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Factorized high dimensional
model representation for

structural reliability analysis
B.N. Rao and Rajib Chowdhury

Structural Engineering Division, Department of Civil Engineering,
Indian Institute of Technology Madras, Chennai, India

Abstract

Purpose – To develop a new computational tool for predicting failure probability of
structural/mechanical systems subject to random loads, material properties, and geometry.

Design/methodology/approach – High dimensionalmodel representation (HDMR) is a general set of
quantitative model assessment and analysis tools for capturing the high-dimensional relationships
between sets of input and outputmodel variables. It is a very efficient formulation of the system response,
if higher order variable correlations areweak and if the response function is dominantly of additive nature,
allowing the physical model to be captured by the first few lower order terms. But, if multiplicative nature
of the response function is dominant then all right hand side components ofHDMRmust be used to be able
to obtain the best result. However, if HDMR requires all components, which means 2N number of
components, to get a desired accuracy, making the method very expensive in practice, then factorized
HDMR (FHDMR) can be used. The component functions of FHDMR are determined by using the
component functions of HDMR. This paper presents the formulation of FHDMR approximation of a
multivariate limit state/performance function, which is dominantly of multiplicative nature. Given that
conventional methods for reliability analysis are very computationally demanding, when applied in
conjunctionwith complex finite element models. This study aims to assess how accurately and efficiently
HDMR/FHDMR based approximation techniques can capture complex model output uncertainty. As a
part of this effort, the efficacy of HDMR, which is recently applied to reliability analysis, is also
demonstrated. Response surface is constructed using moving least squares interpolation formula by
including constant, first-order and second-order terms of HDMR and FHDMR. Once the response surface
form is defined, the failure probability can be obtained by statistical simulation.

Findings – Results of five numerical examples involving structural/solid-mechanics/geo-technical
engineering problems indicate that the failure probability obtained using FHDMR approximation for
the limit state/performance function of dominantly multiplicative in nature, provides significant
accuracy when compared with the conventional Monte Carlo method, while requiring fewer original
model simulations.

Originality/value – This is the first time where application of FHDMR concepts is explored in the
field of reliability and system safety. Present computational approach is valuable to the practical
modeling and design community, where user often suffers from the curse of dimensionality.

Keywords Failure (mechanical), Modelling

Paper type Research paper

Introduction
The basic purpose of structural reliability analysis is the evaluation of failure
probability referenced to a given limit state/performance function g(x). In reality,
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the inherent difficulties in reliability estimation arise due to implicit nature and high
nonlinearity of g(x). Therefore, a detailed finite element (FE) modeling of the structure
is necessary in combination with reliability analysis tools. FE methods for linear and
nonlinear structures in conjunction with first- or second-order reliability method
(FORM/SORM) (Rackwitz, 2001; Ditlevsen and Madsen, 1996; Madsen et al., 1986;
Breitung, 1984) have been successfully applied for structural reliability computations
(Liu and Der Kiureghian, 1991). FORM/SORM is based on linear (FORM) or quadratic
approximation (SORM) of the limit state/performance function at a most probable point
(MPP). Experience has shown that FORM/SORM solutions provide significant accuracy
for engineering purposes, provided that the MPP is accurately found, the limit
state/performance function at MPP is close to being linear or quadratic, and no multiple
MPPs exist. The MPP can be located by various gradient-based optimization
algorithms, which in turn require first- and/or second-order response sensitivities or
gradients. If these gradients can be found analytically, FORM/SORM is quite efficient.
Otherwise, FORM/SORMcanbe ineffective, for instance,when response sensitivities are
not available or when sensitivity analysis is computationally intensive. A prime
example is the merging of FORM/SORMwith commercial FE programs, where multiple
analysis codes from third-party sources are frequently employed without any
knowledge of gradients. In that case, FORM/SORM may yield inaccurate reliability
solutions or create computationally inefficient results when using gradients from
finite-difference approximations. Furthermore, for highly nonlinear performance
functions, which exist in many structural problems, results based on FORM/SORM
must be interpreted with caution. If the Rosenblatt or Nataf transformation are used to
map non-Gaussian random input into its standard Gaussian space then, the limit
state/performance function becomes highly nonlinear. In this case, FORM/SORM
produces inadequate reliability estimates (Bjerager, 1988). Furthermore, the existence of
multipleMPPs could give rise to large errors in standard FORM/SORM approximations
(Ditlevsen and Madsen, 1996; Der Kiureghian and Dakessian, 1998). In that case,
multi-point FORM/SORM along with the system reliability concept is required for
improving component reliability analysis (Der Kiureghian and Dakessian, 1998).

In these cases, simulation methods (Schuëller et al., 2004; Au and Beck, 2001;
Melchers, 1989; Bjerager, 1988; Rubinstein, 1981) seem to be a suitable alternative. But
the main disadvantage is that, simulation methods require tremendous computational
effort due to large number of deterministic structural analysis for different realizations
of the random variables. Several issues related to the applicability of FORM/SORM
and the efficiency of simulation methods for reliability analysis have lead many
researchers to assess and improve the viability of alternate approximate methods in
the field of reliability and system safety.

This paper explores the potential of a new class of computational methods, referred
to as High Dimensional Model Representation (HDMR) (Sobol, 2003; Li et al., 2001a, b,
2002; Alis and Rabitz, 2001; Rabitz et al., 1999; Rabitz and Alis, 1999; Wang et al., 1999)
and factorized HDMR (FHDMR) (Tunga and Demiralp, 2004, 2005), for predicting
reliability of structural/mechanical systems subject to random loads, material
properties, and geometry. The idea of HDMR for multivariate function approximation,
originally adopted for piece wise continuous function (Chowdhury et al., 2007), has
been extended for reliability analysis (Chowdhury et al., 2008). Primary focus of this
paper is to conduct a comparative assessment of HDMR and FHDMR for failure
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probability estimation. The paper is organized as follows. Section 2 presents a brief
overview of HDMR. Section 3 presents the formulation of FHDMR. Section 4 presents
response surface generation using FHDMR. Section 5 details the simulation method for
evaluation of reliability using the response surface generated by HDMR and FHDMR.
Section 6 presents five numerical examples to illustrate the performance of the present
methods. Comparisons have been made with direct Monte Carlo simulation (MCS)
method to evaluate the accuracy and the computational efficiency of the present
methods.

Fundamentals of HDMR
In recent years there have been efforts to develop efficient methods to approximate
multivariate functions in such a way that the component functions of the
approximation are ordered starting from a constant and gradually approaching to
multivariance as we proceed along the terms like first-order, second-order and so on.
One such method is HDMR (Sobol, 2003; Li et al., 2001a, b, 2002; Alis and Rabitz, 2001;
Rabitz et al., 1999; Rabitz and Alis, 1999; Wang et al., 1999). HDMR is a general set of
quantitative model assessment and analysis tools for capturing the high-dimensional
relationships between sets of input and output model variables. It is a very efficient
formulation of the system response, if higher-order variable correlations are weak,
allowing the physical model to be captured by the first few lower-order terms.
Practically for most well-defined physical systems, only relatively low order
correlations of the input variables are expected to have a significant effect on the
overall response (Sobol, 2003; Li et al., 2001a, b, 2002; Alis and Rabitz, 2001; Rabitz et al.,
1999; Rabitz and Alis, 1999; Wang et al., 1999). HDMR expansion utilizes this property
to present an accurate hierarchical representation of the physical system. The notion of
“high” dimensionality is system-dependent, with some situations being considered
high for practical reasons at N , 3–5, while others will only reach that level of
complexity for N . 10 or more.

Let the N(dimensional vector x ¼ {x1, x2, . . . , xN}, represent the input random
variables of the computational model under consideration, and the limit state as g(x).
Since the influence of the input variables on the limit state can be independent and/or
cooperative, HDMR expresses the limit state g(x) as a hierarchical correlated function
expansion in terms of the input random variables as:

gðxÞ ¼ g0 þ
X

N

i¼1

giðxiÞ þ
1#i1,i2#N

X

gi1i2 ðxi1 ; xi2 Þ þ · · ·þ
1#i1,· · ·,il#N

X

gi1i2 ... il ðxi1 ; xi2 ; . . . ; xil Þ

þ · · ·þ g12 ...N ðx1; x2; . . . ; xN Þ;

ð1Þ

where g0 is a constant term representing the zeroth-order component function or the
mean response of g(x). The function gi(xi) is a first-order term expressing the effect of
variable xi acting alone, although generally nonlinearly, upon the output g(x). The
function gi1i2 ðxi1 ; xi2 Þ is a second-order term, which describes the cooperative effects of
the variables xi1 and xi2 upon the output g(x). The higher order terms gives the
cooperative effects of increasing numbers of input variables acting together to
influence the output g(x). The last term g12 . . .N(x1,x2, . . . , xN) contains any residual
dependence of all the input variables locked together in a cooperative way to influence
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the output g(x). If there is no cooperation between the input variables, then only
zeroth-order and first-order terms will appear in the expansion. Once all the relevant
component functions in equation (1) are determined and suitably represented, then the
component functions constitute HDMR, thereby replacing the original computationally
expensive method of calculating g(x) by the computationally efficient model. Usually
the higher order terms in equation (1) are negligible (Alis and Rabitz, 2001; Li et al.,
2001a, b; Rabitz et al., 1999; Rabitz and Alis, 1999) such that HDMRwith only low order
correlations to second-order, amongst the input variables are typically adequate in
describing the output behavior (Li et al., 2001b; Rabitz et al., 1999; Rabitz and Alis,
1999) and this has been verified in a number of computational studies (Wang et al.,
1999) where HDMR expansions up to second-order are often sufficient to describe the
outputs of many realistic systems.

In this work, cut-HDMR procedure is used to develop a new computational method
for predicting the failure probability of structural or mechanical systems subjected to
random loads and material properties. With cut-HDMR method, first a reference point
c ¼ {c1,c2, . . . , cN} is defined in the variable space. In the convergence limit, cut-HDMR
is invariant to the choice of reference point c. In practice, c is chosen within the
neighborhood of interest in the input space. The expansion functions are determined
by evaluating the input-output responses of the system relative to the defined reference
point c along associated lines, surfaces, subvolumes, etc. (i.e. cuts) in the input variable
space. This process reduces to the following relationship for the component functions
in equation (1):

g0 ¼ gðcÞ; ð2Þ

giðxiÞ ¼ g xi; c
i

� �

2 g0; ð3Þ

gi1i2ðxi1 ; xi2Þ ¼ g xi1 ; xi2 ; c
i1i2

� �

2 gi1 ðxi1 Þ2 gi2 ðxi2Þ2 g0; ð4Þ

where the notation g xi; c
i

� �

¼ gðc1; c2; . . . ; ci21; xi; ciþ1; . . . ; cN Þ denotes that all the
input variables are at their reference point values except xi. The g0 term is the output
response of the system evaluated at the reference point c. The higher order terms are
evaluated as cuts in the input variable space through the reference point. Therefore,
each first-order term gi(xi) is evaluated along its variable axis through the reference
point. Each second-order term gi1i2 ðxi1 ; xi2 Þ is evaluated in a plane defined by the binary
set of input variables xi1 ; xi2 through the reference point, etc. The process of subtracting
off the lower order expansion functions removes their dependence to assure a unique
contribution from the new expansion function.

Formulation of factorized HDMR
In the previous section, the response function g(x) is represented as few low order
component functions of HDMR in an additive form. However, when the response
function g(x) is dominantly of multiplicative nature, HDMR approximation may not
be sufficient to accurately estimate the probabilistic characteristics of the system. The
basic purpose of this work is to obtain the general structure of a multiplicative type
response function g(x). Multiplicative form of HDMR for a given multivariate limit
state/performance function g(x) can be represented as (Tunga and Demiralp, 2004,
2005):
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gðxÞ ¼ r0
Y

N

i¼1

ð1þ riðxiÞÞ

" #

Y

N

i1,i2

i1;i2¼1

ð1þ ri1i2 ðxi1 ; xi2 ÞÞ

2

6

6

4

3

7

7

5

£ · · · £ ½1þ r12 ...N ðx1; x2; . . . ; xN Þ�;

ð5Þ

where r0 is a constant term, ri(xi) is a first-order term expressing the effect of variable xi
acting alone, although generally nonlinearly, upon the output g(x). The function
ri1i2 ðxi1 ; xi2 Þ is a second-order term which describes the cooperative effects of the
variables xi1 and xi2 upon the output g(x) and so on. The constant term, the first-order
term, and the higher order terms can be found by comparing equation (5) with
equation (1) (Tunga and Demiralp, 2004). This process reduces to the following
relationship for the component functions in equation (5):

r0 ¼ g0; ð6Þ

riðxiÞ ¼
giðxiÞ

g0
; ð7Þ

ri1i2 ðxi1 ; xi2 Þ ¼
g0gi1i2 ðxi1 ; xi2 Þ2 gi1 ðxi1Þgi2 ðxi2 Þ

ðg0 þ gi1ðxi1 ÞÞðg0 þ gi2 ðxi2 ÞÞ
; ð8Þ

where, g0, gi(xi) and gi1i2 ðxi1 ; xi2 Þ are defined in equations (2)-(4) of Section 2. The
component functions defined in equations (6)-(8) can be further simplified as follows:

r0 ¼ gðcÞ; ð9Þ

riðxiÞ ¼
gðxi; c

iÞ

gðcÞ
2 1; ð10Þ

ri1i2 ðxi1 ; xi2 Þ ¼
gðcÞgðxi1 ; xi2 ; c

i1i2 Þ

gðxi1 ; c
i1Þgðxi2 ; c

i2 Þ
2 1: ð11Þ

Once all the relevant component functions in equation (5) are determined and suitably
represented, then the component functions constitute factorized form of HDMR called
FHDMR (Tunga and Demiralp, 2005). Therefore, first- and second-order
approximation ~gðxÞ of the original implicit response function g(x) can be represented as:

~gðxÞ ¼ gðcÞ
Y

N

i¼1

gðxi; c
iÞ

gðcÞ

" #

; ð12Þ

~gðxÞ ¼ gðcÞ
Y

N

i¼1

gðxi; c
iÞ

gðcÞ

" #

Y

N

i1,i2

i1;i2¼1

gðcÞgðxi1 ; xi2 ; c
i1i2 Þ

gðxi1 ; c
i1 Þgðxi2c

i2 Þ

2

6

6

4

3

7

7

5

: ð13Þ

Response surface generation
Response surface generation using HDMR in equation (1) is exploited in a previous
study (Chowdhury et al., 2008). In this paper, the formulation of response surface using
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FHDMR is discussed. Similar to the HDMR, FHDMR in equation (5) is also exact along
any of the cuts, and the output response g(x) at a point x off of the cuts can be obtained
by following the procedure in step 1 and step 2 below:

Step 1
Interpolate each of the low dimensional HDMR expansion terms with respect to the
input values of the point x. For example, consider the first-order component function
gðxi; c

iÞ ¼ gðc1; c2; . . . ; ci21; xi; ciþ1; . . . ; cN Þ. If for xi ¼ x
j
i
, n function values:

g x
j
i
; c i

� �

¼ g c1; . . . ; ci21; x
j
i
; ciþ1; . . . ; cN

� �

; j ¼ 1; 2; . . . ; n; ð14Þ

are given along the variable xi-axis, the function value for arbitrary xi can be obtained
by the MLS interpolation (Lancaster and Salkauskas, 1986) as:

g xi; c
i

� �

¼
X

n

j¼1

fjðxiÞg
0 x

j
i
; c i

� �

; ð15Þ

where:

g0 x1i ; c
i

� �

.

.

.

.

.

.

g0 xni ; c
i

� �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

¼

f1 x1i
� �

f2 x1i
� �

. . . fn x1i
� �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

f1 xni
� �

f2 xni
� �

. . . fn xni
� �

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

21
g x1i ; c

i
� �

.

.

.

.

.

.

g xni ; c
i

� �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

: ð16Þ

Similarly, consider the second-order component function g xi1 ; xi2 ; c
i1i2

� �

¼ gðc1; . . . ; ci121; xi1 ; ci1þ1; . . . ; ci221; xi2 ; ci2þ1; . . . ; cN Þ. If for xi1 ¼ x
j1
i1
and xi2 ¼ x

j2
i2
,

n 2 function values:

g x
j1
i1
; x j2

i2
; c i1i2

� �

¼ g c1; . . . ; ci121; x
j1
i1
; ci1þ1; . . . ; ci221; x

j2
i2
; ci2þ1; . . . ; cN

� �

;

j1 ¼ 1; 2; . . . ; n; j2 ¼ 1; 2; . . . ; n

ð17Þ

are given on a grid formed by taking n number of sample points along each of the
variable xi1 , and xi2 axis, the function value for arbitrary ðxi1 ; xi2 Þ can be obtained by the
MLS interpolation (Lancaster and Salkauskas, 1986) as:

g xi1 ; xi2 ; c
i1i2

� �

¼
X

n

j1¼1

X

n

j2¼1

fj1j2 xi1 ; xi2
� �

g 0

� c1; . . . ; ci121; x
j1
i1
; ci1þ1; . . . ; ci221; x

j2
i2
; ci2þ1; . . . ; cN

� �

;

ð18Þ

where:
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g0 x1i1 ;x
1
i2
; c i1i2

� �

.

.

.

g0 x1i1 ;x
n
i2
; c i1i2

� �

.

.

.

g0 xni1 ;x
n
i2
; c i1i2

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

¼

f11 x1i1 ;x
1
i2

� �

· · · f1n x1i1 ;x
1
i2

� �

· · · fnn x1i1 ;x
1
i2

� �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

f11 x1i1 ;x
n
i2

� �

· · · f1n x1i1 ;x
n
i2

� �

· · · fnn x1i1 ;x
n
i2

� �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

f11 xni1 ;x
n
i2

� �

· · · f1n xni1 ;x
n
i2

� �

· · · fnn xni1 ;x
n
i2

� �

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

21

�

g x1i1 ;x
1
i2
; c i1i2

� �

.

.

.

g x1i1 ;x
n
i2
; c i1i2

� �

.

.

.

g xni1 ;x
n
i2
; c i1i2

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

ð19Þ

In the above equations the interpolation functions fj(xi) and fj1j2 ðxi1 ; xi2 Þ can be
obtained using the MLS interpolation scheme (Lancaster and Salkauskas, 1986).

By using equation (15), gi(xi) can be generated if n function values are given at
corresponding sample points. Similarly, by using equation (18), gi1i2ðxi1 ; xi2Þ can be
generated if n 2 function values at corresponding sample points are given. The same
procedure shall be repeated for all the first-order component functions, i.e. gi(xi); i ¼ 1,
2, . . . ,N and the second-order component functions, i.e. gi1i2 ðxi1 ; xi2 Þ;
i1; i2 ¼ 1; 2; . . . ; N .

Step 2
Multiply the interpolated values of HDMR expansion terms from zeroth-order to the
highest order retained in keeping with the desired accuracy. This leads to first-order
FHDMR approximation of the function g(x) as:

~gðxÞ ¼ gðcÞ
Y

N

i¼1

X

n

j¼1

fjðxiÞg
0 c1; . . . ; ci21; x

j
i
; ciþ1; . . . ; cN

� �

gðcÞ

2

6

6

6

6

4

3

7

7

7

7

5

; ð20Þ

and second-order approximation of the function g(x) as:
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~gðxÞ ¼ gðcÞ
Y

N

i¼1

X

n

j¼1

fjðxiÞg
0 x

j
i
; c i

� �

gðcÞ

2

6

6

6

6

4

3

7

7

7

7

5

�
Y

N

i1,i2

i1;i2¼1

gðcÞ
X

n

j1¼1

X

n

j2¼1

fj1j2 xi1 ; xi2
� �

g0 x
j1
i1
; xj2

i2
; c i1i2

� �

X

n

j1¼1

fj1 xi1
� �

g0 xi1 ; c
i1

� �

 !

X

n

j2¼1

fj2 xi2
� �

g0 xi2 ; c
i2

� �

 !

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

ð21Þ

If n is the number of sample points taken along each of the variable axis and s is the
order of the component function considered, starting from zeroth-order to lth order,
then total number of function evaluation for interpolation purpose is given by,
Pl

s¼0 N !ðn2 1Þsð Þ=ððN 2 sÞ!s!Þ which grows polynomially with n and s. As a few low
order component functions of HDMR or FHDMR are used, the sample savings due to
HDMR or FHDMR are significant compared to traditional sampling. Hence uncertainty
analysis using HDMR relies on an accurate reduced model being generated with a
small number of full model simulations. An arbitrarily large sample Monte Carlo
analysis can be performed on the outputs approximated by HDMR or FHDMR which
result in the same distributions as obtained through the Monte Carlo analysis of the full
model. The tremendous computational savings result from just having to perform
interpolation instead of full model simulations for output determination.

Moving least squares approximation
Consider a function,u(x) over a domain,V # RK , whereK ¼ 1, 2, or 3. LetVx # V denote
a sub-domain describing the neighborhood of a point, x [ RK located inV. According to
the MLS (Lancaster and Salkauskas, 1986), the approximation, u h(x) of u(x) is:

uhðxÞ ¼
X

m

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ; ð22Þ

where pT ¼ {p1(x), p2(x), . . . , pm(x)} is a vector of complete basis functions of orderm and
a(x) ¼ {a1(x), a2(x), . . . , am(x)} is a vector of unknown parameters that depend on x. The
basis functions should satisfy the following properties:

(1) p1(x) ¼ 1;

(2) piðxÞ [ C sðVÞ; i ¼ 1; 2; . . . ; m where C s(V) is a set of functions that have
continuous derivatives up to order s on V; and

(3) pi(x), i ¼ 1, 2, . . . ,m constitute a linearly independent set.

For example, in one dimension (K ¼ 1) with x1-coordinate:

pTðxÞ ¼ {1; x1};m ¼ 2; ð23Þ

representing linear basis function. Similarly, in two dimensions (K ¼ 2) with x1- and
x2-coordinates linear basis function is:
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pTðxÞ ¼ {1; x1; x2}; m ¼ 3; ð24Þ

In equation (22), the coefficient vector, a(x) is determined by minimizing a weighted
discrete L2 norm, defined as:

J ðxÞ ¼
X

nI

I¼1

wI ðxÞ½p
TðxI ÞaðxÞ2 dI �

2 ¼ ½PaðxÞ2 d�TW½PaðxÞ2 d�; ð25Þ

where xI denotes the coordinates of sample point I, d T ¼ {d1; d2; . . . ; dnI } with dI
representing the nodal parameter (not the nodal values of u h(x)) for sample point I,
W ¼ diag½w1ðxÞ;w2ðxÞ; . . . ; wnt ðxÞ� with wI(x) denoting the weight function
associated with sample point I such that wI(x) $ 0 for all x in the support Vx of
wI(x) and zero otherwise, nt is the number of sample points in the domain V, and:

P ¼

pTðx1Þ

pTðx2Þ

.

.

.

pTðxnt Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

[ L Rnt
£R

m
� �

: ð26Þ

A number of weight functions are available in the literature (Singh, 2004; Rao and
Rahman, 2000). In this study, a weight function proposed by Rao and Rahman (2000) is
used, which is defined as:

wI ðxÞ ¼

1þg 2
z2
I

z2
mI

� �

2
1þg
2

� �

2 1þg 2ð Þ
2

1þg
2

� �

12 1þg 2ð Þ
2

1þg
2

� � ; zI # zmI ;

0; zI . zmI ;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð27Þ

where g is a parameter controlling the shape of the weight function, zI ¼ x2 xIj j
distance from a point x to sample point I, and ZmI is the domain of influence of sample
point I. In the numerical examples presented in this paper the domain of influence ZmI

is chosen to be 2.01 for all sample points. The stationarity of J(x) with respect to a(x)
yields:

AðxÞaðxÞ ¼ CðxÞd; ð28Þ

where:

AðxÞ ¼
X

nt

I¼1

wI ðxÞpðxI Þp
TðxI Þ ¼ PTWP; ð29Þ

CðxÞ ¼ ½w1ðxÞpðx1Þ; . . . ; wnðxÞpðxnÞ� ¼ PTW: ð30Þ

Solving a(x) from equation (28) and then substituting it in equation (22) gives:
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u hðxÞ ¼
X

nt

I¼1

fI ðxÞdI ¼ FTðxÞd; ð31Þ

where:

FTðxÞ ¼ {f1ðxÞ;f2ðxÞ; . . . ; fnt ðxÞ} ¼ pTðxÞA21ðxÞCðxÞ; ð32Þ

is a vector with its Ith component:

fI ðxÞ ¼
X

m

j¼1

pjðxÞ½A
21ðxÞCðxÞ�jI ; ð33Þ

representing the interpolation function of the MLS approximation corresponding to
sample point I.

Failure probability estimation
Equations (20) and (21) provide, respectively, first- and second-order FHDMR
approximation ~gðxÞ of the original implicit limit state/performance function g(x)
using the MLS interpolation functions, constant g(c) term, first-order

g c1; . . . ; ci21; x
j
i
; ciþ1; . . . ; cN

� �

and second-order gðc1; . . . ; ci121; x
j1
i1
; ci1þ1; . . . ; ci221;

x
j2
i2
; ci2þ1; . . . ; cN Þ HDMR terms. Therefore, the failure probability PF can be easily

estimated by performing MCS on first- or second-order approximation ~gðxÞ of the
original implicit limit state/performance function g(x) and is given by:

PF ¼
1

NS

X

NS

i¼1

I ~gðx iÞ , 0
� �

; ð34Þ

where x i is ith realization ofX, NS is the sampling size, I [.] is a deciding function of fail
or safe state such that I ¼ 1, if ~gðx iÞ , 0 otherwise zero. Flow diagram of the
computational process using HDMR and FHDMR and the failure probability PF
estimation by MCS are shown in Figures 1 and 2, respectively. Since first- and
second-order FHDMR approximation leads to explicit representation of the original
implicit limit state/performance function, MCS can be conducted for any sampling size.
The total cost of original function evaluation entails a maximum of (n 2 1) £ N þ 1
and (n 2 1)2(N 2 1)N/2 þ (n 2 1)N þ 1 by the present method using first- and
second-order HDMR/FHDMR approximation, respectively.

Numerical examples
Five numerical examples involving structural/solid-mechanics and geo-technical
engineering problems are presented to illustrate the performance of HDMR and
FHDMR approximation. An exact continuous function to replace a univariate or
multivariate piece wise continuous function may not always be available in general
problems. Rather that seeking an exact continuous function to replace a piece wise
continuous function, an equivalent continuous function can be found based on present
methods.

The estimated failure probabilities are compared through the following five
procedures:
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(1) Method 1. Direct MCS using the exact limit state/performance function, which
may be implicitly defined. This is assumed to be the true failure probability and
is used to benchmark other methods.

(2) Method 2. Failure probability estimation using first-order FHDMR
approximation.

Figure 1.
Flowchart of failure
probability PF estimation
using HDMR
approximation
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(3) Method 3. Failure probability estimation using first-order HDMR approximation.

(4) Method 4. Failure probability estimation using second-order FHDMR

approximation.

(5) Failure probability estimation using second-order HDMR approximation.

Figure 2.
Flowchart of failure

probability PF estimation
using FHDMR
approximation
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The coefficient of variation d of the estimated failure probability PF by direct MCS for
the sampling size NS considered is computed using:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12 PFÞ

NSPF

s

: ð35Þ

When comparing computational efforts by various methods in evaluating the failure
probability PF, the number of original limit state/performance function evaluations is
chosen as the primary comparison tool in this paper. This is because of the fact that,
number of function evaluations indirectly indicates the CPU time usage. For direct
MCS, number of original function evaluations is same as the sampling size. While
evaluating the failure probability PF through direct MCS, CPU time is more because it
involves number of repeated actual finite-element analysis. However, in the present
methods MCS is conducted in conjunction with Methods 2-5. Here, although the same
sampling size as in direct MCS is considered, the number of original function
evaluation is very less. Hence, the computational effort expressed in terms of function
evaluations alone should be carefully interpreted for problems involving explicit
functions. For Methods 2 and 3, equally spaced sample points are deployed along the
variable axis through the reference point. Sampling schemes for first- and second-order
HDMR/FHDMR approximation are explained in Figures 3 and 4.

Example 1. Cantilever beam
A cantilever beam subjected to a tip load P is considered in this example. The limit
state/performance function is defined as tip displacement should be less than 0.15 in:

Figure 3.
Sampling scheme for
first-order
HDMR/FHDMR. For a
function having (a) one
variable (x); (b) two
variables (x1 and x2)

x

c

(a)

x1

x2

(b)
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gðxÞ ¼ 0:152
4Pl 3

Ebh 3
; ð36Þ

where P is tip load and b, h, l are width, height and length of the beam, which are
considered as random variables. The mean values of the random variables are 30 in,
0.8359 in and 2.5093 in, respectively, and standard deviations are 3 in, 0.08 in and
0.25 in, respectively, for width, height and length of the beam. Young’s modulus, E of
the beam is 107 psi. Both length and height are considered as log-normally distributed
and width is considered as a Gaussian. For evaluating the failure probability PF, seven
equally spaced sample points (n ¼ 7) are deployed along each of the variable axis to
form first-order approximation using Methods 2 and 3. The reference point is taken as
the mean values of the random variables. Figure 5 compares the variation of the failure
probability with tip load obtained by different methods. A sample size of 105 is
considered in direct MCS to evaluate the failure probability PF, which ranges from

Figure 4.
Sampling scheme for

second-order
HDMR/FHDMR for a
function having two
variables (x1 and x2)

x1

x2

c

Figure 5.
Variation of failure

probability with tip load
(Example 1)
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0.00502 to 0.08310 and the COV of PF corresponding to this sample size varies from
0.045 to 0.011 (computed using equation (35)) when tip load P varies from 60 to 100 lb.
The estimated failure probability reported in Figure 5 using Methods 1-3 are 0.0284,
0.0301 and 0.0163, respectively, when tip load P ¼ 80 lb. It can be observed that,
Method 2 overestimates the failure probability by 6.14 percent, when compared with
direct MCS results, while Method 3 underpredicts by 42.45 percent. Accumulation of
large amount of error using Method 3, may perhaps be due to neglecting the higher
order cooperative effects and multiplicative nature of the limit state/performance
function. However, both Methods 2 and 3 needs only 19 function evaluations, while
direct MCS requires 105 number of original function evaluations, respectively.

Seven equally spaced sample points (n ¼ 7) along each of the variable axis is
selected to form a regular grid, for construction of second-order approximation using
Methods 4 and 5. The reference point is taken as the mean values of the random
variables. Figure 5 also presents the variation of the failure probability PFwith tip load
and the associated computational effort in terms of number of function evaluations
obtained using Methods 4 and 5. It can be observed from Figure 5 that Method 4 almost
exactly estimates the failure probability (PF ¼ 0.02831) compared with the benchmark
result of direct MCS (PF ¼ 0.02836) when tip load P ¼ 80 lb. The results obtained using
Method 5 (PF ¼ 0.02853) closely matches with direct MCS estimate (PF ¼ 0.02836) and
also closer to Method 2 (PF ¼ 0.0301). This is attributed to consideration of the
second-order cooperative effects in function approximation. For tip load P ¼ 80 lb,
compared to the result obtained using Method 1 (PF ¼ 0.02836), Method 5 produces
much closer estimate of the failure probability (PF ¼ 0.02853) than the result obtained
using Method 3 (PF ¼ 0.0163). But the number of function evaluations required using
Methods 4 and 5 are 127 compared with 19 function evaluations for Methods 2 and 3.
Therefore, to make a balance between the computational cost in terms of function
evaluations and the accuracy, Method 2 seems most suitable, especially for
multiplicative nature of the limit state/performance function.

The effect of number of sample points used for function approximation on the
reliability estimation is examined by carrying a similar analysis varying n form 3 to 9.
Figure 6 (a) and (b) presents, respectively, the variation of the reliability index b and the
estimated failure probability PF with respect to number of sample points, for tip load
P ¼ 80 lb. In Method 2, PF ranges from 0.0118 (258.39 percent) (at n ¼ 3) to 0.0325
(þ14.59 percent) (at n ¼ 9), whereas PF ranges from 0.0011 (296.12 percent) (at n ¼ 3) to
0.0165 (241.89 percent) (at n ¼ 9) using Method 3. Similarly, using Method 4, PF ranges
from 0.0280 (21.23 percent) (at n ¼ 3) to 0.0283 ((0.07 percent) (at n ¼ 9), whereas PF
ranges from 0.0286 (þ1.02 percent) (at n ¼ 3) to 0.0284 (þ0.14 percent) (at n ¼ 9) using
Method 5. Compared with direct MCS, error in the estimated failure probability using
different methods is tabulated in Table I. Table I shows that, Method 2 resulted in drastic
reduction of approximation error of the estimated failure probability from 296.12 to
258.39 percent for n ¼ 3, from255.75 toþ6.49 percent for n ¼ 5, from242.45 toþ6.14
percent for n ¼ 7, and from241.89 toþ14.59 percent for n ¼ 9 comparedwithMethod 3.
Similarly, compared with Method 3, Method 5 also resulted in drastic reduction of
approximation error of the estimated failure probability from296.12 toþ1.02 percent for
n ¼ 3, from255.75 toþ0.67 percent for n ¼ 5, from242.45 toþ0.59 percent for n ¼ 7,
and from 241.89 to þ0.14 percent for n ¼ 9. Similar trend is found by comparing the
results obtained using Methods 2 and 4 and also comparing the results obtained using
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Figure 6.
Variation of reliability

estimation (Example 1).
(a) Reliability index, b;

(b) probability of failure,
PF
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Number of sample points (n)
Method 3 5 7 9

First-order FHDMR (percent) 258.39 þ6.49 þ6.14 þ14.59
First-order HDMR (percent) 296.26 255.75 242.45 241.89
Second-order FHDMR (percent) 21.23 20.25 20.18 20.07
Second-order HDMR (percent) þ1.02 þ0.67 þ0.59 þ0.14

Table I.
Estimation of error using

different methods for
Example 1
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Methods 3 and 4. However, the computational effort in terms of number of function
evaluations for second-order HDMR and FHDMR approximation (Methods 4 and 5)
increased from7 to 19 for n ¼ 3, from13 to 61 for n ¼ 5, from19 to 127 forn ¼ 7, and from
25 to 217 for n ¼ 9, when compared with first-order (Methods 2 and 3).

Example 2. Ten bar truss structure
A 10-bar, linear-elastic, truss structure, shown in Figure 7, considered in this example
to examine the accuracy and efficiency of the proposed reliability method. The Young’s
modulus of the material is 107 psi. Two concentrated forces of 105 lb are applied at
nodes 2 and 3, as shown in Figure 7. The cross-sectional area xi, i ¼ 1, 2, . . . , 10 for each
bar follows normal distribution and has mean m ¼ 2.5 in2 and standard deviation
s ¼ 0.5 in2. The limit state/performance function considered here is the eigenvalue
limit. The eigenvalue must be greater than 9.30 (rad/s2). Hence, the limit
state/performance function is defined as:

gðxÞ ¼ 1:02
Fundamental eigenvalue

9:30
$ 0:0ðFailureÞ: ð37Þ

For evaluating the failure probability PF, seven equally spaced sample points (n ¼ 7)
are deployed along each of the variable axis to form approximation using Methods 2
and 3. The reference point c is taken as mean values of the random variables. Table II

Figure 7.
Ten bar truss structure for
Example 2

2 3 

654 

1 

360 in

360 in360 in

Method Failure probability Number of function evaluation *

Direct Monte Carlo simulation 0.10627 100,000
First-order FHDMR 0.09968 61 * *

First-order HDMR 0.09737 61 * *

Second-order FHDMR 0.10625 1681 * * *

Second-order HDMR 0.10453 1681 * * *

Notes: *Total number of times the original performance function is calculated.; * *ðn2 1Þ£N þ 1 ¼
(7 2 1) £ 10 þ 1 ¼ 61; * * *(n 2 1)2(N 2 1)N/2 þ (n 2 1)N þ 1 ¼ (7 2 1)2 þ (7 2 1)10 þ 1 ¼ 1681

Table II.
Estimation of failure
probability for Example 2
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compares the results obtained by Method 2, Method 3, and direct MCS. A sampling
size NS ¼ 105 is considered in direct MCS to estimate the failure probability PF.
The COV of PF corresponding to this sampling size is 0.0025 (computed using equation
(35)). Table II also contains the computational effort in terms of number of function
evaluations, associated with each of the methods. Compared with the failure
probability obtained using direct MCS (PF ¼ 0.10627), Methods 2 and 3 underestimates
the failure probability by 6.20 percent (PF ¼ 0.09968) and 8.37 percent (PF ¼ 0.09737),
respectively. However, Methods 2 and 3 need only 61 function evaluations, while direct
MCS requires 105 number of original function evaluations, respectively. In an effort to
reduce the approximation error further, second-order HDMR and FHDMR
approximation is adopted in evaluating the failure probability PF using the present
method. In this case, approximation is constructed using a regular grid formed with
seven equally spaced sample points (n ¼ 7) along each of the variable axis. The
reference point c is taken as mean values of the random variables. Table II also shows
the failure probability PF-value obtained using second-order FHDMR (Method 4)
PF ¼ 0:10625ð Þ and second-order HDMR PF ¼ 0:10453ð Þ (Method 5) approximation
and the associated computational effort. Methods 4 and 5 resulted in significant
reduction in error of the estimated failure probability from26.20 to20.02 percent and
28.37 to 21.64 percent, respectively, with an increase in the number of function
evaluations from 61 to 1681, as compared with Methods 2 and 3.

The effect of number of sample points used for first- and second-order HDMR and
FHDMR approximation on the reliability estimation is examined by carrying a similar
analysis varying n form 3 to 9. Figure 8 (a) and (b) presents, respectively, the variation of
the reliability indexPF and the estimated failure probabilityPFwith respect to number of
sample points. Using Method 2, PF ranges from 0.14656 (þ37.91 percent) (at n ¼ 3) to
0.09954 (26.33 percent) (at n ¼ 9), whereas PF ranges from 0.14971 (þ40.88 percent) (at
n ¼ 3) to 0.09719 (28.54 percent) (at n ¼ 9) using Method 3. Similarly, using Method 4,
PF ranges from 0.09954 (26.33 percent) (at n ¼ 3) to 0.10625 (20.02 percent) (at n ¼ 9),
whereas PF ranges from 0.09863 (27.19 percent) (at n ¼ 3) to 0.0284 (20.56 percent) (at
n ¼ 9) using Method 5. Compared with direct MCS, error in the estimated failure
probability using different methods is tabulated in Table III. It can be noticed that,
Method 2 resulted in reduction of approximation error of the estimated failure
probability from240.88 toþ37.91 percent for n ¼ 3, from25.81 to23.86 percent for
n ¼ 5, from 28.37 to 26.20 percent for n ¼ 7, and from 28.54 to 26.33 percent for
n ¼ 9 compared with Method 3. Similarly, compared with Method 3, Method 4 resulted
in drastic reduction of approximation error of the estimated failure probability from
240.88 to26.33 percent for n ¼ 3, from25.81 to21.90 percent for n ¼ 5, from28.37
to20.02 percent for n ¼ 7, and from28.54 to20.02 percent for n ¼ 9. Compared with
Method 3, Method 5 also resulted in drastic reduction of approximation error of the
estimated failure probability from þ40.88 to 27.19 percent for n ¼ 3, from 25.81 to
24.74 percent for n ¼ 5, from 28.37 to 21.64 percent for n ¼ 7, and from 28.54 to
20.56 percent for n ¼ 9. This is attributed mainly to consideration of the cooperative
effects in Method 5 for approximation. However, the computational effort in terms of
number of function evaluations for second-order HDMR and FHDMR approximation
(Methods 4 and 5) increased from 21 to 201 for n ¼ 3, from 41 to 761 for n ¼ 5, from 61 to
1681 for n ¼ 7, and from 81 to 2961 for n ¼ 9, when compared with first-order HDMR
and FHDMR approximation (Methods 2 and 3).
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Figure 8.
Variation of reliability
estimation (Example 2).
(a) Reliability index, b;
(b) probability of failure,PF
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No. of sample points, n

5

Number of sample points (n)
Method (percent) 3 5 7 9

First-order FHDMR þ37.91 23.86 26.20 26.33
First-order HDMR 240.88 25.81 28.37 28.54
Second-order FHDMR 26.33 21.90 20.02 20.02
Second-order HDMR 27.19 24.74 21.64 20.56

Table III.
Estimation of error using
different methods for
Example 2
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Example 3. Soil settlement problem
This is a practical engineering example studied earlier by Ang and Tang (1975) and
Shan and Wang (2006). The settlement of a point A in Figure 9 caused by the
construction of a structure can be shown to be primarily caused by the consolidation of
the clay layer. Suppose the contribution of settlement due to secondary consolidation is
negligible. For normally loaded clay, the settlement S is given by:

S ¼
Cc

1þ e0
H log

p0 þ Dp

p0
; ð38Þ

where Cc Cc is the compression index of the clay; e0 is the void ratio of the clay layer
before loading; H is the thickness of the clay layer; p0 is the original effective pressure
at point B (mid height of the clay layer) before loading; and Dp is the increase in
pressure at point B caused by the construction of the structure; “log” denotes logarithm
to the base 10. Because of the non-uniform thickness and lack of homogeneity of the
clay layer, the settlement predicted by the empirical formula could be subject to
uncertainty in predicted settlement.

Suppose satisfactory performance requires that the settlement be less than 2.5 in.
The statistical properties of the random variables are presented in Table IV. Determine
the probability of excessive settlement at point B in Figure 9. The limit
state/performance function is defined as:

gðxÞ ¼ 2:52
Cc

1þ e0
H log

p0 þ Dp

p0
: ð39Þ

For evaluating the failure probability PF, five equally spaced sample points (n ¼ 5)
are deployed along each of the variable axis to formapproximation usingMethods 2 and 3.

Random variable Mean COV Distribution type

Cc 0.396 0.25 Gaussian
e0 1.190 0.15 Gaussian
H 168 in 0.05 Gaussian
p0 3.72 ksf 0.05 Gaussian
Dp 0.50 0.20 Gaussian

Table IV.
Statistical properties of

the random variables for
Example 3

Figure 9.
Soil profile for Example 3

H

A Structure

B Normally consolidated clay

Sand layer
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The reference point c is taken as mean values of the random variables. Table V compares
the results obtained byMethod 2, Method 3, and direct MCS. A sampling sizeNS ¼ 106 is
considered in direct MCS to estimate the failure probability PF. The COV of PF
corresponding to this sampling size is 0.003 (computed using equation (35)). Table V
also contains the computational effort in terms of number of function evaluations,
associatedwith each of themethods. Comparedwith the failure probability obtainedusing
directMCS (PF ¼ 0.08096),Methods 2 and 3 underestimates the failure probability by 0.41
percent (PF ¼ 0.08063) and 18.16 percent (PF ¼ 0.06625), respectively. However, Methods
2 and 3 need only 21 function evaluations, respectively, while direct MCS requires 106

number of original function evaluations. In additionTableVshows thenumber of function
evaluations and the failure probability estimate reported by Shan andWang (2006) using
failure surface frontier.

In an effort to reduce the approximation error further, second-order HDMR and
FHDMR is used in evaluating the failure probability PF. In this case, approximation of
the limit state/performance function is constructed using a regular grid formed with
five equally spaced sample points (n ¼ 5) along each of the variable axis. The reference
point c is taken as mean values of the random variables. Table V also presents the
failure probability PF-value obtained using second-order FHDMR (Method 4)
(PF ¼ 0.08072) and second-order HDMR (PF ¼ 0.08013) (Method 5) approximation
and the associated computational effort. Methods 4 and 5 resulted in significant
reduction in error of the estimated failure probability from20.41 to20.29 percent and
218.16 to21.03 percent, respectively, with an increasing function evaluation from 21
to 181, as compared with Methods 2 and 3.

The effect of number of sample points used for first- and second-order HDMR and
FHDMR approximation on the reliability estimation is examined by carrying a similar
analysis varying n form 3 to 9. Figure 10 (a) and (b) presents, respectively, the variation
of the reliability index b and the estimated failure probability PFwith respect to number
of sample points. In Method 2, PF ranges from 0.06612 (218.33 percent) (at n ¼ 3) to
0.08167 (þ0.88 percent) (at n ¼ 9), whereas PF ranges from 0.05059 (237.51 percent)
(at n ¼ 3) to 0.06742 (216.72 percent) (at n ¼ 9) using Method 3. Similarly, using
Method 4, PF ranges from 0.08001 (21.17 percent) (at n ¼ 3) to 0.08091 (20.06 percent)
(at n ¼ 9), whereas PF ranges from 0.07852 (23.01 percent) (at n ¼ 3) to 0.08081 (20.18
percent) (at n ¼ 9) using Method 5. Compared with direct MCS, error in the estimated
failure probability using different methods is tabulated in Table VI. Method 2
resulted in reduction of approximation error of the estimated failure probability from

Method Failure probability Number of function evaluation *

Direct Monte Carlo simulation 0.08096 100,000
Failure surface frontier (Shan and Wang, 2006) 0.09020 2213
First-order FHDMR 0.08063 21 * *

First-order HDMR 0.06625 21 * *

Second-order FHDMR 0.08072 181 * * *

Second-order HDMR 0.08013 181 * * *

Notes: *Total number of times the original performance function is calculated; * *(n 2 1)
£ N þ 1 ¼ (5 2 1) £ 5 þ 1 ¼ 21; * * *(n 2 1)2(N 2 1)N /2 þ (n 2 1) N þ 1 ¼ (5 2 1)2 (5 2 1)5
/2 þ (5 2 1)5 þ 1 ¼ 181

Table V.
Estimation of failure
probability for Example 3
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237.51 to 218.33 percent for n ¼ 3, from 218.16 to 20.41 percent for n ¼ 5, from
216.78 to þ0.82 percent for n ¼ 7, and from 216.72 to þ0.88 percent for n ¼ 9
compared with Method 3. Similar trend is found by comparing the results obtained
using Methods 2 and 4, by comparing the results obtained using Methods 3 and 4

Figure 10.
Variation of reliability

estimation (Example 3).
(a) Reliability index, b; and
(b) probability of failure,PF
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No. of sample points, n

5

Number of sample points, n
Method (percent) 3 5 7 9

First-order FHDMR 218.33 20.41 þ0.82 þ0.88
First-order HDMR 237.51 218.16 216.78 216.72
Second-order FHDMR 21.17 20.29 20.08 20.06
Second-order HDMR 23.01 21.03 20.21 20.18

Table VI.
Estimation of error using

different methods for
Example 3
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and by comparing the results obtained using Methods 3 and 5. However, the
computational effort in terms of number of function evaluations for second-order
HDMR and FHDMR approximation (Methods 4 and 5) increased from 11 to 51 for n ¼ 3,
from 21 to 181 for n ¼ 5, from 31 to 391 for n ¼ 7, and from 41 to 681 for n ¼ 9,
when compared with first-order HDMR and FHDMR approximation (Methods 2 and 3).

Example 4. Burst margin of rotating disk
Consider an annular disk (Rahman and Wei, 2006) of inner radius Ri, outer radius R0,
shown in Figure 11. The disk is subject to an angular velocity v about an axis
perpendicular to its plane at the center. The ultimate strength material is Su and
material utilization factor is am. The burst margin is the safety margin before an
overstress condition occurs due to the stress on the part being too large for the material
to withstand. The satisfactory performance of the disk is defined when the burst
margin Mb, exceeds the threshold value of 0.37473:

Mb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amSu

r 2vp
60ð Þ

2
R3
o2R3

i

� �

3ð385:82Þ Ro2Rið Þ

� �

v

u

u

u

t

: ð40Þ

Therefore, the limit state/performance function can be defined as:

gðxÞ ¼ Mbðam; Su; r;v;R0;RiÞ2 0:37473: ð41Þ

The statistical properties of the random variables are listed in Table VII. For evaluating
the failure probability PF, nine equally spaced sample points (n ¼ 9) are deployed
along each of the variable axis to form first-order HDMR/FHDMR approximation.

Figure 11.
Rotating disk for
Example 4

Ro 

Ri ω

Random variable am Su (lb/in
2) r (lb/in2) v (rpm) R0 (in) Ri (in)

Distribution Weibull * Gaussian Uniform * * Gaussian Gaussian Gaussian
Mean 0.9378 2.20 £ 105 0.29 2.10 £ 104 24 8
Standard deviation 0.04655 5.0 £ 103 0.00577 1.0 £ 103 0.50 0.30

Notes: *Scale parameter ¼ 25.508; shape parameter ¼ 0.958; * *Uniformly distributed over (0.28 2 0.3)

Table VII.
Statistical properties of
the random variables of
rotating disk
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The reference point c is taken as mean values of the random variables. Table VIII
compares the results obtained by Method 2, Method 3, and direct MCS. A sampling size
NS ¼ 106 is considered in direct MCS to estimate the failure probability PF. The COV of
PF corresponding to this sampling size is 0.031 (computed using equation (35)).
Table VIII also contains the computational effort in terms of number of function
evaluations, associated with each of the methods. Compared with the failure probability
obtained using direct MCS (PF ¼ 0.00101), Methods 2 and 3 overestimate the failure
probability by 0.99 percent (PF ¼ 0.00102) and 59.41 percent (PF ¼ 0.00161),
respectively. However, Methods 2 and 3 need only 49 function evaluations, while
direct MCS requires 106 number of original function evaluations, respectively. In an
effort to reduce the approximation error further, the failure probability PF is estimated
using second-order FHDMR and HDMR approximation. In this case second-order
approximation of the function defined in equation (41) is constructed using a regular grid
formed with nine equally spaced sample points (n ¼ 9) along each of the variable axis.
The reference point c is taken as mean values of the random variables. Table VIII also
shows the failure probability PF-value obtained with the present method using
second-order FHDMR (Method 4) (PF ¼ 0.00101) and second-order HDMR
(PF ¼ 0.00102) (Method 5) approximation and the associated computational effort.
Method 4 estimates the exact failure probability, while using Method 5 resulted in
significant reduction in error of the estimated failure probability fromþ59.41 percent to
þ0.99 percent with an increasing function evaluation from 49 to 1009, as comparedwith
Method 3. In addition Table V shows the number of function evaluations and the failure
probability estimate reported by Rahman and Wei (2006) using MPP(based univariate
method.

The effect of number of sample points used for first- and second-order HDMR and
FHDMR approximation on the reliability estimation is examined by carrying a similar
analysis varying n form 3 to 11. Figure 12 (a) and (b) presents, respectively, the
variation of the reliability index b and the estimated failure probability PFwith respect
to number of sample points. Using Method 2, PF ranges from 0.03148 (þ3.016 £ 103

percent) (at n ¼ 3) to 0.00096 (24.95 percent) (at n ¼ 11), whereas PF ranges from
0.03165 (þ3.034 £ 103 percent) (at n ¼ 3) to 0.00155 (þ53.46 percent) (at n ¼ 11)
using Method 3. Similarly, using Method 4, PF ranges from 0.00148 (þ46.53 percent) (at
n ¼ 3) to 0.00100 (20.99 percent) (at n ¼ 11), whereas PF ranges from 0.00151 (þ49.51
percent) (at n ¼ 3) to 0.00102 (þ0.99 percent) (at n ¼ 11) using Method 5.

Method Failure probability
Number of function

evaluation *

Direct Monte Carlo simulation 0.00101 1,000,000
MPP(based univariate method (Rahman and Wei, 2006) 0.00101 167
First-order FHDMR 0.00102 49 * *

First-order HDMR 0.00161 49 * *

Second-order FHDMR 0.00101 1009 * * *

Second-order HDMR 0.00102 1009 * * *

Notes: *Total number of times the original performance function is calculated;
* *(n 2 1) £ N þ 1 ¼ (9 2 1) £ 6 þ 1 ¼ 49; * * *(n 2 1)2 (N 2 1)N /2 þ (n 2 1)N þ 1 ¼
(9 2 1)2(6 2 1)6/2 þ (9 2 1)6 þ 1 ¼ 1009

Table VIII.
Estimation of failure

probability for Example 4

Structural
reliability
analysis

731

D
o
w

n
lo

ad
ed

 b
y
 K

u
n
g
li

g
a 

T
ek

n
is

k
a 

H
ö
g
sk

o
la

n
 A

t 
0
1
:0

0
 1

1
 F

eb
ru

ar
y
 2

0
1
6
 (

P
T

)



Compared with direct MCS, error in the estimated failure probability using different
methods is tabulated in Table IX. It can be observed from Table IX that, Method 2
resulted in reduction of approximation error of the estimated failure probability from
þ3.034 £ 103 percent to þ3.016 £ 103 percent for n ¼ 3, from þ461.38 percent
to þ422.77 percent for n ¼ 5, from þ109.90 percent to þ54.46 percent for n ¼ 7,

Figure 12.
Variation of reliability
estimation (Example 4).
(a) Reliability index, b;
(b) probability of failure,
PF
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Number of sample points, n
Method 3 5 7 9 11

First-order FHDMR (percent) þ3.02 £ 103 þ422.77 þ54.46 þ0.99 24.95
First-order HDMR (percent) þ3.03 £ 103 þ461.38 þ109.90 þ59.41 þ53.46
Second-order FHDMR (percent) þ46.53 þ0.99 0.00 0.00 þ0.99
Second-order HDMR (percent) þ49.51 þ7.92 þ2.97 þ0.99 þ0.99

Table IX.
Estimation of error using
different methods for
Example 4
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fromþ59.41 percent toþ0.99 percent for n ¼ 9, and fromþ53.46 to24.95 percent for
n ¼ 11 compared with Method 3. Similarly, compared with Method 2, Method 4
resulted in drastic reduction of approximation error of the estimated failure probability
from þ3.016 £ 103 percent to þ46.53 percent for n ¼ 3, from þ422.77 to þ0.99
percent for n ¼ 5, fromþ54.46 to 0.00 percent for n ¼ 7, fromþ0.99 to 0.00 percent for
n ¼ 9, and from 24.95 to 20.99 percent for n ¼ 11. Similar trend is observed by
comparing the results obtained using Methods 3 and 4, by comparing the results
obtained using Methods 3 and 5 and by comparing the results obtained using Methods
4 and 5. However, the computational effort in terms of number of function evaluations
for second-order HDMR and FHDMR approximation (Methods 4 and 5) increased from
13 to 73 for n ¼ 3, from 25 to 265 for n ¼ 5, from 37 to 577 for n ¼ 7, from 49 to 1009 for
n ¼ 9, and from 61 to 1561 for n ¼ 9 when compared with first-order HDMR and
FHDMR approximation (Methods 2 and 3).

Example 5. Fatigue crack growth of edge cracked plate
In this example, fatigue crack growth of an edge crack plate studied by Harkness et al.
(1992), is considered. The objective of this example is to illustrate the effectiveness of
the proposed method in solving fatigue reliability. Our analysis examines the
uncertainty in fatigue life through characterization of the uncertainties in the
parameters governing fatigue life and modeling crack growth.

Problem definition and input. Fatigue crack growth was modeled by the Paris law
(Paris and Erdogan, 1963) in plane strain. According to this method, fatigue
crack-initiation life NF is defined as:

NF

Z af

ai

da

DðDKeqÞ
h ; ð42Þ

where ai is the initial crack length and af is the crack length at failure; D, h are the
material parameters; DKeq is the equivalent mode I stress intensity factor, KI, at peak
loading. According to Paris law crack growth occurs in the direction of maximum hoop
stress and crack growth direction, u, measured from the crack tip tangent, satisfies:

sin uDKI þ ð3 cos u2 1ÞDKII ¼ 0; ð43Þ

and DKeq is:

DKeq ¼ cos2ðu=2Þ½cosðu=2ÞDKI 2 3 sinðu=2ÞKII �; ð44Þ

Failure is defined as the fatigue life NF, is less than the design threshold value, NI. The
design threshold value is based on target reliability and therefore, can be controlled. It
can be observed from equation (42) that fatigue life expression involves several
uncertain variables, making the fatigue life uncertain. The limit state/performance
function can be expressed as:

gðxÞ ¼ NFðxÞ2 N I : ð45Þ

Since negative and very small positive values of growth parameters D and h are
unrealistic, therefore, shifted log-normal distributions are assigned to both parameters.
The statistical parameters and the marginal densities of the random variables are
presented in Table X. For evaluating the failure probability PF, seven equally spaced
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sample points (n ¼ 7) are deployed along each of the variable axis to form first-order
approximation of the function in equation (45). The reference point is taken as the mean
values of the random variables. Figure 13 compares the variation of failure probability
with design threshold value obtained by different methods. It can be observed that,
Method 2 provides significant accuracy to the failure probability estimation, when
compared with direct MCS results, while using Method 3 large amount of error is
accumulated in the predicted result. Accumulation of the large amount of error using
Method 3 can be attributed to neglecting the higher order cooperative effects in Method
3 and multiplicative nature of the limit state/performance function. However, both
Methods 2 and 3 needs only 37 function evaluations, while direct MCS requires
105 2 109 number of original function evaluations, respectively, for different design
threshold values.

Seven equally spaced sample points (n ¼ 7) along each of the variable axis is
selected to form a regular grid, for second-order approximation using Methods 4 and 5.
The reference point is taken as the mean values of the random variables. Figure 13 also
presents the variation of the failure probability PF with design threshold value using

Figure 13.
Variation of failure
probability (Example 5)
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Design threshold value, NI

MCS

First-order FHDMR

First-order HDMR

Second-order FHDMR

Second-order HDMR

Random variable Mean Cov Distribution type

D 6.8 £ 10212 0.05 Lognormal
n 3.60 0.01 Lognormal
smax 75 0.03 Gaussian
smin 25 0.03 Gaussian
ai 3.1 £ 1024 0.186 Uniform *

KIC 165 0.015 Lognormal

Note: *Uniformly distributed over (2.1 £ 1024
2 4.1 £ 1024)

Table X.
Statistical properties of
the random variables for
Example 5
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Methods 4 and 5. It can be observed from Figure 13 that Method 4 almost exactly
estimate the failure probability compared to the benchmark results obtained using
Method 1. In addition, the results obtained using Method 5, are closely matching with
the direct MCS. This is attributed due to consideration of the second-order cooperative
effects in approximations using Method 5. But the number of function evaluations
required using Methods 4 and 5 are 577 compared with 37 function evaluations for
Methods 2 and 3. Therefore, to make a balance between the computational cost in
terms of function evaluations and the accuracy, Method 2 seems most suitable,
especially for multiplicative nature of the limit state/performance function.

The effect of number of sample points used for first and second-order
approximation on the reliability estimation is examined by carrying a similar
analysis varying n form 3 to 9. Figure 14 (a) and (b) presents, respectively, the variation

Figure 14.
Variation of reliability

estimation (Example 5).
(a) Reliability index, b;

(b) probability of failure,PF
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of the reliability index b and the estimated failure probability PF with respect to
number of sample points, for design threshold value, NI ¼ 4 £ 106. It can be observed
from Figure 14 that very small value of n gives rise to large error due to lose of
uncertainty information in approximation of the limit state/performance function using
Methods 2 and 4. Similar trend is also found by comparing the results obtained using
Methods 3 and 5. However, the computational effort in terms of number of function
evaluations for second-order HDMR and FHDMR (Methods 4 and 5) increased from 13
to 73 for n ¼ 3, from 25 to 265 for n ¼ 5, from 37 to 577 for n ¼ 7, from 49 to 1009 for
n ¼ 9, and from 61 to 1561 for n ¼ 9 when compared with first-order HDMR and
FHDMR approximation (Methods 2 and 3).

Summary and conclusions
This paper addressed a comparative assessment of approximation methods based on
HDMR and FHDMR for predicting the failure probability of systems subject to random
loads, material properties, and geometry in an efficient manner. Five numerical
examples are illustrated to show the performance of approximation techniques based
on first- and second-order HDMR/FHDMR. Comparisons were made with direct MCS
to evaluate the accuracy and computational efficiency of the present methods. HDMR
approximation works well when the sought multivariate response function has an
additive nature. This is because of the structure of the right hand side of HDMR
expansion. But, for multiplicative nature of the multivariate response function, HDMR
based method cannot be useful. At this juncture, the factorized form of HDMR can be
used for approximation of an implicit limit state/performance function. This method
works superior when the response function is dominantly of multiplicative nature.
However, inclusion of the higher order cooperative effects in HDMR approximation
provides significant accuracy to the limit state/performance function of dominantly
multiplicative nature, but the number of original function evaluation increases
significantly over first-order HDMR/FHDMR approximation. Numerical examples also
support these observations. It is observed that HDMR/FHDMR based approximation
methods not only yields more accurate estimate of the probability of failure than the
alternative approximate methods in highly nonlinear problems, but also reduces the
computational effort significantly over direct simulation method.

A parametric study on HDMR and FHDMR approximation methods has also been
reported in this paper. First-order FHDMR approximation provides desired accuracy to
the predicted failure probability with least number of function evaluations. In order to
reduce the approximation error further, second-order FHDMR approximation could be
used in reliability analysis, but the number of function evaluations increases
significantly compared to first-order. Number of sample points n used in first and
second-order approximation was set to different values to investigate its effect on the
estimated failure probability. Very small value of n should be avoided owing to lose of
uncertainty information in present approximation methods.
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