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The route from a time-periodic two-dimensional wake flow to a three-dimensional

flow has been investigated by means of linear Floquet stability analysis. The critical

Reynolds number for the onset of three-dimensional instabilities in the wake behind

a flat plate with an angle of attack α in the range from 20◦ to 30◦ with respect

to the free stream was determined. For all three angles considered, in the lower

wavelength range, the two-dimensional base flow first became unstable with respect

to the sub-harmonic mode C. Although the critical Reynolds number decreased with

increasing angle of attack, the spanwise wavelength remained close to two times the

projected plate width. Qualitatively different transition scenarios were obtained for

the three angles of attack with a particularly simple scenario for α = 30◦. C© 2013 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4820815]

I. INTRODUCTION

The flow around bluff bodies has been studied extensively due to its practical importance of

both engineering and theoretical relevance in fluid dynamics. The transition from two- to three-

dimensional flow in the wake is a substantial topic to understand. The flow experiences significant

changes during the transition process. In his experimental studies, Roshko1 first observed the ex-

istence of a transition regime in the wake of bluff bodies and reported distinct irregularities in the

wake velocity fluctuation.

During the previous decades, much attention has been paid to flow past circular and square

cylinders because their geometrical simplicity allowing researchers to perform intensive numerical

and experimental investigations. The experimental investigation of Williamson2 was the first to

demonstrate the existence of two stages in the transition to three-dimensionality of a cylinder wake.

These two stages were identified as mode A and mode B with dominant spanwise wavelength

of approximately three to four diameters and one diameter (Williamson3) for the two modes,

respectively. The experimental observations were confirmed by the numerical linear Floquet stability

analysis of Barkley and Henderson.4

The critical Reynolds numbers for mode A (ReA) and mode B (ReB) have been consistently

reported even with different investigation methods. The study of Williamson3 revealed ReA ≈ 190

and ReB ≈ 230 − 260. Barkley and Henderson4 reported ReA ≈ 188 and ReB ≈ 259. Posdziech and

Grundmann5 found ReA ≈ 190.2 and ReB ≈ 261.

Robichaux et al.6 performed a Floquet stability analysis of the wake of a square cylinder. The

dominant three-dimensional instabilities are similar to those for the circular cylinder with the critical

Reynolds number of ReA ≈ 166 and ReB ≈ 190. The corresponding spanwise wavelengths are 5.22

and 1.2 times the square cylinder height. A further instability mode which has a wavelength between

a)dan.yang@ntnu.no

1070-6631/2013/25(9)/094103/13/$30.00 C©2013 AIP Publishing LLC25, 094103-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

82.34.208.77 On: Wed, 26 Mar 2014 18:22:35



094103-2 Yang et al. Phys. Fluids 25, 094103 (2013)

mode A and mode B occurred at a higher critical Reynolds number of 200 and was labeled as mode

S by Robichaux et al.6 The study of Blackburn and Lopez7 subsequently showed that this mode was

not a subharmonic mode, but was a mode with complex Floquet multipliers.

A new type of instability (called mode C) was found in the wake of a bluff ring, i.e., essentially

a curved circular cylinder (Sheard et al.8). Carmo et al.9 also found a mode C instability in the flow

past two staggered circular cylinders. It was reported that mode C is promoted in asymmetric flow

configurations with a period twice that of the vortex shedding period. The mode C instability was

also found in the flow past an inclined square cylinder (Fitzgerald et al.,10 Sheard et al.,11 Sheard,12

and Yoon et al.13). The above-mentioned studies detected mode C by means of a Floquet stability

analysis. However, in an earlier experimental study Zhang et al.14 surprisingly observed a mode C

by placing a control wire parallel to the axis of a circular cylinder.

In the study of Blackburn and Sheard,15 the relationship between quasi-periodic and subhar-

monic instability modes and how it is influenced by wake symmetry breaking was investigated. In

their square cylinder wake study, the symmetry is broken by a small fixed rotation of the cylinder

about its axis.

Linear Floquet stability analysis is a common technique to calculate the stability of a flow ex-

posed to three-dimensional perturbations. When the disturbance is small, the growth of the instability

is linear, and then the nonlinear terms in the system can be neglected. However, the linear growth can-

not be sustained forever. When the growth becomes nonlinear, we have to depend on experiments or

three-dimensional numerical simulations. In Floquet stability analysis, we superimpose an infinitely

small three-dimensional perturbation onto the two-dimensional base-flow, and measure the temporal

development of the perturbation. Description of this method is found in Barkley and Henderson.4

Although secondary instabilities arise naturally in flow simulations when the full, i.e., nonlinear

and three-dimensional, Navier-Stokes equations are solved, a Floquet stability analysis represents a

simplified approach to identify the critical Reynolds number at which a three-dimensional instability

occurs, together with its wavelength. Successful applications of this method in different wake flows

are found in Blackburn et al.,16 Ryan et al.,17 Kevlahan,18 Carmo et al.,9, 19 Gioria et al.,20 Nazarinia

et al.,21 Jacono et al.,22 Richter et al.,23 and Choi et al.24

The flow past a flat plate oriented perpendicular to the free stream, i.e., with 90◦ angle of attack,

separates from the sharp edges of the plate. In the short review of Thompson et al.,25 the transition

process in the wake of a flat plate normal to the free stream involves two unstable modes. First,

the long wavelength mode becomes unstable at Reynolds number of 105–110, with a wavelength

of approximately 5 − 6d, where d is the height of the plate. Second, the shorter wavelength mode

becomes unstable at Reynolds number of approximately 125, with a wavelength of 2d.

Meneghini et al.26 numerically investigated the flow around a stalled NACA0012 airfoil at angle

of attack 20◦. A subharmonic (mode C) and a quasi-periodic mode were found with wavelengths of

approximately 0.57c and 2.1c (c is the chord length of the airfoil), respectively. The critical Reynolds

numbers based on c were around 456 and 580 for the two modes.

In the present study, we performed a Floquet stability analysis on flow past an inclined flat

plate on the secondary instability leading to three-dimensional flow. The angle of attack range is

chosen to be 20◦ − 30◦, in which it has been shown that the flow experiences a complex transition

process to chaos (Zhang et al.27). In addition, the present authors have recently reported complex

transition phenomena in the wake of an inclined flat plate using direct numerical simulation (DNS)

for attack angles 20◦ and 25◦ (Yang et al.29, 32). Nevertheless, performing DNS in a parametric study

covering a wide range of Reynolds numbers and attack angles is a computationally demanding

task. We have therefore identified Floquet stability analysis as the right tool to further explore the

transition phenomena with detailed insights into the critical Reynolds number and instability mode

wavelengths in the present problem.

II. METHODOLOGY

In the present study, the base flows were obtained by means of two-dimensional numerical

simulation of the incompressible Navier-Stokes equations, written in non-dimensional form as
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∂u

∂t
+ (u · ∇) u = −∇ p +

1

Re
∇2

u, (1)

∇ · u = 0. (2)

The Reynolds number is defined as Re = U0d / ν, where U0 is the free-stream velocity and d is the

plate width. A spectral-element method is used to solve the time-dependent equations. Details of the

computational solver (VIPER) can be found in Sheard et al.30 and Sheard and Ryan.31 To generate

the base flow, Eqs. (1) and (2) are solved in two dimensions.

Based on the Floquet theory, the stability analysis is performed by decomposing the velocity and

pressure field (u, p) into a two-dimensional base flow (U, P) and a three-dimensional disturbance

(u′, p′),

u = U + u
′, (3)

p = P + p′. (4)

Substituting Eqs. (3) and (4) into Eqs. (1) and (2), cancelling the base flow terms and neglecting

products of the perturbation field, yields the linearized Navier-Stokes equations,

∂u
′

∂t
+ (U · ∇) u

′ +
(

u
′ · ∇

)

U = −∇ p′ +
1

Re
∇2

u
′, (5)

∇ · u
′ = 0. (6)

Linear stability analysis is then performed to determine the leading eigenmodes of the stability prob-

lem. The eigenvalues correspond to Floquet multipliers (µ) and eigenvectors yield the mode shape

of the perturbation field. For details, see Sheard et al.11 A Floquet multiplier |µ| > 1 corresponds

to a positive growth rate and an unstable mode. For different types of the multipliers, the insta-

bility modes can be classified as follows: regular modes (mode A and B) have Floquet multipliers

containing only positive real part, subharmonic mode (mode C) has only a negative real part, and

quasi-periodic mode (mode QP) arises from a complex-conjugate pair of multipliers with a non-zero

imaginary part (Sheard et al.11).

The two-dimensional mesh used to discretize the Navier-Stokes equations for an inclined flat

plate is shown in Fig. 1. The domain size and element distribution were kept constant for the

incidence angles investigated, 20◦, 25◦, and 30◦. The computational domain extends 15d upstream,

FIG. 1. The complete computational domain and mesh details in the vicinity of the plate at angle of attack 20◦. The plate is

indicated by a thick line.
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TABLE I. Convergence of global quantities with different order N for Re = 500 and α = 20◦. The global quantities: Strouhal

number St, mean and fluctuating drag coefficients, CD and C ′
D , and mean and fluctuating lift coefficients, CL and C ′

L . The

Floquet multipliers are calculated at λ / d = 0.875.

N St CD CL C ′
D C ′

L |µ|

6 0.5341 0.4531 0.9917 0.0203 0.0945 . . .

8 0.5035 0.4440 0.9708 0.0178 0.1023 . . .

10 0.4959 0.4447 0.9732 0.0173 0.0996 . . .

12 0.4959 0.4463 0.9786 0.0177 0.1006 1.027

14 0.4959 0.4472 0.9823 0.0176 0.1003 1.007

40d downstream, and 15d to each side of the center of the plate. The domain is divided into 589

macroelements. Each element contains N × N interpolation nodes. Free-stream boundary conditions

were enforced at the upstream and lateral boundaries, while a Neumann-type boundary condition

was employed at the outlet. At the plate surface, a no-slip boundary condition was used.

In order to determine the most efficient mesh resolution for the present simulation, a grid

resolution study was performed. The time step adopted in these simulations is 0.002d / U0. The

results given in Table I with varying number of mesh nodes show small differences of the global

quantities for order N ≥ 12, and N = 12 was therefore used for the simulations.

III. RESULTS AND DISCUSSION

In this section, the Floquet multipliers based on the variation of Reynolds number and spanwise

wavelength are presented first for the three angles of attack, followed by the mode characteristics

analysis. The Reynolds number simulated is less than 600 for all angles of attack.

A. Floquet analysis

The main objective of the linear Floquet stability analysis is to determine the critical values of

Reynolds number Re and the corresponding spanwise wavelength λ for which the two-dimensional

wake becomes linearly unstable, i.e., in the region when |µ| > 1. Figure 2 shows the results for the

angle of attack 20◦ case. In Fig. 2(a), as Re increases, the multiplier branches have similar tendencies,

which are consistent with negative real multipliers at short wavelengths, positive real multipliers as

the wavelength is approximately larger than 3.5d, and complex-conjugate multipliers in the middle

of the wavelength range from about d to 3.5d shown in Fig. 2(a).

At this angle of attack, the flow first becomes unstable to a longer wavelength mode, shown

in Fig. 2(a). At Reynolds number of Re ≈ 400, the wake also becomes unstable to a second mode,

with a spanwise wavelength λ / d ≈ 0.7, see Fig. 2(b). As the Re increases, the absolute value of the

maximum multiplier grows and shifts to a slightly higher wavelength, see Fig. 2(b). A number of

stable quasi-periodic Floquet multipliers are obtained over a wavelength range 1.0d − 3.5d.

Figures 2(c) and 2(d) show the results for the simulations at Reynolds numbers 475, 500,

and 525. Here, the wakes become unstable to the quasi-periodic mode. Unlike the negative real

multipliers in Fig. 2(b), the peak multipliers in Fig. 2(d) decrease and shift to larger wavelengths as

the Reynolds number is increased. The instability mode now becomes critical at around Re ≈ 500

with critical spanwise wavelength of λ / d ≈ 0.875.

As the Reynolds number increases to 550, 575, and 600, in Figs. 2(e) and 2(f), a quasi-periodic

mode at wavelength range of 0.5d − 0.7d is pronounced with almost constant spanwise wavelength.

In this Reynolds number range, an instability mode with negative real multipliers appears again at

1.0 � λ / d � 1.5, as found in Figs. 2(a) and 2(c). The peak multipliers increase and shift to larger

wavelengths as Re increases, see Fig. 2(f).

The results for the case of angle of attack 25◦ are presented in Fig. 3. The wake first be-

comes unstable to a short wavelength mode with negative real multipliers, at the wavelength region

λ � 1.2d. The critical Reynolds number for this mode is Re ≈ 266 with a spanwise wavelength of
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FIG. 2. Moduli of the Floquet multipliers |µ| versus spanwise wavelength λ for different Reynolds numbers at α = 20◦.

Filled symbols show negative real Floquet multipliers, open symbols correspond to complex-conjugate Floquet multipliers,

and half-filled symbols represent positive real Floquet multipliers. Images (b), (d), and (f) show the details corresponding to

images (a), (c), and (e), respectively.

λ / d ≈ 0.826, shown in Fig. 3(a). The peak position of the multipliers in this mode keeps constant as

Re increases. The flow is subsequently unstable to a quasi-periodic mode, as Re becomes larger than

280 at the spanwise wavelength of λ / d ≈ 2.697. Figure 3(b) shows the critical Reynolds numbers

for this mode (the open symbols).

At angle of attack 25◦, a subharmonic frequency was excited in the base flow as Re > 305.

Therefore, two vortex shedding cycles were used for the Floquet calculation as Re > 305. In the

simulations of Carmo et al.,9 two vortex shedding periods were used for the Floquet analysis for flow
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FIG. 3. Moduli of the Floquet multipliers |µ| versus spanwise wavelength λ for different Reynolds numbers at α = 25◦.

Filled symbols show negative real Floquet multipliers, open symbols correspond to complex-conjugate Floquet multipliers,

and half-filled symbols represent positive real Floquet multipliers. Images (d) and (f) show the details corresponding to

images (c) and (e), respectively.

past two staggered circular cylinders, since in their simulations the far wake had period twice that of

the vortex shedding. The results in Figs. 3(c) and 3(d) show that the flow is unstable to a mode with

positive real multipliers. This instability mode is located in the same wavelength region as is shown

in Fig. 3(a). The multiplier peaks for the present mode decrease as Re increases. Figure 3(c) shows

that the multiplier peaks for the quasi-periodic mode are decreased as Re increases. Figure 3(c) also

reveals that a number of negative real Floquet multipliers appear between the short wavelength mode

and the quasi-periodic mode.

As Re increases further, as shown in Figs. 3(e) and 3(f), the three different simulations each

contains four distinct peaks of Floquet multipliers, corresponding to four synchronous instability
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FIG. 4. Moduli of the Floquet multipliers |µ| versus spanwise wavelength λ for different Reynolds numbers at α = 30◦.

Filled symbols show negative real Floquet multipliers, open symbols correspond to complex-conjugate Floquet multipliers,

and half-filled symbols represent positive real Floquet multipliers. (a) Re ≤ 225; (b) Re ≥ 225.

modes. In the short wavelength region, λ < 2.0d, the instability modes consist of two modes with

negative real multipliers and one mode with positive real multipliers in between.

Figure 4 shows the results of the Floquet instability analysis for the α = 30◦ angle of attack case.

In these simulations, an instability mode is resolved with negative real multipliers, which occur as the

Reynolds number is larger than around 182, shown in Fig. 4(a). A number of quasi-periodic Floquet

multipliers appear in higher wavelength regions. However, as the Reynolds number increases, the

wake is stabilized in the wavelength region λ � 2.0d, see Fig. 4(b).

B. Mode characteristics

Based on the mode distribution found in Subsection III A, more calculations were performed to

capture the precise critical values for the different modes. The neutral curves of unstable wavelengths

varying with Reynolds number are plotted in Fig. 5 for the three angles of attack. Also included are

the most unstable spanwise wavelengths calculated from the maximum multipliers. These curves

show clearly the variation of the spanwise wavelength as Reynolds number increases.

At α = 20◦, in Fig. 5(a), the most unstable wavelength for the mode with negative real multipliers,

in low Reynolds number range, increases with Re. This mode starts at Re ≈ 400 with λ / d ≈ 0.7

(see Fig. 2(b)), and ends at Re ≈ 505 with λ / d ≈ 0.877. It forms a closed long and narrow unstable

region in the λ / d versus Re map. Another unstable mode with negative real multipliers appears at

Re ≈ 540 with λ / d ≈ 0.976. The most unstable wavelength increases with Re.

At this angle of attack, two quasi-periodic modes are detected at Re ≈ 465 with λ / d ≈ 2.515,

and Re ≈ 553 with λ / d ≈ 0.684, respectively. The most unstable wavelength for the first one

increases with Re, but is nearly constant for the second one. In the three-dimensional calculations

by Yang et al.,32 the spanwise wavelengths found at α = 20◦ were λ / d ≈ 0.67 and λ / d ≈ 0.75 for

Re = 450 and Re = 500, at which organized vortex structures are detected. The former data point

collapses with the present results and is therefore scarcely visible in Fig. 5(a). Meneghini et al.26

investigated flow past a stalled airfoil. A subharmonic mode and a quasi-periodic mode were found

at Re ≈ 456 with λ / d ≈ 0.57, and Re ≈ 580 with λ / d ≈ 2.1, respectively. The present results are

consistent with these earlier findings.

At α = 25◦, in Fig. 5(b), the wake first becomes unstable to a mode with negative real multipliers.

This mode starts at Re ≈ 266 with λ / d ≈ 0.826, see Fig. 3(a), with an almost constant value for

the most unstable wavelength. This mode evolves to a mode with positive real multipliers from Re

≈ 310 as the subharmonic frequency is excited in the base flow. With the increase of Re, this mode

finally ends at Re ≈ 330 with λ / d ≈ 0.845, i.e., only 3% longer than at Re ≈ 266.

As Re increases further three unstable modes appear in sequence at the wavelength range

0 − 2.0d. These modes are two modes with negative real multipliers and one mode with positive
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FIG. 5. Neutral stability curves (curves that pass through points where |µ| = 1) and the most unstable wavelengths (curves

that pass through points with the maximum |µ|), plotted in a map with Reynolds number (x-axis) and non-dimensional

wavelength (y-axis), at angle of attack (a) α = 20◦, (b) α = 25◦, and (c) α = 30◦. Filled triangles represent real and

negative multipliers (Mode C), filled squares represent real and positive multipliers (Mode D), and open circles represent

complex-conjugate multipliers (quasi-periodic mode). Previous results are also plotted, (a) ⊗, Yang et al.;32 ⊕, Meneghini

et al.;26 (b) ⊗, Yang et al.29

real multipliers. They become critical at Re ≈ 340 with λ / d ≈ 1.519, Re ≈ 353 with λ / d ≈ 0.545,

and Re ≈ 363 with λ / d ≈ 0.936, respectively.

The quasi-periodic mode at α = 25◦ appear at Re ≈ 282 with λ / d ≈ 2.697. The most unstable

wavelength first decreases slightly as Re increases. As the subharmonic frequency is excited in the

base flow, the most unstable wavelength starts to increase accompanied with a narrowing of the

unstable region. This mode finally ends at Re ≈ 375 with λ / d ≈ 3.321, see also Fig. 3(b). According

to Blackburn and Lopez,7 two solutions can appear simultaneously in the quasi-periodic bifurcation,

corresponding to a traveling wave and a standing wave in the spanwise direction, both modulated

by the two-dimensional base flow. However, these aspects are not captured with the Floquet linear

analysis, but require a full and nonlinear three-dimensional simulation (Blackburn et al.16).

For α = 25◦, Yang et al.29 observed a wavelength of λ / d ≈ 0.708 at Re = 350. In their

three-dimensional simulations at Re = 400, the three dominant wavelengths corresponding to the

streamwise vortex structures were λ / d ≈ 0.875, 1.770, and 2.749. The outcome of the linear Floquet

analysis is in qualitative agreement with the solution of the full Navier-Stokes equations.

At α = 30◦, one unstable mode with negative real multipliers is found with the most unstable

wavelength decreasing as Re increases, see Fig. 5(c).

A subharmonic mode, which is reported as mode C by Carmo et al.9 and Sheard et al.,11 has a

symmetry representation as

Mode C : ω̃x (x, y, z, t) = −ω̃x (x, y, z, t + T ). (7)
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FIG. 6. Plots of streamwise vorticity ωx for the angle of attack α = 20◦ case. (a) and (b) Mode C, Re = 405, and

λ / d = 0.70, images (a) and (b) are separated by one shedding period, (c) Mode C, Re = 505, and λ / d = 0.88, (d) Mode C,

Re = 540, and λ / d = 0.98, (e) Mode QP, Re = 465, and λ / d = 2.52, (f) Mode QP, Re = 553, and λ / d = 0.68.

The inclination of the flat plate with respect to the incoming flow inevitably breaks the symmetry

of the wake about the centerline and therefore enables sub-harmonic modes with real and negative

multipliers to develop. The wake behind an inclined plate is therefore distinctly different from

the symmetric wakes behind circular cylinders and normal flat plates in which only synchronous

modes (with real and positive multipliers) and quasi-periodic modes (with multipliers in complex

conjugates pairs) develop.

At each of the mode peaks for the three angles of attack in Figs. 2–4, streamwise vorticity

plots are exhibited in order to reveal the spatio-temporal symmetry of each instability mode. These

vorticity plots are shown in Figs. 6–9.

Figure 6 shows the streamwise vorticity for the instability peaks in Fig. 2. The first peak in Fig.

2(a) is revealed to have topology equal to that of mode C in the wake of a stalled airfoil at α = 20◦

case, by Meneghini et al.,26 and the wake of a square cylinder which is inclined at angle of attack

range 7.5◦ − 37.5◦, by Sheard et al.11 This mode is subharmonic with period 2T. Sheard et al.11 has

shown that this mode is consistent with the mode C instability discovered in the wake behind rings

(Sheard et al.8), and also observed behind offset tandem cylinders by Carmo et al.9

Figures 6(a)–6(d) show the subharmonic Floquet mode. The vorticity contours are observed to

alternate between Figs. 6(a) and 6(b) over one shedding period. The streamwise vorticity contours

for quasi-periodic mode with complex multipliers found at α = 20◦ are shown in Figs. 6(e) and 6(f).

Figure 7 shows the streamwise vorticity of unstable modes found at α = 25◦. As with the α

= 20◦ case, the first peak in Fig. 3(a) corresponds to a subharmonic mode, in Fig. 7(a). Due to the

vortex interaction, as Re > 305, a subharmonic frequency was excited in the base flow. Here, vortex
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FIG. 7. Plots of streamwise vorticity ωx for the angle of attack α = 25◦ case. (a) Mode C, Re = 266, and λ / d = 0.83,

(b) Mode C, Re = 340, and λ / d = 1.52, (c) and (d) Mode C, Re = 353, and λ / d = 0.55, image (c) and (d) are separated

by two shedding periods, (e) Mode D, Re = 330, and λ / d = 0.84, (f) Mode D, Re = 363, and λ / d = 0.94, (g) Mode QP,

Re = 282, and λ / d = 2.69697, (h) Mode QP, Re = 375, and λ / d = 3.32.

interaction refers to the tendency of vortices to pair without affecting the symmetry of the wake,

see, e.g., the detailed discussion by Zhang et al.27 The mode C found as Re ≤ 305 transfers to a new

instability mode, called mode D in the present study. This mode possesses positive real multipliers.

The vorticity contours for mode D are shown in Figs. 7(e) and 7(f) and the mode is represented by

filled squares in Fig. 5(b). The mode possesses positive and real Floquet multipliers and exhibits

symmetry properties different from modes A, B, and C. In the present 2D base flow, a subharmonic

frequency is excited due to vortex interaction. The same vortex pattern will therefore appear twice

during the primary shedding period T and the period of the wake is therefore 2T.

The evolution of the vorticity contours within 2T is shown in Fig. 8 for Re = 330 and

λ / d = 0.84. In Fig. 8, we clearly see the vortex interaction from the spanwise vorticity in

the base flow which is represented by solid contour lines. The corresponding Floquet mode is
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FIG. 8. The near wake topology for mode D, at α = 25◦, Re = 330, and λ / d = 0.84. Represented are the base flow vorticity

in spanwise direction (solid blue and green lines) and the streamwise vorticity for mode D (black and white contours). Images

(a)–(d) are separated by half of the shedding period T.

represented by the grayscale background. It is evident that there is no reflectional symmetry or

alternate vorticity with opposite sign between the perturbation fields that are one shedding period

apart. The spanwise vortices are convected downstream and this process repeats itself every second

period.

As Re increases, the peaks in Fig. 3(e) correspond to the modes appearing sequentially. These are

two subharmonics modes, see Figs. 7(b)–7(d), and a mode the same as mode D, shown in Fig. 7(f).

Figures 7(c) and 7(d) show the alternate vorticity contour separated by 2T. The contours exhibit the

topology of the subharmonic mode with vortex interaction in the base flow. Since the subharmonic

frequency is excited in the base flow, the period of the base flow is 2T. The Floquet mode changes

sign every 2T and therefore exhibits the same symmetry as mode C.

Figures 7(g) and 7(h) show the vorticity contours for the quasi-periodic mode at α = 25◦. The

difference between the two mode topologies is the existence of vortex interaction in the second one,

see Fig. 7(h).

The 2D wake flow past an inclined flat plate was investigated in detail by Zhang et al.27 The

results revealed a route of the transition from steady to chaotic flow and summarized the variation

of the Strouhal number and the wake pattern. For α = 25◦, a period-doubling was observed together

with various incommensurate bifurcations which coexisted in the flow system. The present study is

FIG. 9. Plots of streamwise vorticity ωx for the angle of attack α = 30◦ case. (a) and (b) Mode C, Re = 182, and λ / d

= 1.02. Images (a) and (b) are separated by one shedding period T.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

82.34.208.77 On: Wed, 26 Mar 2014 18:22:35



094103-12 Yang et al. Phys. Fluids 25, 094103 (2013)

consistent with their findings. In particular, the vortices which develop in the wake have a tendency

of pairing over twice the primary shedding period.

Figure 9 shows the streamwise vorticity of the most unstable Floquet mode at angle of attack

α = 30◦. This mode displays the same spatio-temporal symmetry consistent with mode C observed

for the other two angles of attack.

IV. CONCLUSIONS AND REMARKS

A Floquet analysis has been performed at three different angles of attack in order to assess in

some detail the three-dimensional stability modes of the wake behind an inclined flat plate. Linear

Floquet stability analysis is a viable tool to explore when a time-periodic two-dimensional wake

behind a bluff body experiences a transition to three-dimensional flow and to identify the spanwise

wavelength of the three-dimensional modes. The method is attractive since a wide range of parameter

values can be considered, but its applicability is limited to linear growth of the disturbances since

nonlinear effects are neglected. In order to capture nonlinear growth, solutions of the full Navier-

Stokes equations are required.

The same three angles of attack were considered here as in our accompanying paper (Yang

et al.28) where results from three-dimensional Navier-Stokes calculations were presented. Inde-

pendent of the angle of attack, however, the time-periodic two-dimensional flow transitions to

three-dimensional flow through a sub-harmonic mode C instability, as summarized in Table II. With

increasing angle of attack, the transition occurs at a lower critical Reynolds number Recr but with an

increasing spanwise wavelength λ / d. To account for the different angle of inclinations, the effective

width of the plate d′ = dsin α felt by the free stream might be a more appropriate length scale than d.

The corresponding Reynolds number Re′
cr at which the transition to three-dimensional flow occurs

still decreases with increasing α. However, the spanwise wavelength turns out to be close to 2.0d′ for

all attack angles. For the particular angle of attack α = 25◦, Yang et al.29 observed that the spanwise

wavelength deduced from their two-point correlation data remained close to 2.0d′ over a fairly wide

range of Reynolds numbers from 300 to 800.

It is noteworthy that this short wavelength mode with negative real Floquet multipliers exists

only in the range from Re = 400 to Re = 505 until it again emerges at Re = 540 for α = 20◦. The

wake flow is thus stable with respect to short wavelength instabilities in the Reynolds number interval

from 505 to 540. However, a quasi-periodic long wavelength mode develops for Reynolds numbers

above 465. A similar bifurcation scenario was observed for α = 25◦. The first short-wavelength

instability can be seen from Re = 266 to 330, followed by a narrow gap between 330 and 340 where

the wake is stable with respect to short-wave disturbances. However, while the unstable wavelength

was increasing with Re for α = 20◦, the most unstable wavelength remained almost constant for

α = 25◦ even though the unstable mode changes from having negative to positive real Floquet

multipliers at Re ≈ 310. This happened because a sub-harmonic frequency was excited such that

the mode C instability turned into a mode D instability. The substantially simplified neutral stability

map for α = 30◦ suggests that several modes have been suppressed at the highest angle of attack

considered here.

Although the validity of the present linear analysis is restricted to the early stages of the transition

from two-dimensional to three-dimensional flows, the present results demonstrate the sensitivity of

the transition scenario on the angle of attack.

TABLE II. Inception of the first instability of the wake behind an inclined plate. Re′ = U0d′ / ν is the effective Reynolds

number based on the projected plate width d′ = dsin α.

Attack angle α Recr Re′
cr λ / d λ / d′

20◦ 400 137 0.700 2.05

25◦ 266 112 0.826 1.95

30◦ 182 91 1.019 2.04
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