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ABSTRACT

Two dimensional time averaged, steady incompressible, adiabatic
turbulent asymmetric near and far non-periodic and periodic wake flow
problems are solved by Galerkin Finite Element Method. 	 A
primitive-variables formulation 	 is adopted using Reynolds-averaged
momentum equations, with standard k-c turbulence model. 	 Finite element
equations are solved by Newton-Raphson technique with relaxation, using
frontal solver. Periodic boundary condition is specified on the periodic
lines of the cascade, and asymptotic boundary condition is specified at the
exit. These boundary conditions are applied without much difficulty which
are not so straight forward in finite volume (FV) method. The results show
good agreement with FV prediction and experimental data.

NOTATION

A Flow region. p : 	 Pressure.
C P : 	 p matrix 	 (m x 1).

Re Reynolds number.
C2 r 	 Turbulent model Constants. Tu : 	 Turbulent intensity at inlet.
C u Reynolds-averaged velocity in x-direction.
A ul Fluctuating velocity tensor.

ch Blade chord.
E :	 c matrix. U : 	 u matrix (n x 1).

GU Function used in FE equations. U Reynolds-averaged velocity tensor.

GV : 	 Function used in FE equations. v Reynolds-averaged velocity in y-direction.
GK : 	 Function used in FE equations. v : 	 v matrix 	 (n x 1).
GE : Function used in FE equations. x : 	 Cartesian co-ordinate.
GP : Function used in FE equations. x Cartesian tensor.
k : 	 Turbulent kinetic energy.
k k matrix. y : 	 Cartesian co-ordinate.

m : n / 2 a : Boundary layer thickness at the trailing edge.
M : 	 Bilinear shape function.
M M matrix (1 x m). = 1 	 for i = j,.l

MT : 	 Transpose of M. sly J} = 0 	 for i s j.
n : Number of nodes in each element. e Turbulent energy dissipation rate.
ne : Number of elements.

m u, 	 v, 	 k and c. 
n

X
Direction cosine of outward normal on the y^ x and y.
boundary. F : 	 Flow boundary.

n Direction sine of outward normal on the K : 	 Constant.
y boundary. µt Turbulent viscosity. 

N Quadratic shape function.
N : 	 N matrix 	 (1 x n). IC

^ Constants.
NT : 	 Transpose of N. e
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Subscripts and superscripts

Element.
Varies from 1 to n. 	 / For tensor 1, 	 2.

^ 	 Varies from 1 to n.	 / For tensor 1, 	 2.
tc	 : 	 Varies from 1 to m. 	 / Turbulent kinetic energy
t 	 Varies from 1 to m.	 / For tensor 1, 	 2.
c	 : Turbulent energy dissipation rate.

INTRODUCTION

The study of the characteristics of the wakes of a
cascade of turbomachinery blades has a wide range of
significant, scientific and engineering applications.
It has direct application to turbomachinery in the
aerodynamic design of turbomachinery components for
better efficiency. With the knowledge of the mean and
turbulence properties of the cascade wake, lift, drag
and noise generated due to the incidence of wake and
turbulence on a rotor can be controlled. The turbulent
flow in the near wake of a streamlined body is quite
complex even in the absence of any flow separation.
This is due to the abrupt change in boundary condition
at the trailing edge as well as a sudden transition
from wall turbulence to free turbulence in the near
wake. The flow in the near wake of a streamlined
two-dimensional body, provides a simple yet critical
test of the generality of turbulence models and
calculation procedure. Almost all the turbulence
models are developed from the extensive data base in
the boundary layer and fully developed free shear
flows, such as wakes and jets. The near wakes being
the region of adjustment between two extreme states,
there offers an independent test of the generality of
turbulence models.

Here wake behind a flat plate of different
roughness on either side and wake behind a cascade of
blades of double circular arc (i.e. both the surfaces
of the blades having different radii of curvature) are
considered for investigation. The mean velocity
profiles of the wake behind a flat plate of different
surface roughness on either side and the cascade wakes
are two-dimensional and asymmetric in general. The
asymmetric nature in the cascade wake is due to the
loading on the blade and different thickness of
boundary layers on the pressure and suction surfaces of
the blades. The asymmetric nature of the wake
disappears after about 1.5 chord downstream from the
trailing of the blade. For most engineering
applications, the Reynolds number, based on the chord
length of the airfoil, is large enough for the boundary
layer near the trailing edge to be considered fully
turbulent. 	 Therefore, the subsequent wake is also
turbulent. 	 In flat plate wake, free stream velocity
affects the nature of the flow. 	 If there is an
incidence, pressure gradient will exist in the free
stream in the main flow direction and would affect the
wake pattern. Here, zero pressure gradient is
considered for the present investigation. The cascade
wake has a periodic distribution of flow quantities
with a period equal to the spacing of the blades.
Here, the neighbouring blades do exert influence on the
wake characteristics of any blade. The static pressure
is considered to have an adverse gradient in the
streamwise direction because the edge velocity in the
cascade wake decreases downstream. Since the cascade
wake is periodic along the lines which are parallel to
the line passing through trailing edges of the cascade
(the trailing edge line), we call it as periodic wake.
The flat plate wake is called as non-periodic wake.

The earliest detailed two-dimensional near wake

study was made by Chevray and Kovasznay (1969), who
made measurements of mean-velocity and turbulence
profiles in the symmetric wake of a thin flat plate.
Their data have been used by a numerous workers to test
the performance of various turbulence models. Several
subsequent experimental investigations have been
carried out e.g. Pot (1979), Andreopoulos and Bradshaw
(1980), Ramaprian et al. (1981), Nakayama (1985), Hah
and Lakshminarayana(1982). Attempts have also been
made to predict these flows, e.g. Patel and Scheuerer
(1982), Hah and Lakshminarayana (1982), Chang et al.
(1986), Tulapurkara et al. (1991).

The availability of cascade near wake data is
limited in the literature. Raj and Lakshminarayana
(1973), Hobbs et al. (1980), more recently Zierke and
Deutsch (1989) have made measurements in cascade wakes.
A very few researchers have done numerical work on
cascade wakes. Hah and Lakshminarayana (1982)
predicted the cascade near wake numerically. They used
different turbulence models and solved by finite
difference method. But their wake exit boundary
condition is not appropriate since the experimental
values supplied by them do not allow the wake to decay
according to trailing edge condition and the turbulence
model used. Afterwards Hah (1984), in one of his
papers, considered asymptotic boundary condition at the
wake exit. Several researchers have calculated the
flow through turbomachinery cascades taking the far
wake flow region into consideration. Among those are
Hah (1984), Hwang et al. (1988), Kirtley and
Lakshminarayana (1988), Agouzoul and Camarero (1988),
Gorski (1988), Kunz and Lakshminarayana (1991), Hobson
and Lakshminarayana (1991), Si-ryavamshi and
Lakshminarayana (1992). But unfortunately according to
the authors' knowledge only Kirtley and Lakshminarayana
(1988), and Suryavamshi and Lakshminarayana (1992) have
shown wake pattern or the wake centerline decay of mean
velocity.

THE PHYSICAL NATURE OF ASYMMETRIC WAKE

The characteristics of an asymmetric wake are best
analysed by dividing the wake flow into two regions,
namely (a) near wake, and (b) far wake.

(a) Near wake
In the first part of this region, the viscous

sublayer on the blades or the flat plate is not
completely mixed with the surrounding inertial
sublayer. The molecular viscosity has a substantial
effect on the flow distribution in the wake centre
region. This region is confined to the trailing edge
of the solid body and the velocity defect is large.

In the latter part of this region, the physical
characteristics of the blade and aerodynamic loading on
the blade have substantial effects on the
characteristics of the wake. For turbulent wake, the
effect of molecular viscosity is negligible. After the
first part of the near wake, the viscous sublayer is
mostly mixed up with the neighbouring Inertial
sublayer. The wake defect is of the same order as the
mean velocity in this region.

(b) Far wake
In this region the wake structure Is almost

symmetric and the physical characteristics and
aerodynamic loading have almost negligible effects on
the development of the wake. The velocity defect is
small and "history effects" (such as blade shape or
loading) have vanished.
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GOVERNING EQUATIONS: TRANSFORMATION TO FINITE ELEMENT
FORM

Some previous calculations by Ramaprian et al.
(1981) demonstrated that one equation turbulence model,
based on the turbulent kinetic energy equation with a
prescribed length scale distribution, failed to predict
the essential features of near wake and grossly
underestimated the far wake. It was also shown that
two-equation k-c (turbulent kinetic energy and its
dissipation rate) turbulence model predicts better.

A numerical analysis of the two dimensional time
averaged, steady incompressible, adiabatic turbulent
flow by Galerkin Finite Element Method for solving
asymmetric near and far non-periodic and periodic wake
flow adopting a primitive-variables formulation is
presented here, using Reynolds-averaged momentum
equations, with standard k-c turbulence model. The k-c
model, proposed by Launder and Spalding (1972), is the
most widely applied two-equation eddy-viscosity model
and is employed in the present study. Eight noded
isoparametric quadrilateral elements are used.
Biquadratic interpolation for velocity, turbulent
kinetic energy and the rate of turbulent energy
dissipation are used whereas bilinear interpolation is
used for pressure. Finite element equations are solved
by Newton-Raphson technique with relaxation, as the
governing equations are non-linear in nature. The sets
of linear equations are solved by frontal solver.

The two dimensional time-averaged Navier-Stokes
equations and the equation of continuity for steady,
incompressible, adiabatic turbulent flows in cartesian
tensor notation can be given in a non-dimensional form
as follows :

aut __ _ ap a 1 au au i
U i ax e ax i + ax e Re ax e + ax l

- ax (1)

au
ax

Here U and p are the local Reynolds-averaged

values of the velocity components in x 1 direction and

pressure respectively. u i is the fluctuating value of

velocity in x direction. Re denotes the Reynolds
i

number. The term (iflfl is called Reynolds stress.

For cascade the reference velocity is absolute
velocity at the cascade inlet and reference length is
the blade chord. For flat plate freestream velocity at
the wake inlet and length of the plate is taken as
reference velocity and reference length respectively.

The main assumption in the turbulent viscosity
model of turbulence is to replace the Reynolds stress
with the following expression :

µaU aut { f S 2
-oral __ Re I axl + axi - 3 S il k (3)

In the above equation µ t denotes the eddy or

turbulent viscosity, non-dimensionalised by the dynamic
viscosity, which can be determined using k-c turbulence
model. The formulation for the eddy viscosity µ t , used

in the standard k-c model, is obtained, based on
Jones-Launder length scale model and Prandtl-Kolmogorov
formula, as

µt= CRe k2/e 	 ... (4)

where C is an empirical constant with a value of 0.09.
µ

The standard k-c turbulence model is satisfied only
for high Reynolds number. The transport equation for
turbulent kinetic energy is given as :

U ak = a rl (µt + 1) dak
1 ax 	 ax ILRe Ì  vk J 

µt au ( 8U j 	aU l l
Re ax Ill ax + ax e 1 - c	 ..(5)

j 

The dissipation rate equation Is given as :

U ac = a 	 [li lt + ll d
X '1 ax l ax l Re It ale 	 J 

+ C e At au ' 	aut + 
aUl I 	 C2£Z	(6)

i k Re ax ax ax, J k

In these equations Pk , C 1 , Cz , and o• are empirical

constants and have the values of 1.0, 1.44, 1.92, and
1.3, respectively.

The discretisation of the governing equations into
finite element form after breaking the tensor notation
is given in Appendix - A.

BOUNDARY CONDITIONS

At the wake inlet i.e. near trailing edge, all the
flow parameters are specified. Velocity components are
taken from the experimental results. For cascade wake,
turbulent kinetic energy is obtained from the
experimental (Zierke and Deutsch, 1989), intensity
profile. Assuming isotropic turbulence we can get

k = 1.5 (Tu) 2 (u)
2

where Tu is local turbulence intensity,

For flat plate wake experimental data (Ramaprian et
al. , 1981) k is available and isotropic assumption is
not necessary.

The rate of turbulent energy dissipation profile as
given by Tulapurkara et al., (1991), is obtained from
the following expression:

c = ( 0.3k) 1.5/ I

where 1 = 0.085 S tanh L0.085 Sj, 	
X=0.41.

y is the distance from the wake centerline. It is
zero on the centerline and positive on either side.
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At y = 0, a is taken average of the nearest points
on either side.

6 is boundary layer thickness at the wake inlet.
Experimental values are smoothed for calculation.

At the freestream edges, for flat plate wake, the
streamwise velocities on either side of the wake
centerline are specified from the wake inlet through
out the streamwise direction as there is no streamwise
pressure gradient. Neumann boundary condition i.e. no
variation normal to the streamwise direction, is
specified for the transverse velocity, turbulent
kinetic energy and its rate of energy dissipation. For
cascade on the periodic line, periodicity condition is
specified. In the finite element code, periodicity is
ensured by assigning the same number to the degrees of
freedom that are to be identified. They are thus taken
as identical by the assembly routine.

At the exit boundary, asymptotic boundary condition
(i.e. second derivatives of the flow parameters along
the stream wise direction vanish) is specified
(Appendix B) . Theoretically, at infinity, the flow
becomes uniform. But from the practical point of view
with the limitation of computer memory and computing
time, the flow domain must be as small as practical.
Generally, one and a half axial chord downstream of the
trailing edge is reasonable.

In incompressible flow, pressure does not appear in
the continuity equation. Pressure is to specified at
least at one point, as its first derivative is present
in the governing equations and second derivative is not
present. So pressure terms do not appear in the
boundary terms of the Galerkin's residuals (Appendix -
A). Hence pressure is specified only at one point. At
the specification point, continuity equation gets lost
and creates an imbalance in mass flow in that region.
This point should be near the outlet boundary where the
adjacent total area of the grids is higher and
variation of the flow parameters is lower (Jackson,
1984). The grid system is shown in Fig. 1.

OUTLINE OF THE METHOD

(a) The governing equations are transformed into
finite element equations, which are non-linear in
nature.

(b) First grid is generated with 51 and 49 stations
in x-direction and y-direction respectively.

(c) Initial values of all the flow parameters are
provided at each node and the boundary nodes are
identified.

(d) Integrations are carried out by Gaussian 5 x 5
points integration.

(e) The non-linear equations are solved by
Newton-Raphson technique with relaxation.

(f) The set of linear equations are solved by
frontal solver.

(g) Now the old values of the flow parameters are
updated. Steps (d) to (f) are repeated till the
convergence.

DIFFICULTIES FACED

Because of intense mixing in the near wake, the
grid should be very fine.

Inlet profile should be smoothed properly otherwise
numerical oscillations will be there causing divergence
at times. This is because all the flow parameters
change very fast in the near wake region.

Centreline portion of the grid should be finer
because of the higher gradient of the flow parameters
in that portion, normal to the streamwise direction.

FIG. 1 GRID SYSTEM FOR PERIODIC
AND NON-PERIODIC WAKE FLOWS
Pressure should be specified as mentioned earlier.

Specification of pressure at the inlet might cause the
system to diverge.

The system of equations are very sensitive as k and
c varying considerably over a very small distance. So
some incorrect initial value or incorrect procedure to
attack the problem leads to chaos.

The absence of the pressure term in the continuity
equation causes the appearance of zero in the global
matrix even after assembling the elemental matrices.
So pivoting is necessary.

It takes a lot of memory and CPU time to solve the
linear equations by band solver. Frontal solver is
better than this in this respect though band solver is
easier to program. But one has to be careful, because
full pivoting of the assembled matrix leads to unwanted
result, because of the elements of the assembled
matrix vary significantly in magnitude. Scaling also
does not help much sometimes. It is experienced that
proper scaling and only row pivotisation yield good
results.

There are two ways of solving the five governing
equations. In the first method, all the five equations
are solved simultaneously. In the second method, the
momentum and continuity equations are solved together
and then the turbulence equations (k-c) are solved.
This procedure is repeated till the convergence is
attained. The latter method is more stable and
requires lesser computer memory and hence adopted for
the present investigation.

RESULTS AND DISCUSSION

The asymmetric wake is generated (Ramaprian et al.,
1981) by roughening the upper surface of a flat plate
of length 1.8 m. The boundary layer thickness on the
upper and lower surfaces are 41 mm and 36 mm
respectively at the trailing edge (TE). The TE
freestream velocity is 19.53 m/s. The experimental
data indicates that the freestream velocity at all
stations starting from 12.7 mm from TE is nearly 22.25
m/s. In order to avoid steep velocity gradient 22.25
m/s is taken everywhere. The reference velocity and
length taken for calculations are 22.25 m/s and 1.8 m
respectively. The Reynolds number based on this
velocity and the length of the plate is 2.7 x 10 6 . In
the downstream of the TE, 600 mm in streamwise
direction and 80 mm normal to the streamwise direction
on either side of the plate are considered to form the
flow region for the present computation. The
calculated results for the asymmetric wake, are shown
along with experimental data and finite volume result
(Tulapurkara et al., 1991) in Fig.2 & 3. It is seen
that the agreement between calculated and experimental
profiles is highly satisfactory in the near as well as
far wake regions. Turbulent kinetic energy profiles
are under predicted compared to the experimental data
in the far wake (Fig. 3c). One thing is noted that, FV
and FE calculations are in good agreement. So the
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FIG. 3 TURBULENT NON-PERIODIC
ASYMMETRIC WAKE : TURBULENT
KINETIC ENERGY
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FIG. 2 TURBULENT NON-PERIODIC
ASYMMETRIC WAKE : STREAMWISE
VELOCITY PROFILE

disagreement between the calculated results and
experimental data, in the case of turbulent kinetic
energy, is not due to the inaccuracy of the code but
due to the Inherent incompleteness of the turbulence
model Itself. Comparison of wake centerline velocity
is shown in Fig. 4, which shows very good agreement.
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FIG. 4 WAKE CENTERLINE VELOCITY
FOR NON-PERIODIC WAKE
Periodic asymmetric wakes are generated (Zierke and

Deutsch, 1989) from a cascade of blades having the
shape of a circular arc on both the surfaces. The
blade chord length is 228.6 mm, blade spacing is 106.8
mm, maximum thickness 12.5 mm, stagger angle is 20.5,
inlet and outlet blade angles are 53.0 * and -12.0 * with
the normal to the TE line of the cascade respectively.
Anti-clockwise direction Is chosen as positive. Radii
of curvature of the suction surface, pressure surface
and camberline of the blades are 189.1 mm, 212.8 mm and
246.8 mm respectively. 	 Incidence angle is -8.5 ° and
absolute inlet velocity is 33.28 m/s. 	 Outlet flow
angle is -0.6 0 with the normal to the TE line of the
cascade. Reynolds number based on chord length and
absolute Inlet velocity Is about 5.07 x 10 4 . Results
are shown in the Fig. 5 & 6. At the far downstream,
the asymmetry reduced to a great extent, as the flow
tries to forget Its past history. The near wake
velocity profiles and turbulent kinetic energy are

-5.0 r
0.00
	

0.75
	

1.50
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FIG. 3 (b)
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FIG. 6 TURBULENT PERIODIC ASYMMETRIC
WAKE : TURBULENT KINETIC ENERGY
predicted satisfactorily. But the far wake freestream
velocities are overpredicted (7.67.). The predicted
wake centerline velocity is compared in the Fig. 7.
The agreement for the wake centerline is fine but the
edge velocity is over predicted. This may be due to
the adverse pressure gradient the correction for which
is not taken into account in the current model.
Turbulent kinetic energy prediction in the near wake is
also in good agreement.

CONCLUSIONS

Two 	 dimensional 	 time	 averaged, 	 steady
incompressible, adiabatic turbulent asymmetric near and
far non-periodic and periodic wake flow problems are
solved by Galerkin Finite Element Method. Though the
present code is applied to wake flow in this paper this
can be easily extended to full cascade flow.

The advantage of finite element method is that one
can take any type of structured or unstructured grid
and boundary condition can be incorporated easily
compared to finite volume or finite difference method.

0.0 
0.0	 0.5	 1.0 	 1.5	 2.0

x/ch

FIG. 7 WAKE CENTERLINE VELOCITY
FOR PERIODIC WAKE

Though near wake is predicted well far wake
prediction is not so well compared to the near wake.
For periodic wake though wake centerline velocity is in
good agreement, though edge velocity is overpredicted
by 7-8% . Near wake turbulent kinetic energy is
predicted reasonably well.

Most interesting feature is finite volume
calculations are in extremely good agreement with the
present method. So the under or over prediction is not
due to the inaccuracy of the code but due to the
inherent incompleteness of the turbulence model itself.

Curvature correction and pressure gradient
correction might Improve the prediction.

Some more research is necessary to acquire the
required knowledge for specifying the inlet turbulent
kinetic energy dissipation rate.
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APPENDIX - A

DISCRETISATION OF THE GOVERNING EQUATIONS INTO FINITE
ELEMENT FORM

Now breaking tensor notation i.e. putting i = 1 &
2 and j = 1 & 2, and putting U 1 = u, U2= v, x 1 = x, and

x2= y, five governing equations are obtained. So the

Galerkin's elemental resic}uals arpe) also e9f fi, eve) type)S,
(Segerlind, 1984) say GU', GV ,GK ,GE ,GP .
Shape function for velocity components, turbulence
kinetic energy and its dissipation rate is denoted by
N 1 , where as for pressure it is denoted by M k. In

matrix form N and N respectively. So

= NO (e) = N'^(e);
	 ...(Al)

where 0 = u, v, k, c and p; 4 = u, V. k, E and p;
i = 1 to n and (subscript) k = 1 to m, where n is the
number of node in the eth element and m = n/2 or =
n/2. (In this case n = 8 and m = 4).

It was shown by Kim and Chen (1988) that linear
element is Inferior to the quadratic element. Hence
only quadratic element is considered in the present
study.

Now the residuals for the governing equations can
be written as follows:

Residuals = JA

NT [LHS - RHS]dA 	 ...(A2)

 L

where LHS and RHS are left and right hand sides of the
governing equation respectively. and A is elemental
area.

Now applying Green's theorem we get,

NT f 8rp (C	 11 P̂  + 1J 

( JJ] dA =A 	ILL 	 l

8NT ^C.e
:; + l (8N dA

J l	 J1A

µ	 ( 	 1
+ Ni [CF ( P + i

'

1 I a" I n dr 	 ... (A3)
l	 0	 ll1 Wi

r
where m= u, v, k and c 	 ,p=xand y; o =o= 1, C=

u	 v

1 or 2.
n is the cosine of the angle between gyp-direction and

the outward normal to the element boundary r. 	 The
cyclic integral term is called elemental boundary term.

The cyclic integral terms can be separated into two
components, like. 	 One component is integrated over
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rbc , the side of element over which boundary condition

is specified, and the other component is integrated
over r , the side of element over which boundary

condition is not specified. The second one leads to
the Interelement requirements which must be satisfied
before Galerkin's residual is zero. Again if boundary
conditions are of 1) Neumann, ii) periodic, iii)
asymptotic iv) and Dirichlet type for u, v, k and c ,
we can take these boundary terms as zero in the element
residual equations for simplicity since they contribute
nothing in the global equations, after boundary
conditions are incorporated. The boundary conditions
for the flow regions under consideration are of the
above four types only.

Now after a little manipulation (Al-A3) give,

GU(e) 	 _ NT
A I(NU(e))L 	 J ax(Nu('))1

+	 (N 	 (e))1
_(Nu (e))

1

+	 (Np^x(e))1 dA

+
	

2(µt+ 1) 	 (e) _ 2 Nk (e) 1 dA
ax I 	 Re 	 ax(Nu ) 	 3 (	 )J

A	
[

GK(e) 	

=

NT [(Nu(-))
A  ax(

Nk(e) )
J

+ 	 (Nv(e)) Oy(Nk(e)11 dA

+ 	 (F
...

Re 	 I
µt
e

+ 	 1l( a(e)
II	 ax(

dAaNT
ax

+ 	 a(e)
8y(

aNT
ay

l k Jl
A

- Nr L Re
{2(Rx(Nu(e)11z+1J

l-
l

(Nu(e)) 	 +
1

a
ax

(Nv (e)11 z

1J
A

+ 2(ay(NV(e)llzl] dA + J NT [(tCe))]  dA 	 ...(A6)
l	 /J f 

GE(e) 	 _ NT I(Nu(e))J 7x(NE(e))1

J A

L

+ 	 aNr 	 (µt+	 a (No (e)l +
)

L (Nv(e); ((e) 
a (NE(e))l dA

ay [ 	

1)

Re	 ( ay 	 J	 ), 
dA ...(A4) 	 + 	 Nv 	

) 
äy

A

GV (e) 	= NT [ (Nu(e)) ax(Nv(e))1
ay(Nv(e)

A
+ (Nv(e)1

1 1

+ 6y(Np(e)11 dA

^.N 	 2( At

+	 y

	

1) a(
 (e)) - 3 (Nk(e)) 	 dA

+

	

	 [ ReJ

A

aNr 
f
L

(µ t+ 1) ( a 	 + a_(NV) ll1J dA ...(A5)
+	 ax I Re 	 I 8y

— (Nu ) ax

A 	 t

+ 	 ( µt + 1I( a(e)aNT + a N (e) aNT dA
Re I v 	 I 8x( 	 ax 	 ay( 	 8y

III
A

C
T 	(NE(e)i

- 	r µL 1 (a	 (e) lz
 N 	 i (Nk (e)) IL Re l

2 ax(Nu ^ 1
A

2

	
2 1+ (5y(Nu (e)1 + ax (Nv ( e ) )l + 2l

a (Nv
1(e)1 } dA

1 	J	 lay 	 1J

(NE (e) ) 2

+	 NT Cz 	 (e)1 dA
	 ...(A7)

(Nk
A

GP 	 _ NT

A
ILL 	1
	 1 1

(NU(e)) + 43 (Nv(1e)1 dA 	 ...(A8)

The eddy viscosity or the turbulent viscosity is given
by
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(Nk 	
2

	µ = C Re l ce) 	
...(A9)

	t 	
µ 	

(NE )

Here it may be noted that (A4)-(A7) are not perfect
equations as boundary terms are removed, but when these
equations are assembled to form global equations
boundary conditions should be applied to these
equations to get correct global equations.

Now (A4)-(A8) are assembled to form global
equations and solved by Newton-Raphson method with
relaxation as they are non-linear in nature.

APPENDIX - B

ASYMPTOTIC BOUNDARY CONDITION

	

Asymptotic 	 boundary 	 condition means 	 second
derivatives of all the dependent variables with respect
to stream-wise direction are zero. Outlet boundary is
chosen such that it is parallel to y-axis, so n = 0 on

y
that boundary. Now our objective is to remove boundary
term from the Galerkin residuals by applying asymptotic
condition. As n is zero on the boundary we should

y
replace

	a 2 a 2	a2
ax2 

in terms of 	
2 ' ay ax

Y
and other quantities using the condition. Asymptotic
boundary condition is applied only at far wake.

If x and y be the cartesian coordinate system and s
and n be streamwise and cross streamwise direction and
a be the angle between the streamwise direction and the
x-direction , then we can write

ax
as = cosa , ax = - sina , ay = sina , ay_ = cosa

and tana = v/u.
Now

ao = am ax + ao ay 	
where m = u, v,k & cas ax as ay as

operator a = ax a + ay a ; and a = a a

	

as as 8x as 8y 	 as2 8s as

So

as	 ax
=cos ta X̂̂  + 2sina cosa axay + sin 2a ^?^

Y	 ay

since a is a function of u and v only.

2
Now	 am=0a

as2

ax0 	
-
 [tana aXay + tan 2a a 0 	...

Y J

2

Now the value of a 	 is subtituted in (A4)-(A7)
ax e

and transformed to finite element form. 	 Now the
boundary terms will not be there in the Galerkin
residuals and can simply be added to the form assembly
matrix.
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