)®
k' ezn

= Z <f7T(t—bk,—al)T(tbk’,al’)<p>T(tbk’,al’)<p
K ezn

= Z (f,emmiabl=klHk 'l)T(tb(k/—k),a(z/—Z))‘P)T(tbk/,az/)@
A

— Z e—m’ab(k.l -k’ <f7 altr— l))<P>T(bk’ o)
kU €Zn

= Y e ISR T iy O Ty a(r +1) P
kI ezn

using a change of variables. Thus, using again property (2) of Section 2.1, we have

ST(tbk,al)f: Z <f7T(tbk’,al’)(p>T(tbk,al)T(tbk’,al’)<p'
Kl eZn

. t . .
Since T(bk,al) 1S continuous, we get

ST(tbk,al)f = T(tbk,al) Z (f, Tgbk’,al’)<p>Tgbk’,al’)<P = T(tbk,al)Sf
Kl ezn

Since S is invertible, S‘lT(tbk’al) bk anS” Lo

Let {cp 1 tw yezzn € Coo(Z?"). Define r(§) = {ry(§)}rezn where 1 (€) is given by (4.1) for finitely
many I’. Clearly there is a one to one correspondence between Cgg(Z?") and the collection of functions of
the form r. Now

/ 176 2 g = / S o (€)|de
Tn Tn

mi(264+1").k'

dg

Jpe

Z|Cklvl/‘2' (51)

kU

2
_ Z Z ’Ck/ pemil KT =
K

Thus {cgr 1}k 11yez2n — 7 is an isometry. Then by density argument, this isometry can be extended to the
whole of ¢2(Z*") onto L?(T", (*(Z")).

Theorem 5.3. Let ¢ € L2(R?") be such that ¢ satisfies condition C. Then {T(tk ne (k1) € Z°*"} is a Riesz
basis for V'(¢) with frame bounds A, B iff A < wy,(£) < B a.e. £ € T".

Proof. Let {T(; ¢ : (k1) € Z*"} be a Riesz basis for V() with bounds A and B. Then from (2.1), wi
have, A Z |c;€,l|2 < Z Cr. lT(kl

k,l€Zn k,lezn

< B Z e, |?, for all {ci i}k yezen € €2(Z*"). Consider only
k,lezn
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the left hand side of the above inequality. Then using (4.4), (5.1) and the discussion mentioned before this
theorem, we get A/ 17(&)[|72 (zny dE < / (172 (znywe (§)dE, for all r € L*(T™, £%(Z™)), which implies that
T T

/ (172 (zn) (A—w, (€))dE < 0, for all » € L2(T™, £2(Z™)). Then proceeding as in the proof of Theorem 5.1,
’]I‘n

we conclude that A < w,(§) a.e. & € T". The right hand side inequality will follow in a similar manner.

Conversely assume that A < w,(§) < B a.e. £ € T". This means that A < w,(§) < B a.e. £ € Q. Since
 satisfies condition C, by Theorem 5.1, {Tgk,l)‘P : (k,1) € Z?"} is a frame for V(). Then {T(’fw)cp (k1) €
72"} is complete in V(). Now let {cx,} be a finite sequence. Now since ¢ satisfies condition C, it follows
from (3.4) and (3.5) that

2 2
o Tl =D [ D crpem e N / | K (& +m, )P dndg
kleF 2 Upn |k mEL gy
2
_ Z/ chJeml.kewrik.g w<p(§)d§
Ugn |k

Thus, using our assumption A < w,(§) < B a.e. £ € T", we get

2
2

Z Ck’lT(tkvl)SO
klEF

2
AZ/ ch’lenil.ke%rik.g de <
l k
’]I‘n

2
SBZ/ chylewil.ke%rik.g de.
k

U
2

< BZ|ck,l|2. Thus it follows from Definition 2.3 that

This means, A E lera? <
k,l ol

Z Ck’lT(tkvl)SO
k,l

{T(tk e (k1) € Z*"} is a Riesz basis for Vi(p). O
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