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Abstract. We present efficient parallel algorithms for the maximum empty 
rectangle problem in this paper. On CREW PRAM, we solve the area version 
of this problem in O(log 2 n) time using O(nlogn) processors. The perimeter 
version of this problem is solved in O(logn) time using O(nlog2n) 
processors. On EREW PRAM, we solve both the problems in O(logn) time 
using O(n2/logn) processors. We also present an O(logn) time algorithm 
on a mesh-of-trees architecture. 
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1. Introduction 

The Maximum Empty Rectan#le (MER) problem is the following. Given an isothetic 
rectangle BR and a point set P contained in BR, we have to find out the maximum 
area/perimeter isothetic rectangle in BR which does not contain any point from the 
set P. Thisproblem has been extensively studied recently (Namaad et a11984; Mckenna 
et al 1985; Chazelle et al 1986; Atallah & Fredrickson 1986; Aggarwal et al 1987; 
Aggarwal & Suri 1987, pp. 278-290, 1989; Atallah & Kosaraju 1989; Orlowski 1990; 
Datta 1991) in the sequential domain. An O(n 2) time and O(n) space algorithm was 
given by Namaad et al (1984), where n is the cardinality of the point set P. Later 
Chazelle et al (1986) obtained an O(nlogan) time and O(nlogn) space algorithm. 
M~kenna et al (1985) provide an algorithm which solves the perimeter version of this 
problem in O(nlog4n) time and O(n) space. The sequential lower bound for this 
problem is ~(nloon) (Aggarwal & Suri 1989). The best existing sequential algorithm 
is by Aggarwal & Suri (1987, pp. 278-290, 1989). Their algorithms run in O(nlog2n) 
and optimal O(nlogn) time for the area and perimeter cases respectively. Both the 
algorithms use optimal O(n) space. There are several algorithms which solve this 
problem by enumerating all candidate empty rectangles (Atallah & Kosaraju 1989; 
Orlowski 1990; Datta 1991). The expected and worst case running times of these 
algorithms are O(nlogn) and O(n2), respectively, using O(n) space. This problem has 
also been solved in three dimensions (Datta & Krithivasan 1991). Recently, Aggarwal 
et al (1989) have provided an efficient parallel algorithm for computing the maximum 
empty rectangle. On CRCW PRAM model, their algorithm for the area problem runs 
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in O(log2n) time using O(ntogn) processors. For  the CREW PRAM, the algorithm takes 
O(logZnloglogn) time using O(nlogn/loglogn) processors. Aggarwal et al (1989) also 
present an algorithm to solve the perimeter version of the MER problem in O(log 2 n) 
time using O(n) processors on a CREW PRAM. 

In this paper, we present parallel algorithms for solving both the perimeter and 
area versions of the maximum empty rectangle problem. We present a parallel 
algorithm to solve the maximum area empty rectangle problem in O(log 2 n) time using 
O(nlogn) processors on a CREW PRAM. This algorithm improves on the time complexity 
of the algorithm of Aggarwal et al (1989), keeping the processor-time product 
unchanged. We also solve the maximum perimeter empty rectangle problem in O(logn) 
time using O(nlog 2 n~ processors on a CREW PRAM. This algorithm is optimal in terms 
of time, but it is worse than the algorithm of Aggarwal et al (1989) in terms of the 
processor-time product. We then propose a new characterization of the MER problem 
and use it to solve this problem on EREW PRAM and mesh-of-trees architectures. Our 
algorithm on EREW PRAM runs in O(logn) time using O(n2/logn) processors. Though 
the processor-time product is rather high, the time achieved is optimal on this model. 
The algorithm for the mesh-of-trees architecture runs in optimal O(logn) time. Part 
of this work appeared previously in Datta & Krithivasan (1990, pp. 344-345). We 
assume some familiarity of the reader with Aggarwal & Suri (1987, pp. 278-290, 1989) 
and Chazelle et al (1986). 

The remaining part of this paper is organized as follows. In § 2, we give some 
definitions. Section 3 contains the CREW PRAM algorithms. In § 4, we give the new 
characterization and use it to solve the MER problem on an EREW PRAM. In § 5, we 
discuss the mesh-of-trees algorithm. Finally, § 6 concludes the paper. 

2. Definitions 

An isothetic rectangle has its sides parallel to either the X or the Y axis. By a rectangle 
we always mean an isothetic rectangle. We denote the four sides of the enclosing 
rectangle BR by BR.left, BR.top, BR.right and BR.bottom. The cardinality of the 
point set P is n. We assume for ease of exposition that the points in the set P are in 
general position, i.e., no two points have the same X or Y coordinate. The X and Y 
coordinates of the point Pi are denoted by Pi.X and p~.y respectively. We say a point 
pi in P is a support for a side S of a rectangle R if S passes through p~. Similarly, a 
side of BR, e.g., BR.left is the left support of a rectangle R if R.left and BR.left overlaps 
and R.left has length equal to or less than BR.left. A rectangle R is called a Restricted 
Rectangle (RR), if its sides are supported by either a point in P or a side of BR and 
R does not contain any point from the set P. It is easy to see that the maximum 
empty rectangle is a member of the set of restricted rectangles. It has been proved in 
Namaad et al (1984), that the number of restricted rectangles is at most O(n2). We 
use some terminology from Chazelle et al 0986). We refer to the maximum empty 
rectangle (MER) problem sometimes by the name of largest empty rectangle (LER) 
problem. Similarly, a subproblem in solving the LER problem is called the Largest 
Empty Corner Rectangle (LECR) problem. 

The model of parallel computation PRAM stands for Parallel Random Access 
Machine. In this model, there are p identical processors executing same instructions 
in parallel on different data values. The processors can access a common shared 
memory. If two or more processors can read or write a memory word simultaneously, 
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the model of PRAM is called the Concurrent Read Concurrent Write (CRCW) PRAM. 
If only simultaneous reading is allowed, the model is called the Concurrent Read 
Exclusive Write (CREW) PRAM. In the weakest PRAM model, neither simultaneous 
read nor write is allowed. This is called the Exclusive Read Exclusive Write (EREW) 
PRAM. See the book by Gibbons & Rytter (1988) for more on PRAM algorithms. We 
use the following standard results from parallel algorithm literature. 

Lemma 2.1. (Cole 1988) A list of n elements can be sorted in O(logn) time on a CREW 
PRAM using O(n) processors. 

Lemma 2.2. (Kruskal et al 1985) Given an array of  integers A = {al,a2, . . . ,an},  all 
the partial sums c k = E~:= 1 aj, i.e., the parallel prefix, can be computed on a CREW PRAM 
in O(logn) time using O(nflogn) processors. 

Both sorting and parallel prefix computation can be done on an EREW PRAM within 
the same processor and time complexities. Moreover, the parallel prefix computation 
can be done for any binary associative operator such as max, min etc. 

The nearest smaUers problem (Berkman et al 1988) is defined in the following way. 
The input to the problem is an array A = {al ,a2, . . . ,an}  of elements from a totally 
ordered domain. For each ai, 1 < i < n, find the nearest element to its left and the 
nearest element to its right, that are less than ai, if such elements exist. In other words, 
for each 1 < i < n, find the maximal t < j  < i and the minimal i < k < n such that 
aj < a i and a k < a i. 

Lemma 2.3. (Berkman et al 1988) The nearest smallers problem can be soloed on a 
CReW PRAM in O(logn) time using O(n/logn) processors. 

3. The CREW PRAM algorithms 

3.1 Background to the algorithm 

In this subsection, we develop some ideas which will be useful for the exposition of 
our algorithms for both the area and perimeter cases of the maximum empty rectangle 
problem. 

Our algorithm is based on the divide-and-conquer strategy used by Chazelle et al 
(1986) for solving the MER problem in the sequential domain. The restricted rectangles 
whose two opposite sides are supported by the sides of the bounding rectangle BR 
can be found easily. We consider the case when the left and right sides of an RR are 
supported by BR.left and BR.right respectively. Notice that the top and bottom sides 
of such a rectangle should be supported by two consecutive points in the Y sorted 
order. The points in the set P can be sorted in the Y order in O(logn) time using O(n) 
processors on a CREW PRAM (Cole 1988). After this the area/perimeter of the RR can 
be found in O(logn) time by O(n/logn) processors by grouping them in O(n/logn) 
groups and doing the computation sequentially within a group. The time and processor 
requirement is well within the overall complexity of our algorithm. The other type 
of l~l~ whose top and bottom supports are BR.top and BR.bottom, respectively, can 
also be found in a similar way. From now on we will not consider these RR in our 
discussion. 

Let v t be a vertical line that splits the points in the set P into two roughly equal 
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Figure 1. Some definitions related 
B R to the algorithm. 

halves, namely CL = {LC~ . . . . .  LCs} and CR = {RC 1 . . . . .  RCt}.  Let the supports of 
the top, bottom, left and fight edges of a restricted rectangle R be top_sup(R), 
bottom_ sup(R), left_ sup(R) and fight_ sup(R) respectively. In the divide-and-conquer 
approach in Chazelle et al (1986), the problem is solved separately in the two sets 
CL and CR. The restricted rectangles whose supports lie completely within one of 
the sets are found in this recursive step. Then the two solutions are merged to find 
the maximum empty rectangle which has supports from both CL and CR. We also 
follow a similar approach for our parallel algorithm. In the merge step, we consider 
three different types of rectangles, (a) with three supports from CL and one support 
from CR, (b) with two supports from CL and two from CR and (c) with one support 
from CL and three supports from CR. Since types (a) and (c) are symmetrical, we 
consider only type (a). Hence, in the merge step of the divide-and-conquer algorithm, 
we have to find the largest of all the candidate rectangles of types (a) and (b). 

Let bottom(LC~) be the point in CL with the highest Y coordinate which is to the 
fight of and below the point LC~. Similarly, let top(LC~) be the point in CL with the 
lowest Y coordinate which is to the right of and above the point LCi. Also, let 
right(LC~) be the point in CR which has the lowest X coordinate such that bottom 
(LCi).y < right(LCi).y < top(LC~).y. In figure 1, for a point LCi, the points bottom 
(LC~), top(LCi) and right(LC~) are illustrated. 

3.1a Type (a) rectangles: First we consider a rectangle R of type (a). Clearly, the 
three supports of R that are from CL are the left, top and bottom supports. Let the 
left support be LCI. Since the rectangle R is empty, top_sup(R) is the point from CL 
with the least Y coordinate which is above and to the right of LCI. In other words, 
top_sup(R) is top(LCi). Similarly, bottom_sup(R) is bottom(LCi). The emptiness of 
R implies that right_sup(R) is the leftmost point from CR whose Y coordinate lies 
between those of top(LC,) and bottom(LCi). Consequently, right_sup(R) is the same 
as right(LC~). Hence, for each point LCi. there is exactly one type la) rectangle with 
LC~ as the left support. The other three supports are immediately fixed. So, there are 
at most O(n) type (a) rectangles, of which the maximum area/perimeter rectangle has 
to be found. 
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3.1b Type (b) rectangles: A rectangle of type (b) can have either the left and top 
supports or the left and bottom supports from CL. Wihtout loss of generality, we 
consider only those type (b) rectangles with the left and bottom supports from CL 
(the other case being similar). From now on, we use the term type (b) rectangle to 
refer only to rectangles with the left and bottom supports from CL. If the left support 
of a type (b) rectangle R is LCi, the emptiness of R implies that the bottom support 
of R will be bottom(LC~). Unlike type (a) rectangles, however, the number of type (b) 
rectangles is not restricted to O(n), since the top and right supports are not immediately 
fixed by the left and bottom supports. 

First we transform the problem of finding the largest empty type (b) rectangle to 
that of finding the largest empty type (b) corner rectangle. A corner rectangle is a 
rectangle such that any two of its opposite corners coincide with points from a given 
set of points. Given a rectangle BR and a set of points P1 inside it, the largest empty 
corner rectangle is therefore the maximum area/perimeter empty corner rectangle 
with respect to the set of points P1. The transformation can be done in the following 
way. Consider a set of points CL' obtained as follows. Include all elements of CL in 
CL'. In addition, for every point LCi in the set CL, include in CL' the point 
(LC~.x, bottom(LC~).y), shown as the point q in figure 1. Similarly, we can obtain a 
new set of points CR' from CR. Let the elements of CL' be LCI', LC2', .. . .  LC,' and 
those of CR' be RC~', RC2',... , RCs' in order of increasing X coordinate. A corner 
rectangle whose bottom-left corner is from CL' and top-right comer is from CR' is 
called a type (b) corner rectangle. Chazelle et al (1986) reduced the problem of finding 
the largest type (b) rectangle to that of obtaining the largest type (b) corner rectangle 
over the two sets CL' and CR'. We again use divide-and-conquer to find the largest 
type (b) corner rectangle. We divide the sets CL' and CR' into two subsets CLI', CL2' 
and CRy', CR 2' respectively (where CL~' lies above CL 2' and CR 1' lies above CR2' ) 
using a horizontal line hi such that ICLx'l + ICR~'i is approximately equal to 
ICL2'I + ICR2'[. A corner rectangle with one corner from CL 2' and the other corner 
from CRy' is called a special corner rectangle. To compute the largest special corner 
rectangle, we use the arguments given in Chazelle et al (1986) and discard a point of 
CRy' (respectively CL2' ) that dominates (is dominated by respectively) some other 
point in this set. Similarly, for CLI' (respectively CR2') we discard a point p~ if there 
exists p~ from CL~' (CR 2' respectively) such that p~.x < pj.x and p~.y > p;.y (respectively 
pi.x > p~.x and p,..y < pj.y). Let CL[ = {q~, q2 . . . . .  q~} and CR~ = {m~,m2 . . . . .  mu} 
denote the sets after they have been trimmed such that qi's and m/s are in increasing 
order of X coordinates (which implies that they are in decreasing order of Y 
coordinates). To find the largest empty special corner rectangle, for each point q~ in 
CL[, we need to determine the set of points of CR~ that can be paired with it to 
form empty rectangles. Clearly, this is a contiguous set of mj's and there exist indices 
l(0 and r(i) such that the set {m,0,m,0 + 1 . . . . .  m,,)} contains exactly the points of 
CR'~ that can be paired with q~ to form an empty corner rectangle. 

3.2 The algorithm 

The divide-and-conquer strategy for the largest empty rectangle problem can be 
naturally parallelised. The parallel algorithm executes in two stages. In the first stage, 
all the subproblems for all the recursive steps are produced, ready to be solved. These 
subproblems originate at each step of the recursive division. Once all the subproblems 
are generated, all of them are solved in parallel. We first formalize the concept of 
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generating a subproblem, i.e., specify the input which should be provided for each 
subproblem. 

We explain the input sequence with respect to the first stage of recursion, i.e., when 
the point set P is divided into two parts by the vertical line vl. The largest empty 
rectangle (LER) problem is specified by giving a list of points of P sorted by the X 
coordinate. The largest empty type (b) rectangle (LETCR) problem is specified by giving 
the lists of points of CL and CR sorted by the Y coordinate. The largest empty special 
corner rectangle (LESCR) problem is specified by giving the lists of points of 
CL,',CL2',CR 1' and CR 2' each sorted by the Y coordinate. The inputs in the 
successive recursive stages are defined in a similar way. The subproblems are generated 
in the following way. First, we sort the points of P (in the subsequent stages of 
recursion, this set also gets divided into n/2, n/4.., number of points) by increasing 
X coordinate. Now, we can easily generate all the LER problems in O(logn) time 
using O(n) processors. This is done in the following way. First we sort the points 
according to X coordinate in O(Iogn) time using O(n) processors (Cole 1988). Since 
the recursion has O(logn) stages, the point set has to be divided into smaller point 
sets to provide for the input of each recursive stage. The boundaries for these smaller 
sets can be found by a single processor in O(logn) time by a binary search. Each point 
in the set P can be the input of at most O(Iogn) LER subproblems. We assign processor 
Pri for the point pi. Pr~ creates a separate copy of p~ for each subproblem in which 
p~ participates. Clearly, each processor Pr~ takes O(logn) time. So, the overall time 
and processor complexities for generating all LER subproblems is O(logn) time and 
O(n) processors. From now on, for each LER subproblem, we denote the input set by 
the generic name P. By the size of a subproblem, we mean the number of points 
involved in it. 

Now, for each LER subproblem, we need to solve the corresponding LETCR and 
LESCR subproblems in order to find the largest empty type (b) rectangle. For each 
LER subproblem, we assign m processors. In O(logn) time, for all the LER subproblems, 
the corresponding set P is sorted by the Y coordinate. For each LER subproblem of 
size m we can now generate all the LETCR subproblems using m processors in O(logm) 
time. Again, for each LETCR subproblem of size k, we assign k processors. For each 
such LETCR subproblem, we can now easily generate all the LESCR subproblems in 
O(logk) time using k processors. The details of the complexity of generation of these 
subproblems will be given later. Finally, in O(logn) time we find the overall maximum 
rectangle among the maximum rectangles found in parallel for each subproblem. 
Later on in this paper, we discuss in detail the processor and time complexities 
resulting from these steps. We first provide a method to find the largest type (a) 
rectangle for a subproblem of the LER problem. This method is common to both the 
area and perimeter cases and uses O(n) processors and O(logn) time. 

3.2a Finding the largest type (a) restricted rectangle: First we show how to obtain 
top(LCi), bottom(LCi) and right(LC~). We assume that the sets of points CL and 
CR form the input. We sort the points of CL by increasing the Y coordinate using 
O(n) processors and O(logn) time (Cole 1988). Consider a point Pi in the sorted array. 
It is easy to see that top(p~) is the first point in the array after p~ with an X coordinate 
greater than that of Pi. The problem of finding top(pl) is analogous to the nearest 
smallers problem as defined in § 2. This problem has been solved by Berkman et al 
(1988) taking O(logn) time using O(n/logn) processors on a CREW PRAM. In the problem 
of finding top(pg), the condition 'less than p~' is replaced by the condition 'greater 
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than p~'. This change can be accommodated by a minor modification in the nearest 
smallers algorithm. By a similar method, we obtain bottom(LC~) for each point LC~. 
Now, to find right(LCi), a processor is assigned to each point LC~. The processor 
assigned to LC~ has to find the leftmost point in CR whose Y coordinate is in the 
range top(LC~) to bottom(LC~). We build a binary search tree containing points from 
CR with the key as the Y coordinate. This tree can be built starting from the leaves 
upwards, in  O(logn) time using O(n) processors. This is done in the fashion of the 
parallel merge sort algorithm of Cole (1988). At each interior node of the binary 
search tree, we store the point in the subtree which has the least X coordinate. Once 
the tree is built, the processor assigned to LC~ can perform binary search to find the 
leftmost point in the range top(LC~) to bottom(LC~). The leftmost point so obtained 
is the required right(LCi). Having found top(LCi), bottom(LCi) and right(LCi) for 
each LCi, we now proceed to find the maximum area/perimeter type (a) rectangle as 
follows. For each point LC~, there is exactly one rectangle R~ with left support LC~. 
We already know the other three supports by the method described above. So in 
0(1) time we can find the area/perimeter of the rectangle R~. Hence, in O(logn) time 
using O(n) processors, we can find the maximum area/perimeter type (a) rectangle. 

3.2b Finding the largest type (b) rectangle: We consider the method of finding the 
type (b) rectangle for a subproblem of the LER problem. First we show how to find 
the sets of points CL~ = {ql,q2 . . . . .  qv} and CR~ = {ml,m2 . . . . .  m,} from CL 2' and 
CRI' respectively. Consider an array containing the Y coordinates of the points in 
CL2'. A point LC~' belongs to CL[ if there is no point to its right with a larger Y 
coordinate. Hence we obtain the set of points CL[ = {ql, q: . . . . .  qo} by solving the 
nearest smallers problem for this array. Similarly, we obtain the set of points 
CR~ = {ml,m2 . . . . .  m,}. Similarly, the other two sets CL'~ and CR[ can also be 
found. For every point qi, we now find the corresponding l(i) (r(i) is found using a 
similar method). Suppose, LI is an imaginary vertical line through q~ and the first 
point in the set CL~ to the right of L~ is r~ (i.e., r~ is the first point having greater 
X coordinate than L1). Now, consider a horizontal line L2 through r~. Let s~ be a 
point in CR'~ such that it is the first point below Lz. It is easy to see that st is the 
point l(i). For each point q~ in CL~, we can find the corresponding point r~ by a 
binary search in the set CL'~. This is possible because the points in the set CL~ are 
already sorted according to both X and Y coordinates. This computation can be 
done by assigning one processor for each point. The overall complexity is O(n) 
processors and O(logn) time. The point s~, i.e., l(/) can also be found in a similar way. 
The point r(i) is found by binary searches in CR~ and CRy. 

For every point q~, we now have to find the point in the range m,0 . . . . .  m,t~ with 
which it should be paired to give the maximum area/perimeter empty rectangles. 
Since the methods are different for the area and perimeter cases we present each 
method separately. 

3.2c Algorithm for the area problem: Lemma 3.1. (Mckenna et al 1985) Let q~,qj 
belong to CL'~ with i < j and let ink, mz belong to CR~ with k < I. Furthermore, assume 
that qi and qj can be individually paired with both mk and m t to form empty corner 
rectangles. Then, the sum of  the areas of the rectangles formed by the corner pairs 
(q~, ml) and (q j, ink) is no more than the sum of the areas of the rectangles formed by 
the corner pairs (qi, mk) and (q j, m~). 
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D E F I N I T I O N  3.2 (Aggarwal et al 1987) 

Let M denote any p x q matrix containing real entries. Let j(i) be the smallest column 
index j such that M(i, j )  equals the max imum value in the ith row of M. Aggarwal  
et al (1987) call M mono tone  if, for 1 ~< i 1 ~< i 2 -..< v, we always have j(il)<~j(i2). 
Furthermore,  they call M totally m o n o t o n e  if every 2 x 2 submatrix of M is monotone .  
The row-maximum problem for a matrix requires the determinat ion of the max imum 
value (or the leftmost maximum value if there are several maxima in a row) in every 
row of the matrix. 

Consider a v x u matrix A that contains in location A(i,j) the area of  the rectangle 
formed by ql as the lower-left corner and mj as the upper-right corner when these 
points form an empty corner rectangle; otherwise, - ~  is stored in A(i,j). Now, 
u + v ~< n, and for i ~< k, since l(i) >1 l(k) and r(i) >~ r(k), A contains at most  two sets of  
entries that  are - oo. The periphery of each set forms a staircase inside A and the 
two sets of entries lie in the top-left and bot tom-r ight  corners of  A (figure 2). F r o m  
lemma 3.1, if none of the entries of  a 2 x 2 minor  of  A is - oo, then this minor  is 
monotone.  Consequently,  we call such a matrix a monotone double-staircase matrix, 
or simply an rods-matrix. We note that  the largest area empty corner rectangle problem 
can be computed  by solving the row maximum problem for A. A matrix of real entries 
is called a single staircase matrix if it contains one set of  entries those are - ~ and 
if the periphery of this set forms a staircase either in the top-left or  bot tom-r ight  
corner. A single staircase matrix is called monotone single staircase matrix, or  simply 
an ross matrix, if its every 2 × 2 minor  that  does not  contain any - oo, is monotone .  

D E F I N I T I O N  3.3 

For  any row i in a v x u mds matrix A, let next (i) be the last r o w j  such that  r(j)  >~ l(i). 
Then the list x is defined as follows: x 1 = 1, x i = next (x~_l), i >  1. 

Lemma 3.4. In the matrix A, consider the intervals l(xl) . . . . .  r(xl);  l(x2) . . . . .  l ( x l ) -  1; 
l ( x 3 ) , . . .  , l ( x 2 )  - -  1, etc. Then the non-zero part of any row never spans more than two 
intervals. 
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Figure 3. Partitioning of an mds 
matrix into mss matrices. 

Proof. Let there be a rowj  such that the non-zero part of rowj  spans three intervals. 
Let the two nearest rows in the list x above and below j be xk and xk+ t (where Xk+ 1 
may be j). Consider the intervals l(xk) . . . . .  l(xk- l ) -- 1 and l(x~ + 1 ) . . . . .  l(xk) -- 1. Now, 
l(j)>-l(Xk+l). Since r(x~-- l )<l(Xk_l)  and Xk-- l  <~j, r(j)<l(Xk-1). Hence, the 
relevant entries of row j fall within the two intervals mentioned above. 

Lemma 3.5. By using O(logn) time and O(n) processors, any v x u mds matrix A can 
be partitioned into at most 2n mss matrices, such that the non-zero entries of any row 
are in at most two mss matrices (see figure 3). 

Proof. The function next (/) can be found in O(logn) time using O(nflogn) processors 
by converting it into a nearest smallers problem (Berkman et al 1988). The intervals 
defined in the previous lemma can be found in O(loyn) time using O(n) processors 
by using list compression techniques. The rest of the proof is similar to the proof of 
lemma 2"3 in Aggarwal & Suri (1989). 

Lemma 3.6. The maximum problem for a v × u mss matrix A" can be solved in 
O(logvlogu) time using O(u/togu) processors. 

Proof. It can easily be shown that an mss matrix is monotone. Now, we find the 
maximum of the middle row in O(logu) time using O(u/logu) processors. Let the 
position of the maximum be j(v/2). We now know that the maximum for any row 
between 1 and v/w must lie between 1 and j(v/2) and that the maximum for any row 
between v/2 and v must lie betweenj @/2) and u. Hence we can usej(v/2)/logu processors 
for the minor A"(1...@/2) - I, l. . .j(v/2)) and (u -j(v/2))/logu processors for the minor 
A"((v/2) + 1...v,j(v/2)...u). We end up with the recurrence equations 

P(u, v) = P(u, v/2) + (u/logu), 

T(u, v) = T(u, v/2) + (logu), 

where P(u, v) and T(u, v) are the processor and time complexities respectively. The 
solutions of these two recurrences give the result stated in the lemma. 

Theorem 3.7. The maximum problem for a v x u rods matrix A can be solved in 
O(logulogv) time using O(v/logv) processors. 
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Proof The proof follows directly from the previous lemmas. 

3.2d Algorithm for the perimeter problem: Consider a matrix A' whose (i,j)th entry 
is - 0o if and only if the (i,j)th entry of the matrix A, defined in the previous section, 
is - ~ .  Otherwise, A'(i,j) contains the perimeter of the rectangle with its bottom-left 
corner as ql and top-right corner as m r. Clearly, the maximum entry in A' corresponds 
to the pair of points that form the largest perimeter empty rectangle. Also, the perimeter 
of the rectangle formed by qi and m r equals 2(yj + xi) - 2(yi + xi) and (y~ + xi) is a 
constant throughout the ith row of A'. Hence, if we split the matrix column-wise such 
that the finite part of each row is split into at most two parts (figure 3), we could do 
a parallel prefix computation to obtain partial maxima in each section and then find 
the maximum in each row in constant time. 

Theorem 3.8. The row-maximum problem for the matrix A" can be solved in 0(Io9 n) 
time usin9 0(n) processors. 

Proof. From lemma 3.5 it follows that the required intervals can be found in 0(1o9 n) 
time using O(n) processors. The partial maxima in each interval can then be found 
by doing a parallel prefix computation in O(loon) time using O(n/loon) processors. 
Once the partial maxima in each interval is available, the maximum of any one row 
can be found in constant time and the row-maximum problem for the matrix can be 
solved in O(Iogn) time using O(nlogn) processors. The overall complexity is O(logn) 
time using O(n) processors. 

3.3 Complexities of the algorithms 

As described in § 3.2, the parallel algorithm executes in two stages. In the first stage, 
all the subproblems due to all the recursive calls are generated. In the second stage, 
all the subproblems are solved in parallel. We will now analyse the number of 
processors required to solve these subproblems in parallel. 

3.3a The perimeter problem: In the case of the perimeter problem, let A(n) be the 
number of processors required to solve the problem. The merge step consists of sorting 
which requires n processors, finding the largest empty type (a) rectangle which takes 
n processors and finding the largest empty type (b) rectangle which takes, say, B(n) 
processors. Since the two subproblems and the merge step are performed in parallel, 
the recurrence of A(n) is as follows, 

A(n) = 2* A(n/2) + B(n) + n. (l) 

Let C(n) be the number of processors required to solve the largest empty special 
corner rectangle (LESCR) problem. To solve the largest empty type (b) corner rectangle 
(LETCR) problem, O(n) processors are required for sorting and C(n) processors are 
required for the LESCR problem. Hence, the recurrence for B(n) is, 

B(n) = 2* B(n/2) + C(n) + n. (2) 

We have already shown that O(n) processors and O(logn) time are required to solve 
the LESCR perimeter problem. Hence, C(n) is n. From (2), B(n) is O(nlogn) and further, 
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from (1), A (n) is O (nlo# 2 n). Hence, our algorithm for the perimeter case takes O (nloo 2 n) 
processors and O(loon) time. 

3.3b The area problem: The complexity analysis for the area problem is similar to 
that for the perimeter problem. Equation (1) remains the same. But to solve the LETCR 
problem, we sort using O(n/loon) processors and O(loo 2 n) time. Hence, (2) is modified 
as follows, 

n(n) = 2* B(n/2) + C(n) + n/loon. (3) 

The LETCR problem for the area case was solved in O(logZn) time using O(n/loon) 
processors. Substituting C(n) = n/Iogn in (3), we obtain 

B(n) = n/Ioo n + 2* (n/2)/loo(n/2) + 4* (n/4)/loo(n/4) + ... 
or, 

or, 
B(n) = nO~loon + 1~(loon - 1) + 1~(loon - 2) +- . .  + (1/2 + 1), 

B(n) = nil(loon), where H(m) is the harmonic function. 

It is well known that H(m) is O(logm) as m tends to infinity. Hence, B(n) is O(nH(logn)) 
or O(nlooloon). So, from (1), A(n) is O(nlognlooloon). The time complexity remains 
O(looZn). Hence, our algorithm for the area case seems to use O(nloonlooloon) 
processors and O(logZn) time. Now, we reduce the processor complexity to O(nlogn) 
without affecting the time complexity. 

3.3c Reailocation of the processors for the area problem: We now show how to 
reallocate the processors in the area problem to reduce the processor requirement to 
O(nloon). First, we prove that the total amount of work done in the algorithm is 
O(nloo 3 n). The work done in solving the LETCR problem is (n/loon)*(loa 2 n), or nloon. 
Using recurrence equations similar to (1) and (2) with C(n)= (nloon), it is easy to 
prove that the total work done is O(nlo# 3 n). 

The parallel algorithm works in t = loo2n time intervals which we call stages. At 
the ith stage, let C~ be the number of processors required by the algorithm. From 
§ 3.3b, we know that max {C~I 1 < i <  t} = nloonloologn. Since the total work done is 
nlogan, C1 + C2 + ." + Ct =nlooan. Let us assume that we have only O(nloon) 
processors. At the ith stage, the algorithm requires C~ processors. According to Brent's 
theorem (Gibbons & Rytter 1988), the ith stage can be executed in upper(CJnloan) 
time with O(nloon) processors, where upper(x) is the lowest integer greater than or 
equal to the real number x. Hence, the total time taken is, 

upper(C 1/nlogn) + upper(C2/nloon) + . . .  + upper(Ct/nloon) 

< C~/nloan + 1 + C2/nloon + 1 + . . .  + C,/nloffn + 1 

< (C1 + C2 + "." + Ct)/nlogn + t 

< nlogan/nloon + loo2n 

= O(loo 2 n). 

Hence, the time complexity of the algorithm is still O(loo2n), while the processor 
complexity is .reduced to O(nloon). So, we can solve the area case of the maximum 
empty rectangle problem in O(log2n) time using O(nloon) processors. 
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4. The EREW PRAM algorithm 

4.1 A new characterization 

From now on we consider the set P = {Pl, P2,-.., Pn} sorted according to the X coordi- 
nate. R is the bounding rectangle. Given two points p~ and p~ such that p~.x < pj.x, 
we define the following sets. 
Above (p~,pj) = {PklPk-Y > P~.Y and p~.x < Pk.X < pj.x}. 
Below(p~, p~) = {P~[Pk-Y < P~.Y and pi.x < p~.x < pj.x}. 
Above(pi, R.right) = {PktPk.Y > P~.Y and p:.x < p~.x < R.right}. 
Below(pi, R.right) = {PklPk.Y < Pi'Y and Pi.X < pk.X < R.right}. 
Above (R.left, p~) = {PslPk.Y > P~.Y and R.left < pk.x < Pi.X}. Below (R.left, Pi) is defined 
similarly. There is a unique point p=~Above(pi, pj) such that p=.y < pn.y for all 
p, eAbove(p~, p~). We denote this point p~, by MA(p~, pj). Similarly, there is a unique 
point pq~Below(p~, pj) such that pq.y > p~.y for all p~eBelow(p~, p j). Such a point p~ 
is called MB(p~, p~). We classify all RR in three categories. (i) Type t - Left support 
is R.left and right support is R.right. (ii) Type 2 -  Left support is R.left and right 
support is a point pieP. (iii) Type 3 -  Left support is a point p ~ P  and the right 
support is either a point p f i P  or R.right. It is well-known that there are O(n) RR of 
type 1 and type 2 and O(n 2) RR of type 3. Consider two points pi and Pi with pi.x < p~.x. 

Property 1. I f  an RR R i of  type 3 exists with pi as left support and pj as right support, 
the top and bottom supports of R i are MA(Pi, pj ) and MB(pi, Pj ) respectively. 

Proof. Suppose some other point Pk is the top support and Pm= MA(p~, p~). From 
definition, Pk.Y > P,~-Y > P~.Y and at least Pm will be within R,. Hence R i is not an RR. 
The proof for the bottom support is similar. 

COROLLARY 

I f  either Above (Pi, P j) or Below (Pi, P j) or both are empty, the top and bottom supports 
are R.top and R.bottom respectively. 

Suppose, Pk = MA(Pl, p~) and Pm= MB(Pi, p~). 

Property 2. An RR Ri exists with Pi, Pk, P j and p,, as left, top, right and bottom supports, 
iff Pk.Y > Pj.Y > Pm.Y. 

Proof. Simple. 
These two properties together characterize the type 3 RR. 

Property 3. The top and bottom supports for a type 2 RR with Pl as the right support 
are MA(R.left, Pi) and MB(R.left, pi). 

4.2 The EREW PRAM algorithm 

We enumerate and compute the three types of rectangles separately. 

Algorithm MER. Procedure type 1: First sort the points in P in y order by the algorithm 
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in Cole (1988) and find out the RR. This can be done with O(n) processors and O(logn) 
time. 

Procedure type 2: (1) Sort the points in P according to X coordinates. This takes 
O(n) processors and O(logn) time (Cole 1988). 
(2) For each point pieP, find MA(pi,pj) and MB(p~,pj) for j = i+  1,...,n, R.right. 

Since max and min are binary associative operators, this can be done by O(n/logn) 
processors and O(logn) time by the algorithm for parallel prefix computation in 
Kruskal et al (1985). This computation finds all RR with Pi as the left support. For 
each Pi aliocate O(n/logn) processors. So, this step can be done by O(n2/logn) processors 
in O(logn) time. For each pair p~, pj which form an RR, i.e., satisfy property 2, compute 
the area. 

Procedure type 3: (1) Sort the points in P according to X coordinates. 
(2) For each pimP, we can find MA(R.lefl, p~) and MB(R.left, pj). Compute the area 
for the RR. This step can be done within our processor and time bound. 

At the end of the execution of these three procedures, we have O(n z) RR and we 
can find out the MER with O(n2/logn) processors in O(logn) time. 

End of algorithm MEn. 
The algorithm can be modified easily when the points are not in general position. 
So, we state the following. 

Lemma 4.1. The MER problem can be solved in O(logn) time with O(nZ /logn) processors 
on a CREW PRAM. 

Now, we show how to modify this algorithm to run within the same processor and 
time bound in the EREW PRAM. 

Notice that, sorting can be done in O(logn) time using O(n) processors (Cole 1988) 
and parallel prefix of n elements can be found in O (logn) time using O (n/logn) processors 
(Kruskal et al 1985) on an EREW PRAM. But in procedure type 3, when we compute 
parallel prefix starting at each p~ and upto R.right simultaneously, there may be read 
conflicts. To avoid this, after sorting the sequence according to X coordinates, we 
create n copies of this sorted sequence. Then the parallel prefix computation starting 
at each point pi in procedure type 3 is done on a different sorted sequence. This 
avoids read conflicts. 

Lemma 4.2. We can create n copies of a sequence of n elements in O(logn) time using 
O(n2/loon) processors on an EREW PRAM. 

Proof. We assign O(n/logn) processors for each element p~ of the sequence. At the  
first instant, one processor reads Pi and writes it. So at the second instant, two 
processors can read two copies of pi and write them. At the end of the second instant, 
four copies of Pi are available. Proceeding in this way, within O(logn) time n/logn 
copies of p~ will exist. Then onwards, n/logn processors create n/logn copies of p~ at 
each instant. So, within overall O(logn) time, p~ can be copied n times. The total 
processor requirement for copying the complete sequence is O(n2/logn). 

Obviously, the overall storage requirement is O(n2). So, we state the following. 
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Theorem 4.3. The M E R  problem 

processors on an EREW PRAM. 

can be solved in O(logn) time usin9 O(nZ/loon) 

5. The mesh-of-trees algorithm 

The mesh of trees architecture (Ullman 1984) is a square grid of n 2 processors without 
any interconnection between them. There are n rows and n columns in this grid and 
n is assumed to be a power of 2. Each row and each column is connected as a complete 
binary tree. For  details see Ullman (1984). Our  algorithm for the MER problem again 
consists of recognizing type l, type 2 and type 3 R R .  We first sort the points according 
to increasing X coordinates before starting the main algorithm. This takes O(logn) 

time (Ullman 1984; Lodi & Pagli 1985). After the sorting, we set up the points 
Pl,P2 . . . . .  p, in each row of the mesh. This can be done in O(logn) time. We first 
describe how to perform the partial maxima computation in the mesh of trees. 

5.1 Partial maxima on a mesh-of-trees 

Let there be n numbers a 1 ,a 2 . . . . .  a, in each row of a mesh of trees. At the ith row, we 
want to compute the partial maxima starting from ai upto a,. The maxima will be respec- 
tively m a x  (a i + 1 ), m a x  (a  i + 1, ai + 2), max(ai + 1, ai + 2, al + 3) . . . . .  max(ai + 1, ai + 2 . . . . .  a,_ x ). 
We describe the algorithm for the ith row. After the computat ion is over, the leaves 
will get the partial maxima values. Each internal node nl of the tree has three registers. 
ML and MR contain the maxima from the left and right subtrees respectively and 
MU gets a maxima from the father of n~. The numbers ax, a2 . . . . .  a, are stored in the 
leaves and the leaves a~  ~, ai+ 2 . . . . .  a,_ 1 participate in the computation. The other 
leaves in the ith row are masked. The active leaves first find out the root of their 
subtree. This can be done in the following way. In the first phase, all active leaves 
send a signal up the tree. All the internal nodes at a particular level will receive this 
signal simultaneously. Whenever an internal node gets this signal, it remembers 
whether it got it from its left son, right son or both. If  the root gets the signal from 
both of its sons, it is also the root of the active subtre¢. Otherwise, it initiates the 
second phase. The root sends a signal back to its son which sent its signal in the first 
phase. This process continues until this signal reaches a node n~ which received signals 
from both of its sons in the first phase. This internal node n~ is the root of the active 
subtree. This computat ion takes O(lofn) time. From now on, by root we will always 
mean the root of the subtree of the active leaves. Initially, all the active leaves send 
their data to their respective fathers. The computat ion done at each time instant at 
an internal node is divided into two parts. In the first part, when an internal node 
gets the values in its ML and MR registers, it sends max(ML,  MR) to its father. In 
the second part, when it gets the value in its MU register from its father, it sends 
MU down to its left son and max(MU,  ML) to its right son. The root does not get 
the value MU. When it gets the ML value from its left son, it sends this to its right 
son. The root sends a value - ~ to its left son, so that this value does not influence 
the partial maxima computation. The leaves a~+ 1, at+ 2 . . . . .  a ._ 1 will get the respective 
partial maxima at the end of this computation. The overall time requirement is O(loon). 

5.2 The al#orithm for  MER 

The n points Pl,  P2 . . . . .  p, and R.right are sorted according to increasing x coordinate. 
We assume that n + 1 = 2 k for k > 0. The sorting can be done in O(logn) time (Ullman 
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1984; Lodi & Pagli 1985). After the sorting, we set up this sequence in each row of 
the mesh, so that all the processors in the first column will store Pl, those in the 
second column P2 etc. We first describe the computation of type 3 RR. In the ith row, 
we find the RR with Pi as the left support. The algorithm is similar to partial maxima 
computation. The leaves containing the points Pl, P2 . . . . .  p~ are masked and they do 
not participate in the computation. The point pi is broadcast to all the active leaves. 
The leaf containing point p~ such that p~.x > p~.x, checks whether the point p~ is in 
Above(p0 or Below(p~). In other words, it checks whether pj.y > p~.y or Pi-Y < Pi-Y- 
For any point Pk such that Pk.X > p~.x, we have to find out MA(p~, Pk) and MB(p~, Pk). 
Notice that, the computation of MA(p~, Pk) is a partial minima computation for 
k = i +  1, i+ 2 . . . . .  n,R.right. Similarly, the computation of MB(pi,p~) is a partial 
maxima computation. We describe the computation of MB(pi,pk) first. The leaves 
containing points in the set Above (p~) does not participate in this computation. These 
leaves send a value R.bottom and the leaves containing points in the set Below(p~) 
send their points up the tree. From then onwards the computation is similar to the 
partial maxima computation described before. The only difference is that the root 
sends a value R.bottom to its left son in the second phase because this value does 
not influence the partial maxima computation. Similarly, in the computation of 
MA(p~,pk), the leaves containing points in Below(p~) send R.top and other leaves 
send their points up the tree. The root sends R.top to its left son in the second phase. 
When the leaf containing the point Pk gets both the values MA(pi, Pk) and MB(pi, p~), 
it checks whether property 2 is satisfied and if so, computes the area of the type 3 
RR with p~ as the left and Pk as the right support. 

This computation is done simultaneously in all the rows and the time requirement 
is O(loffn). Once the computation in each row is over, we can find the overall maximum 
in another O(logn) time. For type 2 RR, we perform another maxima and minima 
computation. In the ith row, the value p~ is broadcast to all processors Pl, P2 . . . . .  P~- 1- 
These processors decide whether they participate in MA(R.left, p~) or MB(R.left, p~) 
computation. The leaves send their points to their fathers and after a simple maximum 
and minimum computation, the root of the active subtree gets the values MA (R.left, p~) 
and MB(R.left, p~) and broadcast this to the leaf containing Pl which in turn computes 
the area of the type 2 RR with R.left, MA(R.left, p~), pi and MB(R.left, p~) as the left, 
top, right and bottom supports. The overall time is O(logn). The type 1 RR, can be 
easily found out by sorting the points according to their y coordinates and the details 
are omitted. Since the lower bound for solving any problem on a mesh-of-trees is 
fl(logn) (Ullman 1984; Lodi & Pagli 1985), we state the following. 

Theorem 5.1. The MER problem can be solved on a mesh of trees in optimal O(loon) 
time. 

6. Conclusion 

In this paper, we first presented efficient parallel algorithms for the area and perimeter 
cases of the maximum empty rectangle problem on a CREW r'RAM. These algorithms 
have improved time cGmplexities compared to the existing algorithms, but the 
processor-time product remains unchanged. After this, we have given a new 
characterization for the MER problem and solved it on EREW PRAM and mesh-of-trees 
architectures. No optimal parallel algorithm exists today for these problems. The 
processor-time products of the best parallel algorithms are a O(logn) factor worse 
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than those of the complexities of the best sequential algorithms. Hence, it remains 
an interesting open problem to find better parallel algorithms for the maximum empty 
rectangle problem. For the largest area empty rectangle problem, finding a parallel 
algorithm which runs in O(logn) time and uses a small number of processors is another 
open problem. 

The authors are grateful to two anonymous referees for their valuable comments and 
suggestions which improved the presentation of this paper considerably. 
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