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Abstract

Motivation: Synthetic lethal sets are sets of reactions/genes where only the simultaneous removal

of all reactions/genes in the set abolishes growth of an organism. Previous approaches to identify

synthetic lethal genes in genome-scale metabolic networks have built on the framework of flux bal-

ance analysis (FBA), extending it either to exhaustively analyze all possible combinations of genes

or formulate the problem as a bi-level mixed integer linear programming (MILP) problem. We here

propose an algorithm, Fast-SL, which surmounts the computational complexity of previous

approaches by iteratively reducing the search space for synthetic lethals, resulting in a substantial

reduction in running time, even for higher order synthetic lethals.

Results: We performed synthetic reaction and gene lethality analysis, using Fast-SL, for genome-

scale metabolic networks of Escherichia coli, Salmonella enterica Typhimurium and Mycobacterium

tuberculosis. Fast-SL also rigorously identifies synthetic lethal gene deletions, uncovering synthetic

lethal triplets that were not reported previously. We confirm that the triple lethal gene sets obtained

for the three organisms have a precise match with the results obtained through exhaustive enumer-

ation of lethals performed on a computer cluster. We also parallelized our algorithm, enabling the

identification of synthetic lethal gene quadruplets for all three organisms in under 6 h. Overall,

Fast-SL enables an efficient enumeration of higher order synthetic lethals in metabolic networks,

which may help uncover previously unknown genetic interactions and combinatorial drug targets.

Availability and implementation: The MATLAB implementation of the algorithm, compatible with

COBRA toolbox v2.0, is available at https://github.com/RamanLab/FastSL

Contact: kraman@iitm.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the recent years, genome-scale metabolic networks have been re-

constructed for many organisms (Edwards and Palsson, 2000;

Jamshidi and Palsson, 2007; Kim et al., 2011; Thiele et al., 2005,

2011). These networks have been studied using tools such as flux

balance analysis (FBA) (Kauffman et al., 2003; Varma and Palsson,

1994), for the identification of drug targets (Jamshidi and Palsson,

2007; Thiele et al., 2011), targets for metabolic engineering (Alper

et al., 2005) and to understand the robustness of organisms

through systematic experimental evaluation of gene knockouts

(Deutscher et al., 2006; Kuepfer et al., 2005). Another important as-

pect of analyzing these reconstructed metabolic networks is the iden-

tification of combinations of genes, which when simultaneously

deleted, abolish growth in silico (Deutscher et al., 2006; Harrison et

al., 2007; Henry et al., 2009; Suthers et al., 2009; Güell et al.,

2014). These sets, termed ‘synthetic lethals’, reveal complex inter-

actions in metabolic networks. Synthetic lethals have been analyzed

in the past for prediction of novel genetic interactions and analyzing

the extent of robustness of biological networks (Raghunathan et al.,

2009). Prediction of phenotypic behavior on genetic perturbations
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has also been studied in many reconstructions (Fang et al., 2010;

Plata et al., 2010; Sigurdsson et al., 2012; Thiele et al., 2005;

Wodke et al., 2013) for model validation.

FBA has been proven to accurately predict phenotypes following

various genetic perturbations (Edwards and Palsson, 2000; Famili

et al., 2003); previous reports also suggest that FBA can reliably pre-

dict synthetic lethal genes in metabolic networks of organisms such

as Saccharomyces cerevisiae (Harrison et al., 2007). The identifica-

tion of synthetic lethal genes in metabolic networks also finds appli-

cation in combinatorial therapy, as combinatorial deletion strategies

are more difficult for the organism to resist (Hartman et al., 2014;

Navid, 2011; Zimmermann et al., 2007). Since the systematic evalu-

ation of these targets in vivo is challenging, computational

approaches have been of great interest to overcome this difficulty

(Pinney et al., 2007).

Exhaustive enumeration of synthetic lethals of higher orders was

previously performed by parallelizing the deletions on a cluster of

computers (Deutscher et al., 2006; Henry et al., 2009). However,

exhaustive enumeration is computationally very expensive, and even

prohibitive, in case of larger metabolic networks. Another algorithm

for identifying synthetic lethal reactions and genes is ‘SL Finder’,

published by Maranas and co-workers (Suthers et al., 2009). SL

Finder elegantly poses the identification of synthetic lethals as a bi-

level Mixed Integer Linear Programming (MILP) problem; the algo-

rithm has been applied for the identification of synthetic lethal

doublets and triplets in Escherichia coli.

Reaction essentiality has been previously inferred using elemen-

tary modes and minimal cut sets (Behre et al., 2008). Even though

there are efficient algorithms to analyze minimal cut sets in a meta-

bolic network, the MILP formulation is fundamentally NP-hard

(Acuña et al., 2009) and is prohibitive in case of large networks.

Other methods also suggest ways for reduction of metabolic net-

works and alternate formulations to enumerate minimal cut sets for

the identification of synthetic lethal sets (Chindelevitch et al., 2014;

von Kamp and Klamt, 2014).

We here propose an alternative algorithm, Fast-SL, which circum-

vents the computational complexity of both exhaustive enumeration

and bi-level MILP, through an iterative reduction of the search space

for higher order synthetic lethal sets. We also present an efficient

method to rigorously identify lethal gene sets, identifying upto quadru-

ple lethal gene sets that were not previously identified. Fast-SL formu-

lation for gene deletions also compares favorably with logical

transformation of model (LTM) approach (Zhang et al., 2015), which

transforms the stoichiometric matrix such that lethal gene deletion sets

can be identified by merely identifying lethal reaction sets applying the

Fast-SL algorithm on the transformed matrix (using the pre-print of an

earlier version of this paper available at arXiv.org). Fast-SL provides a

rapid way to gain insights into the genetic robustness of organisms by

identifying synthetic lethal sets even up to the order of four.

2 Methods

2.1 Overview
FBA involves the formulation of a Linear Programming (LP) prob-

lem, whose objective function typically is to maximize flux through

the biomass reaction (vbio), subject to the constraints obtained from

the stoichiometry of the metabolic network (represented by the stoi-

chiometric matrix S). FBA has also been used to simulate the effects

of the removal of one or more genes/reactions from a metabolic net-

work. The phenotype obtained as a result of gene/reaction deletion

is classified as a lethal phenotype, if the maximum growth-rate

obtained by FBA is less than a specified cut-off, typically 1% of the

in silico maximum wild-type growth rate (Deutscher et al., 2008),

denoted as vco. We here propose an alternative algorithm to identify

synthetic lethals, using an iterative approach that greatly reduces the

search space for the synthetic lethals. The standard FBA formulation

to identify effects of reaction deletions is as given below:

max: vbio (1)

s:t:

Rjsijvj ¼ 0 8i 2M; 8j 2 J (2)

LBj� vj�UBj 8j 2 J (3)

vd ¼ 0 d 2 D � J (4)

Here,

J represents the set of all reactions in the metabolic model

M represents the set of all metabolites in the metabolic model

D represents the set of reactions whose fluxes are set to zero

(for deletion)

vj represents the flux through the jth reaction

vbio represents the flux through the biomass reaction

sij represents the corresponding element in the stoichiometric

matrix S

LBj and UBj represent the lower and upper bounds of the fluxes

through the jth reaction respectively

The maximum vbio obtained here, using Equations (1)–(3), for

the wild-type strain, is designated as vbio;WT . Further details on the

FBA formulation, such as the substrate uptake fluxes and the upper

and lower bounds are given in Supplementary File S1.

2.2 Fast-SL algorithm
The objective of Fast-SL is to enumerate combinations of reactions,

which when deleted, abolish growth. We achieve this by a combin-

ation of pruning the search space and exhaustively iterating through

the remaining combinations. We successively compute: (i) Jsl, the set

of single lethal reactions, (ii) Jdl (Jdl � J2), the set of synthetic lethal

reaction pairs, and (iii) Jtl � J3, the set of synthetic lethal reaction

triplets. Initially, we use FBA to compute a flux distribution, corres-

ponding to maximum growth rate, while minimizing the sum of ab-

solute values of the fluxes, i.e. the ‘1-norm of the flux vector. We

hereafter denote this flux distribution as the ‘minimum norm’ solu-

tion of the FBA LP problem. We denote the set of reactions that

carry a non-zero flux in this minimum norm solution as Jnz. Below,

we outline the minimum norm FBA formulation, corresponding to

maximum wild-type growth rate obtained earlier (vbio;WT ):

min:Rjjvjj (5)

s:t:

vbio ¼ vbio;WT (6)

Rjsijvj ¼ 0 8i 2M;8j 2 J (7)

LBj� vj�UBj 8j 2 J (8)

2.2.1 Identifying single lethal reactions (Jsl)

If a reaction is essential (single lethal) in a given environment, con-

straining its flux to zero results in the abolishment of biomass flux.
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We argue that the set of all such single lethal reactions, Jsl, is com-

pletely contained in Jnz. Conversely, J � Jnz does not contain any of

the single lethal reactions, which are essential for growth in the

medium under consideration. This is because, if it is possible to

identify a flux distribution that admits maximum biomass flux (as

enforced by the constraint in the Equation (6)), and at the same

time zero flux through certain reactions (D � J � Jnz), obviously,

those reactions cannot be essential for the growth of the organism.

This can also be understood in light of the FBA formulation given

by Equations (1)–(4): the constraint in Equation (4) for the reac-

tions in the set D � J � Jnz will not have any impact on the biomass

flux (setting vd¼0 for reactions already carrying zero flux in the

minimum norm solution will not affect the solution to FBA).

Hence, for the lethality analyses of order one, we look only in the

set of reactions with non-zero fluxes, Jnz. We therefore compute

single lethal reactions (Jsl) by performing exhaustive single reaction

deletions only in Jnz, instead of J.

2.2.2 Identifying double lethal reactions ( Jdl)

We posit that for every pair in the set Jdl, at least one of the reactions

will be in Jnz. Consider any pair of reactions i and j 2 J. Only two

types of such pairs exist:

i. i and j 62 Jnz

ii. at least one of i or j 2 Jnz

For pairs of type (i):

Suppose, both reactions of a pair do not belong to Jnz. This

implies that both have zero flux through them under the minimum

norm formulation and hence deleting them simultaneously does

not produce a lethal phenotype and consequently, they do not

form a lethal reaction pair. Our algorithm identifies and eliminates

such pairs for consideration and hence reduces the search space

substantially. Table 2 illustrates the savings obtained in terms of

the number of LPs solved in comparison to exhaustive

enumeration.

For pairs of type (ii):

For all the other reaction pair combinations (i.e. at least one re-

action of a pair 2 Jnz � Jsl), we first obtain the minimum norm solu-

tion after removing a reaction, say, i 2 Jnz � Jsl, and obtain the set of

non-zero fluxes Jnz;i. It is important to note that, under this deletion,

the vbio;WT of Equation (6) will be replaced by the corresponding

maximum flux through the biomass reaction after removing the ith

reaction, vbio;i. This is because removal of the ith reaction may not al-

ways result in the same maximum value of the wild-type biomass

flux, vbio;WT , as it was obtained prior to the deletion and constrain-

ing so may result in an infeasible solution. Therefore, the RHS in

Equation (6) is the maximum biomass obtainable under the deletion

of reaction i, denoted as vbio;i and not vbio;WT . Similar to Fast-SL for

single lethal reactions, we restrict our search space for potential syn-

thetic double lethal deletions to the set Jnz;i � Jsl. Under this config-

uration, as the reaction i is already removed, a synthetic lethal

reaction j 2 Jnz;i � Jsl, would actually correspond to a lethal reaction

pair fi; jg.
Algorithm 1 shows the Fast-SL implementation to identify lethal

single and double reaction deletions as explained above. We illus-

trate the application of Fast-SL to identify single and double lethal

reactions in the E.coli iAF1260 model, as well as the algorithm for

identifying lethal reaction triplets, in Supplementary File S1. The al-

gorithm can be further extended to quadruplets and higher orders

using a similar approach.

Algorithm 1: Algorithm to identify single and double lethal

reaction sets.

Input: SBML model of an organism

Output: Set of single lethal reactions Jsl

Set of double lethal reactions Jdl

Do FBA to obtain the maximum biomass flux for wild-type,

vbio;WT

Do FBA to obtain minimum norm solution corresponding to

vbio;WT

Identify set of reactions Jnz, having non-zero fluxes

Set 0:01 � vbio;WT as the cut-off for lethality, vco

for each reaction i 2 Jnz do

Set the upper and lower bounds of vi to zero

Do FBA to maximise growth rate, vbio;i

if vbio;i � vco then

Add i to the set Jsl

end if

Reset bounds on vi

end for

for each reaction i 2 Jnz � Jsl do

Set the upper and lower bounds of vi to zero

Do FBA to obtain minimum norm solution corresponding

to vbio;i

Identify set of reactions Jnz;i, having non-zero fluxes

for each reaction j 2 Jnz;i � Jsl do

Set the upper and lower bounds of vj to zero

Do FBA to maximise growth rate vbio;ij

if vbio;ij � vco then

Add fi; jg to the set Jdl

end if

Reset the bounds on vj

end for

Reset bounds on vi

end for

2.3 Fast-SL algorithm for gene deletions
The synthetic lethal gene deletions can be obtained using a similar

approach to that of Fast-SL for lethal reaction deletions by addition-

ally considering the Gene–Protein–Reaction (GPR) associations in

the model. As these associations are often ‘many-to-many’, it is non-

trivial to identify all the lethal gene sets from lethal reaction sets of

the same order. To account for this complexity, Fast-SL groups the

reactions based on their GPR associations. Each time a reaction is

deleted, other associated reactions are also removed, based on the

underlying GPR rules. The lethal reaction sets obtained using this

method are then analyzed for lethal gene deletions up to the order of

four. Further details on the gene deletion algorithm are available in

Supplementary File S1.

We implemented Fast-SL for both reaction and gene deletions in

MATLAB (R2013b, The Mathworks Inc.), interfacing with COBRA

Toolbox v2.0 (Schellenberger et al., 2011).

2.4 Parallel Fast-SL algorithm
To further improve the time profile of the Fast-SL algorithm, we

have developed a parallel version of our algorithm to identify both

synthetic lethal reaction and gene sets, which enables us to even

identify synthetic lethal quadruplets, within a few hours. Unlike the
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exhaustive enumeration algorithm, the Fast-SL algorithm by itself is

not embarrassingly parallel. However, the enumeration of a particu-

lar order of synthetic lethals can be easily parallelized. For example,

in the case of single lethal reactions, once the minimized ‘1-norm so-

lution is identified, the subsequent LPs to be solved for identifying

Jsl can be evaluated in parallel. A similar strategy can be applied to

first identify the potential synthetic lethal sets (reaction sets with

non-zero fluxes, obtained using the ‘1-norm solution) at each stage

of a particular order and then perform the deletions in parallel to

further reduce the time taken to identify synthetic lethal reaction

and gene sets. This parallelization scheme ensures a superior utiliza-

tion of computing resources available.

3 Results

We performed gene and reaction deletions up to the order of four

using Fast-SL for the genome-scale metabolic networks of E.coli

iAF1260 (Feist et al., 2007) and two important pathogenic organ-

isms, Salmonella enterica Typhimurium LT2 STM_v1.0 (Thiele

et al., 2011) and Mycobacterium tuberculosis iNJ661 (Jamshidi and

Palsson, 2007).

3.1 Fast-SL massively prunes the search space for

synthetic lethal reactions
The Fast-SL formulation eliminates large sections of the search space

for synthetic lethals, as described earlier, resulting in a massive speed-

up over exhaustive search. Fast-SL formulation results in more than a

4000-fold reduction in the search space for synthetic lethal triplets in

E.coli; for a smaller model such as that of M.tuberculosis with 1028

reactions, the reduction is over 300-fold.

In order to appreciate the speed-up offered by Fast-SL, consider

the E.coli iAF1260 model that has 2 382 reactions. For aerobic

growth under minimal glucose conditions, the maximum wild-type

growth rate as obtained by FBA, vbio;WT , is 0.9290mmol gDW–1 h–1.

The minimum norm formulation, given by Equations (5)–(8), results

in a flux vector having 406 reactions with non-zero fluxes, and the

same growth rate, vbio;WT . The set Jnz comprises of these 406 reac-

tions. As mentioned earlier, Fast-SL analyzes the effect of deletion of

reactions in Jnz to identify lethal reaction sets: we identified 278 single

lethal reactions (Jsl) after solving only 379 LP problems instead of

2 051. Extending this formulation, Fast-SL identified 1.56 million re-

action pairs whose deletion would not result in a lethal phenotype

and solved only 6 084 LPs to identify lethal reaction pairs. We have

identified 96 synthetic lethal reaction pairs and 247 synthetic lethal re-

action triplets in E.coli, which match exactly with the results obtained

through exhaustive enumeration of lethal reaction sets and also the

MCSEnumerator Algorithm (von Kamp and Klamt, 2014).

Table 1 illustrates the comparison between the MCSEnumerator

and the Fast-SL for the E.coli model, using workstation with a

2.4 GHz Intel Xeon E5645 processor with six cores available for

computation, it takes approximately 9.3 h for the Fast-SL algorithm

to compute the synthetic lethal quadruplets, Jql. While, it has been

reported that the MCSEnumerator method takes approximately

18.5 h using two 3.07 GHz Xeon X5650 processors with 12 cores

available for the computation of Jql.

It has been reported that the SL Finder algorithm (Suthers et al.,

2009) is able to enumerate all synthetic lethal triple reaction sets in

� 6:75 days, on a 3 GHz processor. We have been unable to perform

a systematic comparison owing to the difference in platforms

(General Algebraic Modelling System (GAMS) versus MATLAB), as

well as processors used. However, we note that the savings obtained

through a pruning of reaction space and the fact that we solve only a

large number of small LPs instead of a bi-level MILP, render Fast-SL

as a powerful alternative for metabolic networks of any size.

Table 2 enumerates the number of LPs solved by the proposed

algorithm as compared to the exhaustive enumeration for all three or-

ganisms. For each of the three models under consideration, Fast-SL

provides a significant reduction in the search-space for the enumer-

ation of synthetic lethal reaction sets. A complete listing of lethal reac-

tion sets for all three organisms is available in Supplementary File S2.

3.2 Fast-SL rigorously identifies synthetic lethal genes
Fast-SL carefully considers the GPR associations to rigorously identify

synthetic lethal gene deletions up to order four for the organisms.

Table 3 shows the number of lethal gene deletions identified for the or-

ganisms under consideration. We corroborated these results by

Table 1. Comparison of the time taken for Fast-SL and

MCSEnumerator algorithms for the E.coli iAF1260 model

Order of SLs No. of SLs CPU time taken

for MCSEnumerator

(using 12 cores)

CPU time taken

for Fast-SL Algorithm

(using 6 cores)

Single 278 11 s 2.8 s

Double 96 39.1 s 17.2 s

Triple 247 16.8 min 8.5 min

Quadruple 402 18.5 h 9.3 h

Notes: The times reported are for a workstation with a 2.4 GHz Intel Xeon

E5645 processor with 16 GB DDR3 RAM running Windows 8.1 using the

IBM CPLEX v12.5.1 solver

Table 2.Summary of reaction deletions for the three organisms

under consideration

E.coli S.Typhimurium M. tuberculosis

Model Name iAF1260 STM_v1.0 iNJ661

Medium M9/glc M9/glc Middlebrook 7H9

Number of reactions, jJj 2382 2546 1028

Number of exchange and

diffusion reactionsa

331 378 86

Number of reactions in Jnz 406 484 414

Single lethal reactions Jsl

Exhaustive LPsb 2051 2168 939

LPs solved by Fast-SL 379 456 399

Number of single

lethal reactions

278 329 309

Lethal reaction pairs Jdl

Exhaustive LPs solved 1:57� 106 1:69� 106 2:00� 105

LPs solved by Fast-SL 6084 9803 5058

Number of lethal

reaction pairs

96 152 75

Lethal reaction triplets Jtl

Exhaustive LPs solved 9:27� 108 1:04� 109 4:21� 107

LPs solved by Fast-SL 223 469 460 142 177 000

Number of lethal

reaction triplets

247 275 140

Lethal reaction quadruplets Jql

Exhaustive LPs 4:10� 1011 4:75� 1011 6:63� 109

LPs solved by Fast-SL 1:43� 107 3:01� 107 1:19� 107

Number of lethal

reaction quadruplets

402 1008 463

aGenerally not considered for lethality analyses
bExcluding exchange reactions
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performing exhaustive triple gene deletions on a computer cluster with

1000 nodes for all three organisms and we found an exact match.

Fast-SL identified 285 lethal gene triplets under minimal glucose

conditions in the E.coli iAF1260 model. The SL Finder algorithm

(Suthers et al., 2009) identified only 158 lethal gene triplets (in the

same model under the same medium conditions). We thus identified

127 new lethal gene triplets in E.coli using Fast-SL. Perhaps, these trip-

lets were not identified by SL Finder owing to the complexity in defin-

ing the binary variable for gene deletions using the bi-level MILP

formulation. To accommodate the gene–reaction associations, the SL

Finder approach introduces new binary variables (corresponding to

genes) and imposes additional constraints on them (corresponding to

gene–reaction rules). This introduction of new variables and constraints

would increase the problem size significantly depending upon the num-

ber of genes present in the model as well as the gene-reaction rules,

which may add to the difficulty in identification of all the lethal gene

sets using the SL Finder approach.

Among the newly identified triplets using Fast-SL, 121 belong to

central carbon metabolism, four triplets belong to amino acid syn-

thesis and the rest are involved in metal-ion transport reactions.

More information on these 127 gene triplets obtained can be found

in Supplementary File S3. Using the parallel Fast-SL algorithm we

were able to identify lethal gene quadruple sets for all the three or-

ganisms in less than 6 h. A complete listing of lethal gene sets for all

three organisms is available in Supplementary File S4.

3.3 Missing biomass precursors in lethal gene deletions
To further demonstrate why certain deletions are lethal for the or-

ganism’s survival, we identified the missing precursor metabolites

for the synthetic lethal gene sets in E.coli using the method available

from the COBRA Toolbox (Schellenberger et al., 2011). Under the

FBA formulation, failure of an organism to produce any of the bio-

mass precursors results in a zero growth-rate. Figure 1 summarizes

our findings for the given biomass configuration in (Feist et al.,

2007). The biomass of E.coli comprises amino acids, cofactors, inor-

ganic ions, lipids, lipopolysaccharides (LPS), metabolites required

for maintenance (ATP), murein and nucleic acids. From the lethal

single and double gene deletion sets obtained using Fast-SL, we iden-

tified that they predominantly involve non-production of essential

metabolites such as tetrahydrofolates, Coenzyme A and S-Adenosyl

methionine. Interestingly, more than 30% of the deletions in syn-

thetic lethal triplets and quadruplets primarily affect mechanisms

involved in ATP production required for maintenance. In 48 of the

quadruple lethal gene sets, we observed that the organism is unable

Table 3. Summary of gene deletions for the three organisms under

consideration

E.coli S.Typhimurium M.tuberculosis

Model name iAF1260 STM_v1.0 iNJ661

Number of genes 1260 1270 661

Single lethal genes

Exhaustive LPs 1260 1270 661

LPs solved by Fast-SL 389 464 355

Number of single

lethal genes

188 201 188

Lethal gene pairs

Exhaustive LPs 574 056 570 846 111 628

LPs solved Fast-SL 3644 3202 2470

Number of lethal

gene pairs

69 87 49

Lethal gene triplets

Exhaustive LPs 2:04� 108 2:03� 108 1:75� 107

Number of processors used 896 896 448

Equivalent serial time � 689 days � 944 days � 19 days

LPs solved by Fast-SL 109 180 97 641 55 967

Time taken for Fast-SL 321 s 329 s 145 s

Number of lethal

gene triplets

285 175 333

Lethal gene quadruplets

Exhaustive LPs 5:47� 1010 5:41� 1010 2:06� 109

LPs solved by Fast-SL 2:54� 106 2:32� 106 9:39� 105

Time taken for Fast-SL 1.91 h 2.35 h 0.89 h

Number of lethal

gene quadruplets

376 445 1804
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Fig. 1 Missing biomass precursors under lethal gene deletions in Escherichia coli. The biomass constituents are classified into eight different groups as given in

the model, namely, amino acids, cofactors, inorganic ions, lipids, lipopolysaccharides (LPS), metabolites required for maintenance (ATP), murein and nucleic

acids. The figure illustrates the percentage of missing biomass precursors under single, double, triple and quadruple lethal gene deletions
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to produce more than 70% of the biomass precursors under consider-

ation, belonging to all metabolite groups except the inorganic ions (as

their exchanges are unaffected under these deletions). These observa-

tions reiterate the robustness of cellular metabolism and at the same

time, the central and critical role played by co-factors and ATP.

It is important to note that approximately 14% of all lethal dele-

tions (up to order four) result in a non-zero, but severely hampered,

growth rate (here it is less than 1% of the maximum wild-type

growth rate, vbio;WT ) and therefore do not have any missing precur-

sors under the optimal FBA configuration.

4 Discussion

In this study, we describe a new algorithm to rapidly identify syn-

thetic lethal reaction/gene sets in genome-scale metabolic networks.

The identification of synthetic lethals in organisms can be used to

understand complex genetic interactions between genes and identify

drug targets for combinatorial therapy (Kim et al., 2011; Lee et al.,

2009; Sigurdsson et al., 2012). We build on the popular framework

of FBA, extending it to identify synthetic lethals; our algorithm ex-

ploits the structure of the metabolic network better than previous al-

gorithms, to eliminate combinations of reactions/genes that are

guaranteed not to produce a lethal phenotype under the conditions

considered.

Importantly, our algorithm also identifies synthetic lethal gene sets

rigorously, by carefully considering the GPR associations in the meta-

bolic model. Fast-SL therefore manages to identify 127 new lethal

gene triplets in E.coli, which were not identified by a previous study

(Suthers et al., 2009) (indicated in Supplementary File S3). Further,

we confirmed that our algorithm does not miss out on any synthetic

lethal gene sets, by cross-checking with an exhaustive analysis of triple

gene deletions on a computer cluster. Our algorithm for finding syn-

thetic lethal gene sets also outperforms the LTM method (Zhang et

al., 2015) which increases the problem size in the case of E.coli from

1668�2382 to 5372�7287. For the same model, our approach

avoids this transformation and consequently solves far fewer LPs,

thereby computing the lethal sets in much less time.

Fast-SL utilizes the flux corresponding to ‘1-norm minimization,

which can be easily formulated as an LP. It is important to note that

there may be multiple Jnz sets corresponding to the minimum sum of

absolute values of fluxes (i.e. minimized ‘1-norm solution) and these

Jnz sets may also vary in terms of their sizes. It does not matter which

Jnz set one may begin the algorithm with, because in all the Jnz sets,

the arguments that Jsl is completely contained in Jnz and at least one

of i or j of a lethal pair (i, j) belongs to Jnz and so on, always hold

true. However, smaller the size of the set Jnz in each step, faster the

algorithm would be. More importantly, minimization of the ‘1-

norm of the flux vector may not always converge to the sparsest pos-

sible solution, which is often denoted as the ‘0-norm solution. Here,

it is also important to note that Fast-SL does not require the sparsest

solution to work; a reasonably sparse solution already achieves a

significant search space reduction, while circumventing the com-

plexity of the ‘0-norm MILP formulation.

Our work does have its limitations. As with any other metabolic

network analysis technique, our method suffers from any inadequa-

cies present in the model. Nevertheless, our algorithm can identify a

list of lethal (and non-lethal) phenotypes, which can be used to re-

fine the metabolic model, based on disagreements with experimental

results. Further, the synthetic lethals predicted by our algorithm are

valid only in a particular environment/growth medium; it is however

straightforward to identify lethal sets for other environments, by

altering the constraints suitably.

In sum, we see three main contributions of our method. First,

Fast-SL achieves a massive reduction in the search space and obvi-

ates the need for performing an exhaustive analysis of combinatorial

gene/reaction deletions. This can facilitate the identification of com-

binatorial drug targets in organisms, even up to the order of four,

which was previously nearly intractable (Navid, 2011). Second,

Fast-SL also compares favorably with the MCSEnumerator algo-

rithm, eliminating the need to solve complex MILPs. Finally, Fast-

SL also rigorously identifies lethal gene sets, uncovering lethal gene

sets not previously identified by other algorithms. Overall, Fast-SL

enables a rapid evaluation of combinatorial gene and reaction dele-

tions in genome-scale metabolic networks, which may help identify

previously unknown genetic interactions and combinatorial drug

targets.
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