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Forced synchronization and asynchronous
quenching of periodic oscillations in a

thermoacoustic system
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We perform an experimental and theoretical study to investigate the interaction
between an external harmonic excitation and a self-excited oscillatory mode ( fn0) of a
prototypical thermoacoustic system, a horizontal Rijke tube. Such an interaction can
lead to forced synchronization through the routes of phase locking or suppression.
We characterize the transition in the synchronization behaviour of the forcing and the
response signals of the acoustic pressure while the forcing parameters, i.e. amplitude
(Af ) and frequency ( ff ) of forcing are independently varied. Further, suppression is
categorized into synchronous quenching and asynchronous quenching depending upon
the value of frequency detuning (| fn0 − ff |). When the applied forcing frequency is
close to the natural frequency of the system, the suppression in the amplitude of the
self-excited oscillation is known as synchronous quenching. However, this suppression
is associated with resonant amplification of the forcing signal, leading to an overall
increase in the response amplitude of oscillations. On the other hand, an almost 80 %
reduction in the root mean square value of the response oscillation is observed when
the system is forced for a sufficiently large value of the frequency detuning (only for
ff < fn0). Such a reduction in amplitude occurs due to asynchronous quenching where
resonant amplification of the forcing signal does not occur, as the frequency detuning
is significantly high. Further, the results from a reduced-order model developed for
a horizontal Rijke tube show a qualitative agreement with the dynamics observed
in experiments. The relative phase between the acoustic pressure (p′) and the heat
release rate (q̇′) oscillations in the model explains the occurrence of maximum
reduction in the pressure amplitude due to asynchronous quenching. Such a reduction
occurs when the positive coupling between p′ and q̇′ is disrupted and their interaction
results in overall acoustic damping, although both of them oscillate at the forcing
frequency. Our study on the phenomenon of asynchronous quenching thus presents
new possibilities to suppress self-sustained oscillations in fluid systems in general.
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1. Introduction
Self-sustained oscillations occur due to hydrodynamic instabilities observed in

the wakes behind bluff bodies (Provansal, Mathis & Boyer 1987; Monkewitz 1988;
Emerson et al. 2012), and in the flow field of low density jets (Huerre & Monkewitz
1985; Li & Juniper 2013a) and are also due to thermoacoustic interactions in confined
reacting flows (Crocco & Cheng 1956; Oyediran, Darling & Radhakrishnan 1995;
Lieuwen & Yang 2005). Systems having temporally unstable global modes behave as
oscillators (Huerre & Monkewitz 1990). Harmonic excitation of such unstable mean
flows essentially modulates the generation of large-scale coherent structures, thereby
enhancing the transport of momentum across the flow (Greenblatt & Wygnanski
2000). Therefore, efficient mixing through high momentum transfer and control
of intrinsic global modes can be achieved through a rigorous understanding of the
interaction between the external excitation and the intrinsic oscillatory modes observed
in fluid mechanical systems. In the present study, we investigate this interaction in
a thermoacoustically unstable system where an external harmonic forcing is used to
suppress unwanted self-sustained periodic oscillations.

Thermoacoustic instability has hampered the development of practical combustion
systems such as gas turbine engines, rocket motors and industrial burners (Juniper &
Sujith 2018). Such an instability refers to the occurrence of large amplitude pressure
oscillations in a combustion chamber. These instabilities occur primarily due to a
closed loop interaction between the acoustic waves (p′) inside the combustor and the
unsteady heat release rate (q̇′) from the flame. Large levels of vibration caused due
to thermoacoustic instability can lead to catastrophic consequences such as structural
damage or reduction in the lifetime of combustors (Sujith, Juniper & Schmid 2016).
Therefore, there is a need to either control such instabilities or to suppress them
completely.

Various methods have been devised over the years to control these instabilities
and thereby increase the operational range of the engines (Dowling & Morgans
2005). The control strategies used in the past to suppress thermoacoustic instabilities
are of different kinds. Open-loop control strategies, which were able to reduce the
thermoacoustic coupling between the acoustic field and the unsteady heat release rate,
include perturbing either the shear layers in the flow field (McManus, Vandsburger
& Bowman 1990) or the acoustic field of the combustor (Najm & Ghoniem 1991).
Closed-loop control has also been implemented in a Rijke tube (Dines 1984; Heckl
1988), ducted premixed flame (Lang, Poinsot & Candel 1987b) and in a turbulent
diffusion flame (Lang et al. 1987a) to suppress the amplitude of acoustic pressure
oscillations through the mechanism of negative feedback between the self-excited
sound waves, and the imposed sound waves (external acoustic perturbations). Note
that in open-loop control, forcing is applied at different frequencies other than the
natural frequency, whereas, in closed-loop control, the feedback signal is applied at
the natural frequency, but is phase shifted (Lubarsky et al. 2003).

1.1. Forcing on self-sustained oscillatory systems including reacting flow systems
Harmonic forcing has also found its application in self-sustained oscillatory systems.
Lubarsky et al. (2003) experimentally studied the effect of fuel flow modulation at
a non-resonant frequency on the self-excited thermoacoustic oscillations in a swirl-
stabilized combustor. Bellows, Neumeier & Lieuwen (2006) studied the nonlinear
response of the heat release rate fluctuations to flow perturbations in the context of a
swirling premixed flame. The response in the heat release rate oscillation was shown
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Forced synchronization and asynchronous quenching in thermoacoustic systems 75

to saturate at a sufficiently high amplitude of forcing. In a different study, Bellows,
Hreiz & Lieuwen (2008) reported the effectiveness of forcing for controlling the self-
excited thermoacoustic oscillations. However, they observed a reduction in amplitude
only for a few selected forcing frequencies. Therefore, a systematic investigation of
forced response for a wide range of forcing frequency and amplitude is desirable in
a thermoacoustic system to qualitatively identify the regime of amplitude reduction
in terms of the forcing parameters. Further, characterizing the dynamical states and
mechanisms of amplitude reduction in the context of dynamical systems theory
is essential for a better understanding of the phenomenon. In a recent study by
Kashinath, Li & Juniper (2018), forced synchronization leading to periodic, quasi-
periodic and chaotic states is investigated quite elaborately using a simple model of a
ducted laminar flame; however, experimental realization of this study is still limited.

Further, upon the application of harmonic excitation on hydrodynamically self-
excited flames, different kinds of dynamics and bifurcations have been observed
(Li & Juniper 2013b) before an eventual phase locking between the forcing signal
and the natural oscillations of the system. In the recent past, the effect of external
acoustic forcing has been investigated elaborately in self-excited jets (Li & Juniper
2013a,c) and self-excited flames (Li & Juniper 2013b). They have reported different
dynamical states including quasiperiodicity (Li & Juniper 2013a,b) as well as
different synchronization states including phase slipping and phase trapping (Li
& Juniper 2013c). Further, Hochgreb and her co-workers (Kim & Hochgreb 2011,
2012; Balusamy et al. 2015; Han, Balusamy & Hochgreb 2015; Han & Hochgreb
2015; Balusamy et al. 2017) have extensively studied the dynamics and the response
of stratified lean-premixed flames subjected to external acoustic velocity perturbations.
Most of their studies (Kim & Hochgreb 2011, 2012; Han et al. 2015; Han &
Hochgreb 2015; Balusamy et al. 2017) were focussed on investigating the forced
flame response by estimating the flame transfer/describing functions (FTF/FDF).
Balusamy et al. (2015), however, characterized the forced dynamics of a self-excited
thermoacoustic system using the framework of forced synchronization. They reported
the observations of pulling or pushing of the response frequency associated with the
self-excited mode towards or away from the forcing frequency for different conditions
of harmonic forcing.

Yoshida et al. (2013) investigated forced synchronization phenomena in a thermo-
acoustic engine, wherein the pressure oscillations are amplified and sustained due to
the temperature gradient between heat exchangers and not due to the unsteady heat
release rate from the flame. They have evidenced the reduction in amplitude associated
with the natural dynamics for a selected value of frequency detuning. Although some
progress has been made in understanding the response dynamics of forced limit cycle
oscillations of thermoacoustic systems, the reduction in the overall response amplitude
(amplitude of the forced system) due to forcing needs more rigorous investigation.

In the present study, we experimentally and theoretically investigate the effect of
forcing on the self-excited periodic oscillations developed in a thermoacoustic system,
the horizontal Rijke tube. We further show a qualitative similarity of the forced
dynamics observed in the experiments with a reduced-order model developed for the
system. One of the objectives is to obtain a complete picture in terms of response
dynamics as well as synchronization behaviour of the forced thermoacoustic system.

1.2. Forced synchronization and amplitude quenching
The phenomenon of forced synchronization (synchronization of unidirectionally
coupled periodic oscillators) has been gaining increased attention and has been
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extensively studied both theoretically (Pikovsky, Rosenblum & Kurths 2003; Balanov
et al. 2009) and experimentally (Kiss & Hudson 2001; Boccaletti et al. 2002;
Battogtokh, Aihara & Tyson 2006). The forced response of a system depends on
the values of the frequency and the amplitude of forcing. Such response dynamics
of a forced system can be effectively represented by a synchronization region in the
parametric space of forcing amplitude and frequency, known as the Arnold tongue
(Balanov et al. 2009). Most of the theoretical studies on forced synchronization are
based on van der Pol oscillators, which mimic a variety of oscillatory phenomena in
electric circuits (van der Pol 1920), electrocardiograms (Van Der Pol & Van Der Mark
1928), semiconductor lasers (Blažek 1968), neuronal activity (Nomura et al. 1993),
etc. Further, the phenomenon of forced synchronization has been experimentally
implemented to control or suppress chaos (Anishchenko et al. 1992; Kiss & Hudson
2001), and also to suppress oscillatory instability (Keen & Fletcher 1969). Using
a simple experimental set-up consisting of an organ pipe and a loudspeaker, Abel,
Ahnert & Bergweiler (2009) gave an experimental evidence of forced synchronization
in acoustics.

Forced synchronization of periodic oscillations is usually achieved through the
routes of phase locking and suppression (Balanov et al. 2009). Upon increasing the
forcing amplitude, when the frequency difference between the forcing and the natural
oscillation of a given system is very small, the frequency of forced oscillations, also
called the main frequency in other literature (Balanov et al. 2009), shifts gradually
towards the forcing frequency ( ff ) and, finally, coincides with ff ; the mechanism
is known as phase locking. Hereafter, we call the frequency of forced oscillation
the response frequency ( fr). On the other hand, suppression of the self-sustained
oscillations occurs for a relatively larger value of the frequency difference, wherein
the amplitude of natural oscillations is suppressed without exhibiting any shift in
frequency, as the forcing amplitude is increased. The route of phase locking is
attained through a saddle-node bifurcation, whereas, the suppression route is reached
through a torus-death bifurcation (Balanov et al. 2009; Hyodo & Biwa 2018).

Suppression is further classified as synchronous quenching (Odajima, Nishida &
Hatta 1974; Ohsawa 1980) and asynchronous quenching (Minorsky 1967) depending
upon the value of frequency detuning between the forcing and the natural oscillation.
When the frequency detuning is relatively small, the suppression of self-sustained
oscillation is known as synchronous quenching. However, synchronous quenching
of natural oscillation is associated with resonance amplification of the forcing
signal, in which the overall response amplitude of the forced system increases to
a higher value in the synchronization region. On the other hand, when frequency
detuning is relatively large, the suppression of self-sustained oscillation is known as
asynchronous quenching (Minorsky 1967) where the resonant amplification of the
forcing signal does not occur. Such a type of suppression is caused by an asymptotic
loss of stability of self-excited oscillations due to the disturbance induced by the
imposed forcing and leads to a reduction in the overall amplitude of the forced
system (Keen & Fletcher 1969).

Therefore, studying the applicability of asynchronous quenching is important
to mitigate the amplitude of undesired acoustic oscillations observed in practical
combustors. Such a type of suppression phenomenon was experimentally evidenced in
the control of ion-sound instability (Keen & Fletcher 1969), in self-excited ionization
waves (Ohe & Takeda 1974) and even in the control of thermoacoustic instability
(Guan et al. 2018). Further, the reduction in response amplitude of thermoacoustic
oscillation forced at non-resonant frequencies has been reported in previous studies
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Forced synchronization and asynchronous quenching in thermoacoustic systems 77

(Lubarsky et al. 2003; Bellows et al. 2008; Guan et al. 2018; Kashinath et al. 2018).
However, they did not focus on explaining the mechanism behind such a quenching
of natural oscillations due to forcing. In the present study, we apply the knowledge
of forced synchronization and the associated quenching phenomena in studying
systematically the forced response of limit cycle oscillations of a horizontal Rijke tube.

We employ external harmonic forcing through a system of acoustic drivers when
the system dynamics exhibits self-sustained limit cycle oscillations at the fundamental
longitudinal mode of the duct. By varying the amplitude and frequency (across the
natural frequency) of forcing, we report an experimental observation of synchronous
quenching of self-sustained oscillation and resonant amplification of the forcing in
the synchronization region of the Arnold tongue along with the exhibition of different
states during the process of forced synchronization. We, further, report an experimental
observation of a significant reduction in root-mean-square (r.m.s.) amplitude of natural
oscillations (by 80 % of the unforced value) when the system is forced with a
frequency far lower than the natural frequency (in the present case, it happens to be
close to a subharmonic frequency). We also observe qualitatively similar dynamics
in a theoretical model developed for the horizontal Rijke tube (Balasubramanian &
Sujith 2008). By varying the forcing amplitude and the forcing frequency, we explore
the phenomena of synchronous and asynchronous quenching in the model. We further
try to explore the effect of harmonic forcing on the thermoacoustic coupling between
the acoustic pressure (p′) and the heat release rate (q̇′) oscillations obtained from the
model. The phenomenon of asynchronous quenching is found to be associated with a
shift in phase difference between p′ and q̇′ from zero (during phase synchronization)
to π/2.

2. Experimental set-up

We perform experiments on a horizontal Rijke tube (schematic shown in figure 1),
which is 1 m long with a square cross-section (9.2 cm × 9.2 cm). An electrically
heated wire mesh acts as a compact heat source which is powered by an external DC
power supply. The mean flow of air is provided by means of a compressor and is
maintained constant at 100 slpm using a mass flow controller (Alicat Scientific, MCR
series, with an uncertainty of ±(0.8 % of the reading + 0.2 % of full scale) and the
range of 0–500 slpm). The air is passed through a rectangular chamber (120 cm ×
45 cm × 45 cm), referred to as a decoupler, to eliminate the upstream fluctuations
(hydrodynamic and acoustic) and to make the inlet flow steady. Therefore, pressure
fluctuations at both ends of the Rijke tube become negligible. A detailed description
of the set-up can be found in Gopalakrishnan & Sujith (2015).

The location of the heater inside the duct is held constant throughout the study
at 27 cm from the end connected to the decoupler. Four wall mounted acoustic
drivers (loud speaker, Ahuja AU60, at a distance of 62.5 cm from the inlet) along
with an amplifier are used to provide harmonic forcing signal in the system. Note
that the forcing amplitude of the loudspeaker is expressed in its input unit, i.e. mV,
throughout the paper and not converted into physical units such as that of acoustic
velocity (m s−1) or pressure amplitude (Pa). Such conversions can be done through
several means (Li & Juniper 2013a; Balusamy et al. 2015). We retain the mV
readings, considering the fact that such peak-to-peak voltage is directly proportional
to the amplitude of acoustic pressure (Li & Juniper 2013a).

A piezoelectric transducer (PCB 103B02, sensitivity 217.5 mV kPa−1 and uncer-
tainty ±0.15 Pa) mounted at the wall, close to the midpoint along the length of the
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Heating element

Rijke tube
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FIGURE 1. (Colour online) Schematic of a horizontal Rijke tube set-up used in the
present study.

duct, is used to measure the acoustic pressure fluctuations in the system. The system
is preheated for 10 min by supplying a constant voltage of 3.5 V to the heater to
ensure that the temperature is steady in the vicinity of the heater. The subcritical Hopf
bifurcation takes place at a heater power value of 1.21 kW (uncertainty ±0.4 W). For
the forcing study, the power supplied to the heater is maintained constant at 1.24 kW
throughout the experiments. Data are acquired at a sampling frequency of 10 kHz. The
bin size (frequency resolution) of the fast Fourier transform of the measured signal is
0.3 Hz. To ensure consistent ambient conditions, we maintain an initial temperature
at 23± 3 ◦C and a relative humidity at 55 % for each experiment. We also determine
the exponential decay rate of the system by giving an acoustic pulse in the absence
of the flow (Mariappan 2012). To ensure repeatability, the experiments are conducted
only when the decay rate lies within ±10 % of the mean value, found to be 19.0 s−1.

3. Model
We use a reduced-order model for the horizontal Rijke tube developed by

Balasubramanian & Sujith (2008). The model for a one-dimensional acoustic field
is derived from the linearized momentum (3.1) and energy (3.2) equations for a
medium with a perfect, inviscid and non-heat-conducting gas, neglecting the effects
of mean flow (zero Mach number approximation, Nicoud & Wieczorek 2009) and
mean temperature gradient:

ρ̄
∂ ũ′

∂ t̃
+
∂ p̃′

∂ x̃
= 0, (3.1)

∂ p̃′

∂ t̃
+ γ p̄

∂ ũ′

∂ x̃
= (γ − 1) ˙̃Q′δ(x̃− x̃f ), (3.2)

where ρ and γ are the density and the ratio of specific heats of the medium. The heat
release rate ( ˙̃Q′) in the duct is modelled using a modified form of King’s law (King
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Forced synchronization and asynchronous quenching in thermoacoustic systems 79

1914) given by Heckl (1990). The variables are non-dimensionalized and the resulting
set of partial differential equations is then reduced to a set of ordinary differential
equations (ODE) using the Galerkin technique (Lores & Zinn 1973). To that end, the
non-dimensional velocity (u′) and the non-dimensional pressure (p′) fluctuations in the
duct are written in terms of basis functions or the Galerkin modes (Balasubramanian
& Sujith 2008). These basis functions are essentially the natural acoustic modes of
the duct in the absence of heat release. These functions further satisfy the boundary
conditions [p′(0, t)= 0; p′(1, t)= 0] and can be written as follows:

u′(x, t)=
N∑

j=1

ηj(t) cos( jπx), (3.3)

p′(x, t)=−
N∑

j=1

η̇j(t)
γM
jπ

sin( jπx), (3.4)

where ηj and η̇j represent the time varying coefficients of the jth mode of the acoustic
velocity (u′) and the acoustic pressure (p′), respectively, and N represents the number
of Galerkin modes considered. Here, M is the Mach number of the mean flow and γ
is the ratio of specific heats of air at ambient condition.

The temporal evolution of the system is thus described by the following set of
ordinary differential equations:

dηj

dt
= η̇j, (3.5)

dη̇j

dt
+ 2ζjωjη̇j +ωj

2ηj =−jπK

[√∣∣∣∣13 + u′f (t− τ)
∣∣∣∣−
√

1
3

]
sin( jπxf ), (3.6)

where

u′f (t− τ)=
N∑

j=1

ηj(t− τ) cos( jπxf ). (3.7)

Other parameters are the damping coefficient of the jth mode, ζj, non-dimensional
angular frequency, ω, non-dimensional heater power, K, and non-dimensional velocity,
u′f at the non-dimensional heater location, xf . Variables with a tilde are dimensional
and those without a tilde are non-dimensional. Here, K is analogous to the heater
power in experiments and ζj is frequency-dependent damping (Sterling & Zukoski
1991) given by

ζj =
1

2π

(
c1
ωj

ω1
+ c2

√
ω1

ωj

)
. (3.8)

This model essentially captures the feedback between the heat release rate
fluctuations and the acoustic pressure fluctuations. More details of the model can
be obtained in Balasubramanian & Sujith (2008). The mathematical model governed
by (3.5) and (3.6) represents a nonlinear oscillator which exhibits a transition to
the self-sustained oscillatory state through subcritical Hopf bifurcation. This model
has been used extensively to study various thermoacoustic phenomena in previous
studies (Juniper 2011; Magri & Juniper 2013; Zhao & Reyhanoglu 2014; Thomas
et al. 2018). All the parameters are chosen in such a way that the model exhibits
limit cycle oscillations away from the bistable regime.
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Parameter Value Parameter Value Parameter Value

N 10 τ 0.2 K 0.72
γ 1.4 M 0.005 xf 0.25
c1 0.1 c2 0.06 ωj jπ

TABLE 1. The parametric values used for the computation of Rijke tube model.

To study the effect of external perturbations, a harmonic forcing with amplitude, Af ,
and frequency, ff , is implemented. Once we include the forcing term, equation (3.6)
becomes:

dη̇j

dt
+ 2ζjωjη̇j +ωj

2ηj =−jπK

[√∣∣∣∣13 + u′f (t− τ)
∣∣∣∣−
√

1
3

]
sin( jπxf )+ Af sin(2πff t).

(3.9)
For the present study, we vary both Af and ff independently over a wide range when

the system is in the state of limit cycle oscillation and analyse the forced response
dynamics of the acoustic pressure (p′, following (3.4)) in the system. Further, we
evaluate heat release rate oscillations (q̇′, following (3.10)) for different forcing
conditions to analyse the normalized and cycle-averaged acoustic power production
(〈p′q̇′〉t). The parametric values used for computation are given in table 1.

q̇′ =
N∑

j=1

jπK

[√∣∣∣∣13 + u′f (t− τ)
∣∣∣∣−
√

1
3

]
sin( jπxf ). (3.10)

4. Results and discussions

During the experiments, we set the heater location (27 cm from the inlet), heater
power (1.24 kW corresponding to 4.1 V and 303 A) and the air flow rate (100 slpm)
in such a way that the Rijke tube exhibits limit cycle oscillations in acoustic pressure
with a natural frequency ( fn0) of 168.8 Hz (fundamental mode of the system). The
dynamics of such a system with the variation of the parameters mentioned above
has been well studied by various researchers; see for example, Matveev (2003),
Gopalakrishnan & Sujith (2014) and Etikyala & Sujith (2017). Here, we consider
the system in its self-sustained oscillatory state to explore the forced synchronization
behaviour when the frequency and the amplitude of forcing are varied independently.

4.1. Synchronization map
The response dynamics of the acoustic pressure oscillation is presented in the form
of 1 : 1 (the ratio between the forcing frequency and the natural frequency at the
synchronized state) forced synchronization map (figure 2a) by varying the forcing
amplitude (Af ) and the normalized forcing frequency ( ff /fn0) one at a time. Further,
the response dynamics obtained from the model is shown in figure 2(b). The different
regimes of forced synchronization such as regimes of phase locking, phase trapping
and phase drifting (Li & Juniper 2013c) are identified and illustrated in figures 2(a)
and 2(b).
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FIGURE 2. (Colour online) A 1:1 forced synchronization map in the plane of Af and ff /fn0
obtained from (a) the experiment and (b) the model when a harmonic forcing is applied
to a self-sustained thermoacoustic oscillator exhibiting limit cycle oscillations. Regions of
phase locking, phase trapping and phase drifting are indicated as regions I, II and III,
respectively. The synchronization region indicated by phase locking is observed to form
an Arnold tongue. Boundaries between regions I and II (u) and between regions II and III
(p) are shown by linearly fitted lines (least squares, R2

=0.99±0.0044). The regime where
phase trapping is not observed is indicated with a dashed circle. Note that the ranges of
abscissa and ordinate in (a) and (b) are different, where both plots show a qualitative but
not a quantitative comparison between the Arnold tongues obtained from experiment and
model.

The characterization of the different states of synchronization is based on the
dynamics of the instantaneous phase difference (1φ) between the forcing signal (φF)
with the signal of the forced system (φp′), i.e. 1φ = |φF − φp′ |. The instantaneous
phases are calculated through Hilbert transform of the respective signals. During
the phase-locking state, the instantaneous phases (φ) as well as the frequencies (ω)
of the forcing and the response signals show a perfect locking, i.e. |1φ| = const.
and 1ω = |ωF − ωp′ | = 0 (Pikovsky et al. 2003). In contrast, during the phase
trapping state, the relative phase (1φ) between the response signal and the forcing
signal shows a bounded oscillatory behaviour, which results in the locking of mean
frequencies (ω = 〈dφ/dt〉) of the signals without exhibiting their instantaneous phase
locking (Thévenin et al. 2011; Li & Juniper 2013c). Phase drifting, on the other
hand, corresponds to the unbounded growth or decay of the unwrapped relative phase
between the forcing and the response signals with time.

With an increase in the forcing amplitude, the region of 1 : 1 synchronization
increases, resulting in a V-shaped synchronization region (I, figure 2a,b), called the
Arnold tongue (Pikovsky et al. 2003; Balanov et al. 2009). The model qualitatively
captures the phenomenon of 1 : 1 synchronization (figure 2b) observed in the
experiments (figure 2a). We notice a region of phase trapping (II, figure 2a,b) between
the regions of phase drifting (III, figure 2a,b) and phase locking (I, figure 2a,b) for
both ff /fn0 < 1 and ff /fn0 > 1.

In the Arnold tongue obtained from experiments (figure 2a), we observe an
asymmetry about fn0. The curves are less steep for ff < fn0 as compared to that
observed for ff > fn0. Such an asymmetry in the Arnold tongue is due to the
nonlinearity involved in the periodic oscillator (Balanov et al. 2009). A similar
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asymmetry in the Arnold tongue has been observed in forced low density jets
(Hallberg & Strykowski 2008) and hydrodynamically self-excited jets (Li & Juniper
2013a,c). However, in another study on a jet diffusion flame, the asymmetry showed
the opposite trend, having steeper curves for ff < fn0 (Li & Juniper 2013b). We
further observe a small region in the parameter space where phase drifting directly
transitions to phase locking without phase trapping when the forcing frequency is
very close to the fn0 (shown as a dashed circle in figure 2a,b), corresponding to the
mechanism of phase locking (here we refer to the route and not the state) towards
forced synchronization (Balanov et al. 2009). Whereas, the state of phase trapping is
exhibited between phase drifting and phase locking in the regime corresponding to
the mechanism of suppression.

Having described the overall synchronization behaviour of a forced Rijke tube
oscillator, let us look at the transition in the forced dynamics and synchronization
state as we vary the forcing parameters individually.

4.2. Synchronization states achieved as the frequency and amplitude of forcing are
varied independently in experiments

4.2.1. Effect of the variation of forcing frequency
First, we vary the forcing frequency ( ff = 90 Hz–220 Hz) across the natural

frequency of the system ( fn0 = 168.8 Hz) keeping the forcing amplitude (Af ) fixed
at 5 mV. The value of Af is chosen such that we are able to look into different
states of forced synchronization occurring through the mechanism of suppression
when ff is varied. We observe different features of the forced synchronization and the
response dynamics of the acoustic pressure. Representative states of synchronization
and corresponding forced dynamics are shown for four different values of ff (figure 3).

The response dynamics of the acoustic pressure signals subjected to harmonic
forcing can be inferred from the first return map (figure 3I) and the time series
shown in figure 3I (inset). Further, the spectral properties such as frequency of
the response signal (figure 3II) and instantaneous relative phase (calculated through
Hilbert transform) between forcing and response signals are shown in figure 3II
(inset). The forcing frequencies are indicated by red dots in the amplitude spectra
(figure 3II).

When ff is 90 Hz (far from fn0, figure 3aII), the dynamics of the response signal is
insensitive to forcing (inset of figure 3aI). The relative phase shows a continuous drift
with time (inset of figure 3aII), indicating that the forcing and the response oscillations
are desynchronized.

When the value of ff (= 161.5 Hz) is close to fn0 (figure 3bII), the amplitude of
the response signal shows modulation, known as beats (inset of figure 3bI) with a
beating frequency of | fr − ff |, where fr is the response frequency. First return map
of such modulated oscillations shows an oval shaped loop around the diagonal line,
indicating two frequency oscillation. On the other hand, a staircase-like structure in the
dynamics of the relative phase (inset of figure 3bII) indicates a state of intermittent
phase locking, where the spans of the phase locked states are separated by jumps (also
referred to as phase slips) of integer multiples of 2π radians.

When ff (= 164.3 Hz) is very near to fn0, however, outside the phase-locking
boundary (figure 3cII), the relative phase indicates the presence of a phase trapping
state, as inferred from the bounded and oscillatory behaviour of the relative phase.
Such an oscillatory relative phase has a frequency equal to the beating frequency of
the response signal (inset of figure 3cII). Although the mean frequencies (ω=〈dφ/dt〉)
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FIGURE 3. (Colour online) As ff is varied towards fn0 (168.8 Hz), we observe different
dynamical states in the response signal (I) and different states of synchronization (II,
inset) such as phase drifting (a, ff = 90 Hz), intermittent phase locking (b, ff = 161.5 Hz),
phase trapping (c, ff = 164.3 Hz) and phase locking (d, ff = 164.7 Hz). Dynamics is
presented by plotting the return map (I) and the corresponding time series (inset of I).
Amplitude spectrum (forcing frequency is indicated by red dots) of the response signals
(II) along with the relative phase dynamics (inset of II) are shown to identify the state
of synchronization. The response frequency ( fr) corresponding to natural oscillations is
marked with a dashed line in the amplitude spectra.

of the forcing and the response signals are perfectly locked, the amplitude spectrum
of the response signal still shows two distinct frequency peaks corresponding to ff
and fr. This reflects in the beating structure of the response signal (inset of figure 3cI),
and a closed-loop structure along the diagonal line in the first return map (figure 3cI).

During the onset of phase-locking state ( ff = 164.7 Hz), the frequency peak
corresponding to fr gets completely suppressed, thus showing a single peak at the
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FIGURE 4. (Colour online) The plots show frequency spectra of the response signal, and
temporal variation of the relative phase between the response dynamics and the forcing
signal (insets) at different values of (a) Af = 3 mV, (b) Af = 12 mV, (c) Af = 18 mV and
(d) Af = 24 mV, when ff is maintained constant at 155 Hz, which is sufficiently away
from fn0 (168.8 Hz). The red dot in the frequency spectra corresponds to the location of
the forcing frequency ( ff ).

forcing frequency (figure 3dII). During this state, the relative phase fluctuates around
a constant phase shift (inset of figure 3dII) indicating a perfect locking of the
instantaneous phases. The first return map corresponding to this state, hence, shows
a cluster of points congregated along the diagonal line (figure 3dI).

When ff is varied in such a way that it crosses the right boundary of the
synchronization region (see Arnold tongue in figure 2), the observations of forced
synchronization states such as phase trapping, intermittent phase locking and phase
drifting are repeated in the response dynamics (not shown here for brevity).

4.2.2. Effect of the variation of forcing amplitude
We further investigate the effect of forcing amplitude on the response dynamics.

Towards that purpose, we vary the forcing amplitude, maintaining the forcing
frequency constant at ff = 155 Hz (significantly away from fn0, chosen to look
into different states of forced synchronization occurring through the mechanism of
suppression, as shown in figure 4) and at ff = 167.5 Hz (very close to fn0, chosen to
look into different states of forced synchronization occurring through the mechanism
of phase locking, as shown in figure 5).

For ff = 155 Hz, when the amplitude of forcing is very small (Af = 3 mV), the
external forcing does not affect the natural oscillations, resulting in a behaviour of
phase drifting between the forcing and the response signals (inset of figure 4a). With
the increase of forcing amplitude to 12 mV, we observe a beating phenomenon (not
shown here) in the amplitude of the response signal. This corresponds to a state of
intermittent phase locking, confirmed from the observation of a wavy staircase-like
structure in the relative phase dynamics (inset of figure 4b). As we further increase
Af (Af = 18 mV), we notice a shift in dominance of the peak frequencies from fr
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FIGURE 5. (Colour online) Plots showing amplitude spectra of the response signal, and
instantaneous relative phase variation between the response and the forcing signal (insets),
obtained for different values of Af = 0.4 mV (a), 0.8 mV (b), 1.2 mV (c) and 1.7 mV
(d), when ff (167.5 Hz) is very close to fn0 (168.8 Hz).

to ff in the amplitude spectrum (see figure 4c). This results in the bounded nature of
the relative phase, where the phase difference between the forcing and the response
signals is trapped between finite values and oscillates in a periodic manner (inset of
figure 4c). When the forcing amplitude is sufficiently high (Af = 24 mV), we observe
a perfect locking of instantaneous phases of the signals (inset of figure 4d), wherein
the natural oscillations get completely suppressed and the system oscillates with the
forcing frequency (figure 4d). Therefore, at ff = 155 Hz, forced synchronization occurs
through the mechanism of suppression of natural oscillation (Balanov et al. 2009).

For ff = 167.5 Hz, when Af is very small (0.4 mV, figure 5a), the plot of
relative phase shows a phase drifting behaviour, which subsequently transitions
to a staircase-like structure at a higher value of the forcing amplitude (Af = 0.8 mV
in figure 5b). When Af = 1.2 mV, we notice a shift in the response frequency ( fr)
towards the forcing frequency ( ff ) as shown in figure 5(c). We, further, observe an
intermittent phase-locking behaviour in the dynamics of the relative phase (inset of
figure 5c). When the amplitude of forcing is high (Af =1.7 mV), the natural frequency
eventually gets locked with the forcing frequency (inset of figure 5d). Here, we notice
that the transition from phase drifting to phase locking does not happen through phase
trapping. The region of the Arnold tongue for which the state of phase trapping does
not appear at the synchronization boundary (shown with a dashed circle in figure 2)
is referred to as a phase locking region as forced synchronization occurs through
the mechanism of phase locking in this region. The mechanisms of phase locking
and suppression correspond to saddle-node and torus-death bifurcation, respectively
(Balanov et al. 2009). In the present study, we report the experimental observation of
both the routes in a Rijke tube. Having characterized the different forced dynamics
and synchronization behaviour, we now shift our attention to understand the effect of
harmonic forcing on the amplitude of the response signal.
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FIGURE 6. (Colour online) The time series of the acoustic pressure oscillations obtained
from experiments showing the effect of forcing on the amplitude of the response signal
for (a) ff = 90 Hz, (b) ff = 120 Hz and (c) ff = 155 Hz, keeping the forcing amplitude
fixed at 40 mV. Depending upon the forcing frequency, the response oscillations can be
quenched or amplified.

4.3. Effect of harmonic forcing on response amplitude
The overall amplitude of the forced system is referred to as the response amplitude
from here on for brevity. Depending upon the choice of forcing parameters (i.e. ff
and Af ), the amplitude response of the system could be different. Typical time series
of the acoustic pressure oscillations obtained in experiments for different values of
forcing frequency are shown in figure 6. The time instances when the forcing is
switched on and off are marked with violet and red dashed lines, respectively. The
unforced pressure oscillation in the Rijke tube is periodic (see inset of figure 6a)
with an amplitude of nearly 215 Pa and a natural frequency of 168.8 Hz.

We vary ff starting from 90 Hz towards the natural frequency (168.6 Hz) keeping
the forcing amplitude constant (40 mV). We find both reduction and increase in the
response amplitude of forced oscillation depending upon the frequency of forcing. The
acoustic pressure oscillations at forcing frequencies of 90, 120 and 155 Hz are shown
in figure 6. When we force the system with a forcing frequency around 90 Hz, we
find a maximum reduction in the response amplitude where the dynamics of the forced
system does not exhibit sinusoidal oscillations (see inset of figure 6a), indicating the
existence of nonlinear interaction between the forced and the natural oscillations. We
further note that the epoch of the initial transient in the signal after the forcing is
switched on is long, i.e. around 5 s at ff = 90 Hz. Once the forcing is switched off,
the system takes an even longer time to get back to the original unforced state of
oscillation. At this forcing frequency, the thermoacoustic oscillations get destabilized
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due to the disturbance induced by the external forcing (the analysis is given in § 4.7).
Therefore, once the forcing is switched off, the re-establishment of thermoacoustic
oscillations takes a long time.

We find a reduction in the response amplitude even when ff = 120 Hz (figure 6b).
However, the reduction in amplitude is less compared to the previous case. Therefore,
we believe that a low frequency forcing seems to be beneficial for mitigating
thermoacoustic instability in practical systems to the extent that the system behaves
like a periodic oscillator with a single dominant frequency. However, an experimental
validation on more complicated thermoacoustic systems with many degrees of freedom
needs to be performed. We further observe that the transient is short compared to
the previous case and is aperiodic in nature (inset of figure 6b). On the other
hand, the forcing with a frequency ( ff = 155 Hz) close to the natural frequency
( fn0 = 168.8 Hz) of the system leads to an amplification of the response signal
(figure 6c). This suggests that choosing a forcing frequency close to the natural
frequency for controlling the thermoacoustic instabilities can be even more dangerous
for the life of the systems.

Therefore, from a practical point of view, it is important to explore the effect
of harmonic forcing on the response signal. The phenomena of reduction and
amplification of the response signal can be understood with a careful analysis of
the forcing and the self-excited oscillation separately.

4.4. Effect of harmonic excitation on the amplitudes of self-excited and forcing
oscillations

We further analyse the effect of harmonic excitation on the amplitudes of the
self-excited and the forcing oscillations separately. To that end, we obtain amplitudes
of the self-excited oscillation (An corresponding to the response frequency, fr) and
that of the forcing (Af corresponding to the forcing frequency, ff ) from the amplitude
spectrum (by fast Fourier transform) of the response pressure signal. The normalized
amplitudes (An/A0 and Af /A0) are plotted with the normalized forcing frequency
( ff /fn0), where A0 is the unforced spectral amplitude of the self-excited oscillations
from both experimental data and model (figure 7). For this plot, the forcing frequency
is varied, keeping the forcing amplitude constant (5 mV in experiment and 0.35 in
model). We further plot the r.m.s. value of pressure oscillations obtained from
experiments (figure 7a) and from the model (figure 7a) as we vary ff . We observe
an asymmetry across the natural frequency in the amplitude response plots of the
forced limit cycle oscillations. We further notice two distinct phenomena occurring
simultaneously while ff /fn0 is close to 1.

The amplitude corresponding to the self-excited oscillations (An/A0) shows a gradual
decrease as ff /fn0 approaches 1. Such reduction in the amplitude of self-excited
oscillations occurs due to the phenomenon of synchronous quenching until the onset
of phase locking is observed (figures 7a and 7b, represented in red squares). In the
regime of frequency or phase locking of the Arnold tongue (shown in figure 2),
the spectral amplitude of self-excited oscillations is completely suppressed. In the
same regime of frequency ratio, the amplitude of forced oscillation (Af /A0) initially
shows a gradual increase as ff /fn0 approaches 1 (figures 7a and 7b, represented
in blue circles) and then exhibits a sudden jump to a very large amplitude at the
onset of phase locking due to the effect of resonance amplification (Odajima et al.
1974; Ohe & Takeda 1974; Abel et al. 2009). Thus, the simultaneous occurrence
of synchronous quenching of natural oscillations and resonance amplification of the
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FIGURE 7. (Colour online) Variation of spectral amplitude of self-excited oscillation
(An/A0, in red squares) and of forcing (Af /A0, in blue circles) when the forcing
frequency is varied across the natural frequency of the Rijke tube at a constant value
of forcing amplitude (Af = 5 mV in experiment and, Af = 0.35 in model), obtained from
experiment (a) and model (b). Synchronous quenching of self-excited oscillations occurs
when the forcing frequency ( ff ) is close to the natural frequency. This is associated with
resonance amplification of the forcing signal. Due to the combined effects of synchronous
quenching of the natural oscillation and resonant amplification of the forcing, there is an
overall amplification in the Prms/P0

rms value of the response signal (a,b) where P0
rms is the

r.m.s. value of unforced pressure oscillation.

forcing signal makes the response signal dominated by the forcing signal. This,
in turn, results in the phase locking between the forcing and the response signals.
Further, due to the combined effects of synchronous quenching of natural oscillations
and resonant amplification of forcing, the r.m.s. value of the response pressure
oscillation shoots up to a very high value, compared to the unforced amplitude of the
signal, in the synchronization region and then exhibits a gradual decrease with the
further increase in ff /fn0 (violet curve in figure 7a). We call this shooting up of the
response amplitude (around ff = fn0) synchronance (synchronization–resonance). Such
simultaneous occurrence of synchronization and resonance in the frequency locking
region has also been reported by Abel et al. (2009) who conducted experiments with
a self-excited organ tube forced externally using a loudspeaker. Further, we notice
that when the value of forcing frequency is far away from fn0, the amplitude of
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natural oscillations is not affected by the forcing, and thereby, the r.m.s. value of the
response signal is also unaltered.

4.5. Effect of forcing on the response amplitude
We further examine the r.m.s. value of response pressure oscillation when Af is
varied keeping ff fixed at different values. Four values of ff are chosen in such a
manner that two of them are close to fn0 and the other two are relatively further
away from fn0. We observe that the response amplitude of the acoustic pressure first
decreases to a minimum value prior to exhibiting a linear increase, which is primarily
due to the gradual increase in the forcing amplitude. This behaviour is observed for
ff < fn0 (figure 8a,b) and also for ff > fn0 only when the frequency detuning is small
(figure 8c). This reduction in the amplitude of the acoustic pressure signal is not
observed when ff is significantly larger than fn0 (figure 8d), wherein the response
amplitude shows a continuously increasing trend without any minima. From the
analysis of relative phase between the forcing and the forced oscillations, as shown
in figures 4 and 5, we notice that the minimum in the plot of response amplitude
(see figure 8) is close to the boundary of the phase-locking regime (shown as the
shaded portion in figure 8a–c). In the region of perfect phase locking, the response
amplitude of the acoustic pressure oscillations demonstrates almost a linear growth
with an increase in Af . Such a growth of the response amplitude of pressure signal in
the synchronization region is significantly steep when ff is close to fn0 (figure 8b,c).
This rapid amplification of the r.m.s. values of response pressure oscillations when
ff /fn0 approaches 1 happens due to the phenomenon of synchronance as explained
earlier in figure 7. However, the growth in the response amplitude of the pressure
signal in the synchronization region is moderate when ff is much lower than fn0
(figure 8a). We further notice that the minimum value of the response amplitude,
observed prior to the onset of perfect phase-locking state, increases as ff is increased.

4.6. Characterization of maximum reduction in the response amplitude due to
harmonic forcing

The reduction in the r.m.s. value of the response pressure signal due to harmonic
forcing is shown in figure 9 when we vary ff across fn0, and for each value of ff we
further vary Af to obtain the minimum amplitude for that particular ff . Suppression
(P0 − Pmin) in the amplitude of the response signal is normalized with the r.m.s.
value of the unforced natural oscillation (P0), where Pmin represents the minimum
r.m.s. value of the response signal achieved while Af is varied for each value of ff .
We observe the maximum reduction in the amplitude of the response signal when ff
is significantly lower than the natural frequency ( fn0). As we move towards fn0, the
amount of amplitude reduction gradually decreases (figure 9a). This also suggests that
the effectiveness of forcing in suppressing the amplitude of the unforced oscillation
decreases as ff approaches fn0.

We do not observe any reduction in the response amplitude when ff > fn0 in
experiments (figure 9a). In other words, when ff > fn0, the r.m.s. value of the response
signal does not reduce at all as Af is varied (see figure 8d). Similar observation
has been mentioned in Lubarsky et al. (2003), Bellows et al. (2008) and Abel et al.
(2009). Amplification of the forcing signal has been found in a system of self-excited
organ pipe for ff > fn0 (Abel et al. 2009) and in a laminar flame combustor for ff < fn0
as well as ff > fn0 (Guan et al. 2018). Thus, forcing the limit cycle oscillation at a
frequency greater than the natural frequency of the oscillations might not lead to a
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FIGURE 8. (Colour online) The variation of response amplitude (Prms) of the acoustic
pressure signals obtained from experiments as Af is varied for different ff = 100 Hz (a),
155 Hz (b), 175 Hz (c) and 200 Hz (d). Reduction in response amplitude is observed for
all forcing frequencies except when ff is sufficiently higher than fn0 (d). The shaded region
indicates the zone of phase locking.
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FIGURE 9. (Colour online) Amplitude reduction as a function of normalized forcing
frequency ( ff /fn0) obtained from experiments (a) and model (b) representing the maximum
decrease in overall response amplitude of the acoustic pressure signal when ff is varied
across fn0. The amplitude reduction (P0 − Pmin) is normalized with the r.m.s. value of the
unforced amplitude (P0), where Pmin represents the minimum r.m.s. value achieved while
Af is varied for a particular value of ff .

significant suppression of the overall amplitude of the limit cycle, depending on the
thermoacoustic system involved.

When ff /fn0 is around 0.6, i.e. the forcing frequency is near the subharmonic
frequency of natural oscillations ( fn0/2), the reduction in response amplitude of
the limit cycle oscillations in the system reaches almost 80 % of their unforced
amplitude (figure 9a). Such a suppression in natural oscillation that occurs when ff
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is significantly away from fn0 is due to the phenomenon of asynchronous quenching
(Minorsky 1967; Staubli 1987). During asynchronous quenching, we notice that the
minimum amplitude achieved through forcing is close to that of the imposed forcing
amplitude. Therefore, we suggest that the occurrence of asynchronous quenching
through the proper choice of forcing parameters can be effective in mitigating the
amplitude of thermoacoustic instability while forced at a frequency much lower than
the natural frequency.

On performing a similar analysis in the model, we observe a reduction in the
response amplitude of as high as 95 % of the unforced amplitude when ff /fn0 is
∼0.03 (figure 9a). Therefore, the model chosen in this study is able to capture the
phenomenon of amplitude reduction due to asynchronous quenching qualitatively,
but not quantitatively. Further, the amplitude reduction of the response signal is
found even when the system is forced with ff > fn0 (figure 9b). The phenomenon of
asynchronous quenching occurring at both ff /fn0 < 1 and ff /fn0 > 1 is not observed
in the present experimental set-up. However, using a laminar flame combustor, Guan
et al. (2018) showed the existence of asynchronous quenching for ff < fn0 as well
as ff > fn0, which qualitatively corroborates the forced Duffing–van der Pol oscillator
with weak nonlinearity.

4.7. Physical explanation for the amplitude suppression due to asynchronous
quenching

As the phenomenon of thermoacoustic instability is a consequence of positive coupling
between the acoustic pressure (p′) and the heat release rate (q̇′) oscillations, it is
critical to explore the effect for harmonic forcing on such thermoacoustic coupling.
As we do not have a means to measure q̇′ (3.10) in the present experimental facility
of the Rijke tube, we try to find a plausible explanation from the model that governs
the essential features of this system.

The phenomena of synchronous quenching and asynchronous quenching are
well captured in the present model of the Rijke tube (refer to figures 7b and 9b,
respectively). Further, the association of resonance amplification of the forcing signal
with the synchronous quenching of self-excited oscillations is also well predicted in
the model (figure 7b). Therefore, in the model, we look into the normalized and
cycle-averaged acoustic power production, 〈p′q̇′〉t (where t = 512 × time period),
which is responsible for the sustenance of thermoacoustic instability (Lieuwen &
Yang 2005).

The variation of 〈p′q̇′〉t with Af is shown in figure 10. Here, we choose a forcing
frequency ( ff /fn0 = 0.06) at which the model shows significant reduction in the
r.m.s. value of the pressure oscillations (figure 9b). With an increase in Af , 〈p′q̇′〉t
decreases (figure 10) and becomes minimum when we achieve maximum reduction
in the amplitude of pressure oscillation. The low value of acoustic driving (〈p′q̇′〉t)
explains the reduction in the amplitude of self-excited oscillation observed during
thermoacoustic instability. Further, we observe that, at the instant of no amplitude
reduction, the acoustic pressure and the heat release rate oscillate at the natural
frequency (figure 10i) and their relative phase oscillates within 0 and π/2 rad
(figure 10ii), satisfying the Rayleigh criterion (Rayleigh 1878). On the other hand, at
the instant of maximum amplitude reduction, both the acoustic pressure and the heat
release rate oscillations have a dominant peak at the forcing frequency (figure 10iii),
and therefore, they are phase locked, which can be inferred from the bounded relative
phase shown in figure 10(iv). Interestingly, at this condition of forcing, the relative
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FIGURE 10. (Colour online) Cycle-averaged value of the acoustic power production
(〈p′q̇′〉t; t= 512 × time period) is plotted for a low forcing frequency ( ff /fn0 = 0.06) and
by varying the amplitude of forcing (Af ) in the model. Both p′ and q̇′ are normalized to
zero mean and unit variance, and their product is averaged over 512 cycles. Amplitude
spectra of p′ and q̇′ and the relative phase between them are shown for two different
Af (indicated as red dots) corresponding to the instants of ‘no reduction’ and ‘maximum
reduction’.

phase between p′ and q̇′ oscillates around π/2 rad, which according to the Rayleigh
criterion will lead to an alternative acoustic driving and damping (figure 10iv). This,
in turn, is manifested as a very low value (= 0.045) of 〈p′q̇′〉t (corresponding to an
average phase difference, 〈1φp′q̇′〉t, of 0.49π) compared to the value (0.63) of 〈p′q̇′〉t
during thermoacoustic instability (figure 10). This observation suggests a plausible
physical mechanism behind the quenching of thermoacoustic instabilities due to
forcing, which mainly happens due the destruction of the positive interaction between
p′ and q̇′ when a high amplitude forcing is applied at the low value of frequency.
In summary, asynchronous quenching, which is a characteristic phenomenon of a
harmonically forced limit cycle oscillator, appears promising in practical and more
complex thermoacoustic systems to suppress the unwanted high amplitude pressure
oscillations.

5. Conclusions
We perform both theoretical and experimental investigation of forced synchronization

in a simple thermoacoustic system, the horizontal Rijke tube. By varying the
forcing frequency and the forcing amplitude, we observe the phenomenon of 1 : 1
synchronization both in the experiments and the model. We further identify different
states of synchronization between the response signal and the forcing signal when the
forcing amplitude and the forcing frequency are individually varied. When the system
is forced with a frequency which is close to its natural frequency, the concurrence
of both synchronous quenching of natural oscillations and resonance amplification of
the forcing signal is observed along with different states of forced synchronization.
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On the other hand, as the forcing frequency ( ff ) is fairly lower than the natural
frequency ( fn0) of the system, a substantial amount of amplitude reduction (almost
80 % of the unforced amplitude in experiments) occurs due to the phenomenon of
asynchronous quenching. Such phenomena are usually disregarded by ascribing the
dynamics to the ‘nonlinear interaction’ between the forcing and the self-sustained
oscillations without going into details. This is the first study to recognize the
maximum reduction in the amplitude is due to the occurrence of asynchronous
quenching. We found that asynchronous quenching is associated with the breaking of
positive coupling between the acoustic pressure and the heat release rate oscillations
in the thermoacoustic system when forced at frequencies considerably lower than their
natural frequency of oscillation. The phenomenon of asynchronous quenching found
its applications in ion-sound instability (Keen & Fletcher 1969) and self-excited
ionization waves (Ohe & Takeda 1974). Quenching of oscillation amplitude in
practical thermoacoustic systems such as gas turbine engines is desirable and the
occurrence of asynchronous quenching can be helpful for such systems. However, the
experimental validity of asynchronous quenching for more complicated thermoacoustic
systems (for example, turbulent combustors) with many degrees of freedom needs
further investigation. Furthermore, similar characteristics of quenching may be
expected in other hydrodynamically self-sustained oscillations as well.
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