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Abstract: In this work, we provide a cost comparison of micro-photosynthetic power cells (µPSC)
with the well-established photovoltaic (PV) cells for ultra-low power and low power applications.
We also suggest avenues for the performance improvement of µPSC. To perform cost comparison, we
considered two case studies, which are development of energy systems for: (i) A typical mobile-phone
battery charging (low power application) and (ii) powering a humidity sensor (ultra-low power
application). For both the cases, we have elucidated the steps in designing energy systems based on
PV and µPSC technologies. Based on the design, we have considered the components needed and
their costs to obtain total cost for developing energy systems using both PV and µPSC technologies.
Currently, µPSCs based energy systems are costlier compared to their PV counterparts. We have
provided the avenues for improving µPSC performance, niche application areas, and aspects in which
µPSCs are comparable to PV cells. With a huge potential to develop low-cost and high performing
technologies, this emerging technology can share the demand on PV technologies for ultra-low
power applications.

Keywords: IoT; ultra-low power; low power; bio photovoltaics; energy harvesting; renewable energy;
sustainable energy; power electronics; energy harvesting circuit design

1. Introduction

With the advent of Internet of Things (IoT), wireless sensors and their networks became more
prevalent [1]. Importance of self-sustained sensors that can function using the energy harvested from
the renewable energy resources is ubiquitous for IoT applications [2]. Micro photosynthetic power cell
(µPSC) is one of such energy harvesting technologies that has been gaining interest in recent years.
µ-PSCs were first developed by the Chiao M et al and Siu, C.P.B et al. [3,4], as a potential power source
for low power and ultra-low power applications. The typical µPSC can generate an open circuit voltage
(OCV) in the range of 100–900 mV and current density in the order of 100s of µA/cm2. Typical power
produced by a µPSC varies in the range of 10–100 mW [3,5–9]. Power density values of µPSC have
witnessed an increase of approximately two orders of magnitude since their origin [10]. Figure 1 shows
the potential applications of µPSCs for IoT sensors.
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Figure 1. Micro-photosynthetic power cell powering the Internet of Things (IoT) sensors. 

The improvement in the performance of µPSC technology is promising and several studies have 
already demonstrated the use of µPSC technology for several practical applications [2,11,12]. 
Currently, the research focus is on the development of lower cost and better performing µPSCs. A 
very recent article by Tanneru [10] provides a brief history and state of the art of µPSC technology. 
Mathematical modeling as a tool to understand the performance improvement possibilities by design 
optimization has also been attempted [13–16]. 

In this work, we are attempting to compare the µPSC technology with the PV to understand 
where the former stands with respect to the later in terms of cost and performance. We have 
considered two case studies to perform cost analysis of µPSC technology with respect to PV 
technology. We have organized this paper as follows. Section 2 introduces PV technology and µPSCs 
working by considering a dual chamber µPSC as developed by [6,7]. Section 3 presents the case 
studies: (i) development of an energy system for mobile-phone battery charging (low power 
application) and (ii) development of an energy system for humidity sensor (ultra-low power 
application). Section 4 provides a discussion on cost of µPSC technology and avenues for 
performance enhancement. In Section 5, we have summarized the results and provided the 
conclusions. 

2. Photovoltaic Cells (PV) and µPSC 

2.1. Photovoltaic Cells 

PV are one of the important and most widely used solar energy harvesting devices. The solar 
panels of different ratings (low, high, and very high) are available in the market for all possible 
applications. To understand the basics on working of PV, we redirect the reader to the following 
excellent resources [17,18]. 

2.2. Micro Photosynthetic Power Cells 

µPSC is one of the emerging technologies for the low and ultra-low power energy harvesting 
applications. One niche advantage of µPSC is their ability to generate power both in light and dark 
conditions. Researchers [3,6,7] have proposed several designs of µPSCs. In this work, we have 
considered the dual chamber µPSC developed by Shaparnia et al. [6] and Arivind et al. [7].  
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Figure 1. Micro-photosynthetic power cell powering the Internet of Things (IoT) sensors.

The improvement in the performance of µPSC technology is promising and several studies have
already demonstrated the use of µPSC technology for several practical applications [2,11,12]. Currently,
the research focus is on the development of lower cost and better performing µPSCs. A very recent
article by Tanneru [10] provides a brief history and state of the art of µPSC technology. Mathematical
modeling as a tool to understand the performance improvement possibilities by design optimization
has also been attempted [13–16].

In this work, we are attempting to compare the µPSC technology with the PV to understand
where the former stands with respect to the later in terms of cost and performance. We have considered
two case studies to perform cost analysis of µPSC technology with respect to PV technology. We have
organized this paper as follows. Section 2 introduces PV technology and µPSCs working by considering
a dual chamber µPSC as developed by [6,7]. Section 3 presents the case studies: (i) development of an
energy system for mobile-phone battery charging (low power application) and (ii) development of an
energy system for humidity sensor (ultra-low power application). Section 4 provides a discussion on
cost of µPSC technology and avenues for performance enhancement. In Section 5, we have summarized
the results and provided the conclusions.

2. Photovoltaic Cells (PV) and µPSC

2.1. Photovoltaic Cells

PV are one of the important and most widely used solar energy harvesting devices. The solar
panels of different ratings (low, high, and very high) are available in the market for all possible
applications. To understand the basics on working of PV, we redirect the reader to the following
excellent resources [17,18].

2.2. Micro Photosynthetic Power Cells

µPSC is one of the emerging technologies for the low and ultra-low power energy harvesting
applications. One niche advantage of µPSC is their ability to generate power both in light and dark
conditions. Researchers [3,6,7] have proposed several designs of µPSCs. In this work, we have
considered the dual chamber µPSC developed by Shaparnia et al. [6] and Arivind et al. [7].
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A µPSC consists of the anode and the cathode chambers, and membrane electrode assembly (MEA)
sandwiched between them. The anode chamber consists of photosynthetic microorganisms such as
cyanobacteria blue-green algae, which releases electrons during both photosynthesis and respiration
processes. An electron mediator in the anode chamber diffuses into algae, siphons the electrons and
protons from electron transport chains of photosynthesis respiration, and transfers them to the anode
surface through the reduction and oxidation processes. The released electrons travel through an
external resistance generating electricity from the µ-PSC. The membrane electrode assembly (MEA)
separates the anode and cathode chambers. Furthermore, the proton exchange membrane in MEA
blocks the electrons and only allows protons to pass through it. At the cathode surface, the catholyte
accepts the electrons and forms reduced catholyte. The diffused protons across the proton exchange
membrane combine with oxygen and electrons to regenerate catholyte and release water in the cathode
chamber. The chemical equations of photosynthesis and respiration are given below.

Photosynthesis

6CO2 + 6H2O
Light
→ C6H12O6 + 6O2 (1)

Respiration

C6H12O6 + 6O2
Dark
→ 6CO2 + 6H2O (2)

The working principle of the µPSC is presented in the Figure 2.
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For details on fabrication of the chip readers can refer to the publications, Shaparnia et al. [6] and
Ramanan et al. [7].
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In 1985, Tanaka et al. [19] utilized Cyanobacterium Anabaena as the photosynthetic agent and
HNQ (2-hydroxy-l,4-naphthoquinone) as the redox mediator. In 1993, T. Yagishita et al. [20] performed
tests with various microorganisms in different PSCs in which they used 2-hydroxy-1,4-naphthoquinone
(HNQ) as the mediator. An open circuit voltage of 800 mV and a current density of 320 µA/cm2 were
reported. Conversion efficiencies were reported to vary from 0.2% to 3.3% when PSCs were tested in
the cycles of dark and light respectively [20]. From 1997 to 1999, T. Yagishita et al. [20,21] studied the
influence of the concentration of the micro-organism, the effect of light intensity and glucose addition
on the performance of PSCs.

In one of the recent publications in 2006, Chiao et al. [3] used bulk silicon micromachining
technology for fabricating the compartments of the µPSC. Two different micro-organisms—baker’s
yeast (Saccharomyces Cerevisiae) and blue-green algae (Phylum Cyanophyta) were used. The cell
which has blue-green algae was named as a photosynthetic power cell, whereas the cell with baker’s
yeast was named a microbial fuel cell considering the catabolic nature of the yeast cells. Power densities
of 2.3 nW/cm2 and 0.04 nW/cm2 were reported when a load of 10 Ω was applied to photosynthetic and
microbial fuel cells respectively. The OCV for both cells were reported to be in the range of 300–400 mV.
B Lam et al. claims that a maximum current density of 9.6 mA/cm2 can be obtained from a PSC, under
an irradiation of 2000 µmol m−2s−1 [22]. However, a current density of only 1 µA/cm2 was obtained
experimentally. OCVs of 470 and 330 mV were reported for µPSC under the light and dark conditions,
respectively. In another work recently [23], authors had extracted photosystem-I from the spinach
cells and high dense photosystem-I of spinach cells were placed on the electrode surface to increase
the photocurrent generation in the PSC. In the presence of appropriate electron mediators, rinsing
the extracted photosystem-I of spinach cells with the water, the PSC produced a current density of
100 nA/cm2. In work of Mirvakili et al. [24] photosynthetic protein complexes were deposited by
electro spraying reaction centers of Rhodobacter sphaeroides on to graphite electrodes to obtain a
current density of 7 µA/cm2. Charge separation with the photosystem and reaction center complexes
of photosynthetic plants and photosynthetic microorganisms have power conversion efficiency of
approximately 18% and 12%, respectively [24].

Among the photosynthetic power cells, the highest performing µPSC was reported by Shahparnia
et al. [6]. Under the light irradiance of 15 µmol m−2s−1 (lux-652) [25], with the active electrode surface
area of 4.84 cm2, the author reported an open circuit voltage (OCV) of 0.85 V, a short circuit current
(SSC) of 0.8 mA, which corresponds to 17.56 V/m2 of OCV and 16.5 mA/m2 of SSC respectively. At this
operating condition, a maximum power density of 362 mW/m2 is reported at 850 Ω. These performance
metrics of the µPSC are under consideration.

Performance Parameters of the Micro-Photosynthetic Power Cells µPSC

The electrical performance of the µPSC is expressed usually based on their Open Circuit Voltage
(OCV), Current Density (CD), Power Density (PD) and Voltage–Current (V-I) characteristics.

Open Circuit Voltage (OCV): OCV is the voltage of the µ-PSC at zero current. The standard
reduction potential of the anolyte and catholyte contribute to the OCV. Furthermore, photosynthetic
microorganisms contribute to the OCV of the cell. Theoretically, OCV should be the Nernst reversible
voltage, however, because of various losses, such as ohmic losses, concentration losses, and activation
losses, the OCV is lesser. For more details on the OCV, readers are directed to References [10,13].
In Reference [3] OCV was 330 mV after 4 min of the operating time, and when it was subjected to a
direct light intensity of 2000 µmole photons m−2s−1, OCV sharply increased to 470 mV and stabilized
within a short period of 2 min.
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Current Density (CD): CD is the current generated due to the flow of electrons through the external
resistor with respect to the electrode surface area. Ideally, the current should be high for less electrode
surface area. The current density can be represented by the equation as

CD =
iµPSC

AµPSC
(3)

where iµPSC–current generated by the µPSC and AµPSC is the active electrode surface area of the µPSC.
Chiao et al. [3] estimates the maximum current that can be produced by the micro level

electrochemical cell with simple first order model. Electrons generated during the photosynthesis and
respiration process contribute to the electricity. However, not all the electrons produced will reach
the electrode surface area. Under light illumination of 2000 µmole m−2s−1, a theoretically maximum
current density of 9.6 mA/cm2 can only be produced [22]. However, practically no µPSC has generated
up to this value. The main reasons for the losses in the current generations are (i) low diffusion rate of
electron carrying mediators and (ii) Savaging the electrons by oxygen from photosystem-I and reduced
electron mediator.

By introducing the enzymatic catalysts into the anodic chamber, the electron mediators will help
produce more electricity from the cell. Thus, to increase the electron capture, electron mediators are
essential to achieve higher current generation from the photosynthetic power cell.

Power Density (PD): Power density is the product of voltage and current produced by the µPSC
normalized to the surface area of the cell. The power output is normalized to the projected electrode
surface area. Thus, the power density is calculated on the basis of the electrode surface area

P =
V2

A×Rext
(4)

V—Voltage of the cell in Volts
A—Area of the electrode surface in m2

Rext—External resistance connected to the ends of electrodes.
V-I Characteristics: The voltage-current (V-I) characteristics is essential to understand the behavior

of any power-generating device. This data will help in designing suitable and efficient power converters
for any power generating device. V-I characteristics are obtained by connecting the load to µPSC and
varying it continually from OCV to short circuit current. Shaparnia et al. [7] reported the OCV of 0.87 V
and short circuit current of approximately 0.82 mA, by varying the load from 1 Ω to 10 kΩ for V-I
characteristics. It generated a peak power of 179.36 µW of power, which corresponds to 370.58 mW/m2

when connected to a load of 850 Ω under the irradiance of 15 µmol m−2s−1 (which is 652 lux), and
electrode surface area was 4.84 cm2. The author of Reference [7] studied the effect of different light
irradiances on the VI characteristics and no considerable effects were observed.

3. Cost Analysis on Micro-Photosynthetic Power Cells (µPSC) and Photovoltaic (PV)
Technologies

In this section, we present two case studies to perform cost analysis of µPSC technology in
comparison with PV. For each case study, we provide the problem under consideration, design an
energy system, identify the components needed, and calculate the total cost needed for developing the
energy system. We followed the same approach for both PV and µPSC technologies.

3.1. Case Study 1: Design of Energy System for Battery Charging

3.1.1. Design of the Battery Charging Using Photovoltaic (PV) Technology

A typical commercially available mobile phone battery with a capacity of 1100 mAh and a nominal
voltage of 3.7 V [26] has been selected for the charging application by low power solar panel. We have
chosen a solar panel of 0.1 W rating, since this falls under the comparable range of µPSCs power
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rating. Suitable DC/DC boost converter has been selected to charge the battery. The size of the solar
panel is 60 mm × 30 mm, therefore the area of the solar panel is 18 cm2. The solar panel has voltage
rating (Vmp) of 2 V and the current rating (Imp) of 50 mA for the area of 18 cm2 which corresponds to
11.1 V/m2 of voltage rating and 277.7 mA/m2 of current rating respectively [27]. To reduce the time
required for the battery charging, current rating of the PV panels is increased to 100 mA by connecting
two PV panels in parallel. A MPPT control unit is installed to extract the maximum power. Maximum
power extracted from this unit is fed to the DC/DC boost converter, which increases the output voltage
of the PV panel to the desired voltage. In addition, DC/DC boost converter also regulates the output
voltage. As the nominal voltage of the battery under consideration is 3.7 V, a 10% higher voltage i.e.,
4 V has to be fed to the battery for charging. In any power converter, the input power will always be
equal to output power at ideal conditions. Neglecting all the losses in the intermittent stages of the
conversion, output current of the boost converter will reduce to 50 mA and the voltage will increase to
4 V. Figure 3 shows the schematics of the battery charging design-using PV cells.

It is important to understand that the time required for charging the battery to the full capacity to
understand the performance of the energy system developed.

Full battery charge time (hr) = battery capacity/Charging Current = 1100 mAh/50 mA = 22 h.
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Therefore, with the designed energy system, it takes 22 h to charge the mobile phone battery
completely, considered in this study. A solar insolation of 800–1000 W/m2 is assumed for all the time
on PV cells.

An approximate cost incurred for the designing of the complete charging system is shown in the
Table 1.

Table 1. Approximate cost of the complete photovoltaic (PV) technology for a mobile battery charging.

No Items Cost ($)

1 Solar Panel (2 panels) 4
2 MPPT Control Unit 10
3 DC/DC Boost Converter 50
4 Mobile battery 17
5 Miscellaneous 5

Total $86
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The total cost of energy system based on PV technology is $86 and it takes 22 h of time for complete
charging. The specifications of the PV panel [27] selected for the battery charging are provided in
Table 2. The efficiency is 17–19% under solar irradiation of 1000 W/m2 [27] and with air mass of 1.5 [28].
For more details on the air mass authors recommend to read the article [28].

Table 2. Specification of the typical Solar Panel.

No. Parameters Value

1 Max Power 0.1 W
2 Size 60 × 30 mm
3 Current Rating (Imp) 50 mA
4 Short Circuit current 60 mA
5 Material Monocrystalline Silicon
6 Number of cells 4
7 Voltage Rating (Vmp) 2 V
8 Open Circuit Voltage 2.4 V
9 Solar cell efficiency 17–19%

3.1.2. Design of Battery Charging Using Micro-Photosynthetic Power Cells (µ-PSC)

Figure 4 shows the Voltage–Current (VI) and Power-Voltage (P-V) characteristics of µPSC [7] under
consideration. Maximum power produced by the single µPSC is 0.18 mW. This rating corresponds
to the µPSC at an irradiance of 15 µmol m−2s−1 (which is-652 lux) [25] and surface area of 4.84 cm2.
For more details on the effects of the light irradiance, authors recommend to read Reference [7]. From
the P-V and V-I curve, rating of the µPSC is calculated. From the V-I and P-V characteristics, it is
evident that the voltage rating of the µPSC is 0.4 V and the current rating is 0.45 mA [7] under the light
irradiances of 15 µmol m−2s−1 at the load of 850 Ω.
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micro-photosynthetic power cells (µPSC).

Currently, µ-PSCs have low power densities in comparison to PV cells. Current rating of the
single µPSC is 0.45 mA, which is two orders of magnitude less than PV cells. To compare the cost of PV
and µPSC technologies, we have first selected the PV panels with similar range of rating of µPSCs, and
second, we placed a constraint of same charging time required for full capacity of battery (22 h) while
designing the energy system based on µPSCs. With this constraint, the problem of designing the µPSC
energy system manifests into the calculation of number of µPSCs required to charge the battery under
consideration for full capacity in the same time as the PV technology. We have used other components,
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such as Maximum Power Point Tracking (MPPT) control unit and DC/DC boost power converter,
demonstrated earlier in PV system design. For the chosen power converter, the minimum input
voltage is 0.3 V [29]. In practical situations, when µ-PSC are connected in series, the voltage increases,
and there will be resistive losses and connection losses. Since the voltage input to the DC/DC power
converter is to be higher than 0.3 V, two PSCs are connected in series, to increase the voltage rating.
The new voltage rating will now be 0.8 V and current will be 0.45 mA. We called this configuration as
the one µ-PSC panel. It means the one µ-PSC panel has two µ-PSC cells connected in series connection.
The typical µ-PSC panel, where two cells are connected in series is shown in the Figure 5.

Energies 2019, 12, x FOR PEER REVIEW 8 of 14 

 

connected in series connection. The typical µ-PSC panel, where two cells are connected in series is 
shown in the Figure 5. 

 
Figure 5. Micro-photosynthetic power cell (µ-PSC) panel. 

As a single µ-PSC panel has a rating of 0.8 V and 0.45 mA, we need to calculate the number of 
µ-PSC panels required to charge the battery of 3.7 V, which has the capacity of 1100 mAh in 22 h 
(same as the PV design), as mentioned earlier. The detailed schematic design of the battery charging 
using the µPSC technology is shown in the Figure 6. 

 

 
 
 

Figure 6. Schematic of the mobile battery charging using micro-photosynthetic power cell (µ-PSC) 
technology. 

To respect the constraint of 22 h full charging time for both PV and µPSC, many µPSC panels 
are to be connected in parallel to increase the current obtained from them. Calculation shows that 556 
panels are required to increase the current to 250 mA, with 0.8 V. We have implemented MPPT 
control unit to extract the maximum power similar to PV technology. With 0.8 V and 250 mA of 
voltage and current respectively, the DC/DC boost converter increases the voltage to 4 V to charge 
the battery and the current decreases to 50 mA for the ideal conditions. Hence, a current of 50 mA 
and a voltage of 4 V is used to charge a battery to the full capacity in 22 h. 

The cost incurred for the designing of the complete charging system using µ-PSC technology is 
shown in the Table 3. 

Output of 556 PSC panels  
Voltage: 0.8 V  
Current: 250 mA  

Output of Boost 
Converter  
Voltage: 4 V  
Current: 50 mA  

Mobile Battery  
Nominal Voltage: 3.7 V  
Capacity: 1100 mAh 

MPPT Control 
Unit 

DC/DC Boost 
Converter Unit  

Figure 5. Micro-photosynthetic power cell (µ-PSC) panel.

As a single µ-PSC panel has a rating of 0.8 V and 0.45 mA, we need to calculate the number of
µ-PSC panels required to charge the battery of 3.7 V, which has the capacity of 1100 mAh in 22 h
(same as the PV design), as mentioned earlier. The detailed schematic design of the battery charging
using the µPSC technology is shown in the Figure 6.
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(µ-PSC) technology.
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To respect the constraint of 22 h full charging time for both PV and µPSC, many µPSC panels
are to be connected in parallel to increase the current obtained from them. Calculation shows that
556 panels are required to increase the current to 250 mA, with 0.8 V. We have implemented MPPT
control unit to extract the maximum power similar to PV technology. With 0.8 V and 250 mA of voltage
and current respectively, the DC/DC boost converter increases the voltage to 4 V to charge the battery
and the current decreases to 50 mA for the ideal conditions. Hence, a current of 50 mA and a voltage of
4 V is used to charge a battery to the full capacity in 22 h.

The cost incurred for the designing of the complete charging system using µ-PSC technology is
shown in the Table 3.

Table 3. Approximate cost of the complete micro-photosynthetic power cell (µ-PSC) technology for the
battery charging.

No Items Cost ($)

1
Fabrication for one PSC Cell (Bulk) −$3

For One PSC Panel −$6
For 556 PSC Panels −3336

3336

2 MPP control Unit 10
3 DC/DC Boost converter 50
4 Typical Mobile battery 17
5 Miscellaneous 5

Total $3418

For the selected 3.7 V, 1100 mAh battery, two PV panels (in parallel) of power rating 100 mW
are required to charge the battery to the full capacity in 22 h. Solar insolation of 800–1000 W/m2 is
assumed throughout the charging time. Further, all the losses are neglected for the design calculations.
The energy system for the battery charging costs $86 using low power PV panels.

To charge the battery completely in same time of 22 h µPSC technology, costs $3418. High cost of
the µ-PSC technology is due to their low power densities. It is to be kept in mind that µPSC technology
is at research stage, whereas PV technology is a well-established one.

3.2. Case Study 2: Design of Energy System to Power Real Time Internet of Things (IoT) Humidity Sensors

3.2.1. Powering Real Time Internet of Things (IoT) Humidity Sensor Using Photovoltaic (PV)

Many of the IoT sensors require ultra-low power (nW to mW). The schematic to power these
sensors from PV technology is shown in Figure 7. The same low power PV panel, which is used to
charge the mobile battery, is used for the easy comparison with the µ-PSC technology. The selected
PV panel operates at 2 V and 50 mA current. To extract the maximum power, an MPP control unit is
required. To provide the necessary controlled and regulated voltage to the sensor, a DC/DC converter
is essential. A DC/DC Buck-Boost converter is suitable for this application as the humidity sensor
requires is 1.8 V. The DC/DC Buck-Boost converter receives 2 V and 50 mA as an input and provide
an output of 1.8 V and 55.5 mA that suits the operating parameters of humidity sensor to function
continuously, provided we have solar insolation of at least 800–1000 W/m2 all the time.

The cost for the designing of the complete system for powering ultra-low power IoT humidity
sensor using PV technology is given in the Table 4.

The specifications of the selected humidity sensor are given in the Table 5.
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Figure 7. Schematic of powering the Internet of Things (IoT) sensor (Humidity Sensor) using
photovoltaic (PV) technology.

Table 4. Cost of the photovoltaic (PV) technology for powering the Ultra-low power Internet of Things
(IoT) sensor (Humidity Sensor).

No Items Cost ($)

1 Solar Panel (1 Panel) 2
2 MPPT Control Unit 10
3 DC/DC Buck/ Boost Converter 50
4 Humidity Sensor 2
5 Miscellaneous 5

Total $69

Table 5. Specifications of the humidity sensor [30].

No Features Value

1 Interface I2C
2 Supply Voltage 1.8 V

3 Power Consumption 2 µW (at 1 reading per second in low power
mode)

4 Measuring range (RH) 0–100% relative humidity
5 Measuring range (T) −30 to + 100 ◦C (−22 to +212 ◦F)
6 Response time (RH) 8 s (tau 63%)
7 Package type Wafer-Level-Chip-Scale-Package (WLCSP)

3.2.2. Powering Real Time Internet of Things (IoT) Humidity Sensor Using Micro-Photosynthetic
Power Cells (µPSC) Technology

IoT humidity sensor requires power of 0.18 mW. Therefore, one µPSC panel will be sufficient to
power this sensor. One µPSC panel generates power of 0.36 mW with the voltage rating of 0.8 V and
current rating of 0.45 mA. To extract the maximum power at any given time, a MPPT control unit is
required. DC/DC boost converter will boost the voltage to the desired level of 1.8 V, which in turn
reduces the current to 0.2 mA. Losses are being neglected for these calculations. Few of the applications
such as humidity sensor, temperature sensor, and various other weather monitoring sensors, require to
send the data once for every half an hour or more. Therefore, the energy generated by the µPSC can be
stored in the supercapacitors, such as the fast charging micro super capacitor fabricated from Niobium
nanowire array [31,32] and other micro supercapacitors. The schematic of powering a humidity sensor
using µPSC technology is shown in Figure 8. The cost required for the designing of energy system
using µPSC to power ultra-low power IoT sensor is given in the Table 6.
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Figure 8. Schematics of powering an Internet of Things (IoT) sensor (Humidity Sensor) using
micro-photosynthetic power cells (µ-PSC) technology.

Table 6. Cost of the micro-photosynthetic power cell (µ-PSC) technology for powering an Ultra-low
power Internet of Things (IoT) sensor.

No. Items Cost ($)

1 Fabrication for one PSC Panel (Bulk) 6
2 MPP control Unit 10
3 DC/DC Boost converter 50
4 Digi Key SHTW2 Humidity Sensor 2
5 Miscellaneous 5

Total $73

4. Discussion and Conclusions

4.1. Discussion

The initial cost of any revolutionary technology will be high. The cost gradually decreases with
time owing to various research outcomes in the technology. For illustration, the PV technology since
its inception has grown tremendously. The cost of PV technology was $76 per watt in 1976, whereas
currently the price is less than $1 after a drastic reduction of approximately 76 times [33].

µPSC are currently in the early stage of research and costs approximately $2500 to generate 1 W of
power [7]. However, the performance of µPSCs has improved and the cost can be further decreased.
A few avenues to increase the performance and reduce the cost are discussed next.

4.2. Avenues for Cost Reduction of the Micro-Photosynthetic Power Cell (µPSC)

Currently, the highest power densities among the µPSC technology reported is 362 mW/m2 [6]
under the irradiance of 15 µmol m−2s−1 (which is 652) [25] with an active surface area of 4.84 cm2.
However, compared to photovoltaic technology, these values are very low. Therefore, low power
densities and high cost are the major challenges that are hindering the commercialization of µPSC
technology at present. Power density is dependent on many factors, such as high quantum yield of the
algae cells in the anode chamber, optimized electrode design, suitable electron mediators, and electron
acceptors, design of the anode and cathode chambers, carbon dioxide, etc. The high cost is due to
use of noble materials as electrodes/current collectors and the proton exchange membrane Nafion.
A recent work by Tanneru et al. [10] provides a detailed possibilities for performance enhancement
and cost reduction.
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5. Conclusions

From case study 2, the cost of development of energy system for powering a humidity sensor
using PV technology is $69, whereas µPSC technology is $73 as shown in Table 7. With this number,
it is evident that for the ultra-low power applications, the cost of µPSC technology is comparable to the
PV technology.

From case study 1, the cost of development of energy system for charging a mobile battery (3.7 V,
1100 mAh) using PV technology is $84, and using µPSC technology is $3418. Even though µPSC
technology is approximately 40 times costlier than PV technology currently, with the advancement in
technology, the cost of µPSC technology will enhance the performance and decrease the cost, which
makes it also suitable for low power applications.

Table 7. Comparison of the photovoltaic (PV) and Micro-photosynthetic (µPSC) technology.

Parameters µPSC PV

Open Circuit Voltage (Voc) 0.85 V 0.6 V
Short Circuit current (Isc) 0.8 mA 60 mA

Voltage Rating (Vmp) 0.4 V 2 V
Current Rating (Imp) 0.45 mA 50 mA
Price of the single cell $3 $0.5

Cost to power low power battery (Only the power generating source) (3.7 V, 1100 mAh) $3336 $4
Number of hours taken for Full battery charging (3.7V, 1100 mAh) 22 h 22 h

Cost of complete system to power low power battery. (3.7 V, 1100 mAh) $3418 $84
Cost to power Ultra-low power IoT sensor (Only the power generating source) (Humidity Sensor) $6 $2

Cost of complete system to power the ultra-low power sensor (Humidity Sensor) $73 $69

With enormous scope for the cost reduction and performance enhancement possibilities,
this technology will serve as a power source for the wireless sensors and their networks, which
are key components in the IoT era.
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