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fabry–pérot modes associated 
with hyperbolic‑like dispersion 
in dielectric photonic crystals 
and demonstration of a bending 
angle sensor at microwave 
frequencies
R. Rachel Darthy1, c. Venkateswaran1, V. Subramanian2, Zhengbiao ouyang3 & n. Yogesh1*

the dispersion properties of metamaterials and photonic crystals (phcs) lead to an intensive research 

in the development of cavity resonators for the confinement of electromagnetic (e-m) radiation. In 
this work, we investigate the formation of fabry–pérot (fp) modes associated with hyperbolic‑like 

dispersion (HLD) regimes in two‑dimensional dielectric phcs. conventionally, fp modes are formed 

using an optical etalon, in which electromagnetic (e-m) waves reflecting from a partially reflecting 
mirror separated by a distance can interfere constructively and form a resonating mode. the fp mode 

observed in dielectric phcs is formed due to the interference of cylindrical wavefronts inside the phc 

interface at HLD frequencies. the fp modes in phcs are surface localized, in which maxima/minima of 

the electric field lies along the air–PhC interface as a standing wave pattern and decays in air medium. 
projected bandstructure, eigen frequency contours (efc), phase and group index calculations are 

carried out to explain the formation of FP modes in PhCs under different coupling cases. By varying 
the PhC dimension, FP modes with different spatial profiles are witnessed and the role of source 
position in exciting specific mode is demonstrated. The observed FP modes in PhCs are compared 
with the FP mode in an ideal indefinite slab. Based on the FP resonance in PhCs, a sensing device 
capable of detecting a bending angle less than 0.05◦ is demonstrated numerically. the fp modes in 

phcs are scalable to other parts of e‑m spectra so that the bending angle sensing can be extendable to 

terahertz and optical domains.

Confining electromagnetic (e-m) radiation is one of the primary research objectives of photonics and a cavity 
resonator is a simple device to accomplish it, with features such as high quality factor, small mode-volumes, 
switching, filtering and so on. For example, a pair of mirrors separated by a distance can support selective stand-
ing wave resonance also known as Fabry–Perot (FP) resonance playing an inevitable part in spectroscopic tech-
niques and resonant light-matter interactions. Instead of mirrors as a separate component, interface of dielectric/
magnetic materials can act as a reflecting surface depending on the strength of dielectric permittivity (εr) and 
magnetic permeability (μr), and it can support FP modes in varieties of dielectric resonators. A rectangular bar 
of silicon nanowire and dielectric nano ribbons are a few examples for supporting FP  modes1,2.

The arrival of artificial e-m structures such as photonic crystals (PhCs)3 and metamaterials (MTMs)4 revolu-
tionizes the FP resonator’s development and overcomes many limitations of conventional FP resonators. Photonic 
crystals are the wavelength comparable periodic dielectric/magnetic constituents arranged in one-, two-, and 
three-dimensions offer bandgap for e-m radiation, and exhibit anomalous dispersion such as negative refraction, 
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self-collimation and ultra-high  divergence3,5. On the other hand, MTMs are sub-wavelength periodic structures 
whose constitutive parameters such as εr and μr can have negative values, and they exhibit novel e-m phenomena 
such as negative refraction, double-focusing, sub-wavelength imaging, cloaking and reversal of Doppler  shit4,6. 
The PhC multilayer can act as a mirror and it can inhibit spontaneous emission at bandgap  frequencies7,8. Hence 
the FP microcavity made of a PhC can enhance laser  efficiency7. Similarly the role of MTMS in miniaturization 
of FP resonators is crucial, as miniaturized MTMs provide desired reflectance characteristics from microwave 
to visible  frequencies9,10.

Recently much attention has been paid on the exploration of dispersion characteristics for the design of 
resonators supporting FP modes, especially the hyperbolic  dispersion11–13. When the principal components of εr 
and μr tensors of an anisotropic medium have negative signs, the dispersion relation will trace out a hyperbolic 
eigenfrequency contour (EFC) in a wavevector plane, and such a medium is known as hyperbolic metamaterial 
(HMM) or an indefinite  medium14–18. There are many artificial e-m structures are available for the realization of 
indefinite medium such as layered metal-dielectric  systems19, multilayered fishnet  structures20, nanorod  arrays21, 
graphene  MTM22,  metasurfaces23, liquid crystals with silver  nanoparticles24, transmission  lines25 and photonic 
 hypercrystals26.

Since hyperbolic EFC is opened, an indefinite medium can support large wavevectors so that FP resonator 
made of an indefinite medium can confine e-m modes with ultra-small mode volumes. Moreover, an indefinite 
medium can provide total-internal reflection condition for small critical angle due to large dielectric constant 
 values11,13. It is also reported that FP resonator made of an indefinite medium follows anomalous scaling law, in 
which different resonator sizes support same e-m frequency. Apart from 3-D FP  resonator11, planar type magnetic 
hyperbolic cavity exhibiting FP resonance is also reported  recently13.

In this work, we explore the anomalous dispersion characteristics of two-dimensional dielectric  PhCs27–32, 
especially the hyperbolic-like dispersion (HLD) regimes for the investigation of e-m mode confinement. A 
PhC made of all-dielectric constituents can support various dispersion regimes ranging from isotropic positive 
medium response (circular EFC) to left-handed behaviour (circular EFC but with negative effective index) 27,29 
including an indefinite medium response (HLD-like EFCs)30. All-angle negative refraction without negative 
index was a typical example of an indefinite medium response of a dielectric PhC at first band  frequencies30. 
Similarly, the HLD regime at higher-photonic bands can show anomalous refractive behaviour, and is capable 
of providing internal reflection condition suitable for FP mode formation as that of an ideal indefinite medium. 
However, it should be stressed that unlike the HMM or the examples of indefinite media discussed above, dielec-
tric PhC does not have negative permittivity plasmonic material in it. The HLD regimes in dielectric PhCs are 
manifested from strong anisotropy and periodic modulation of dielectric  elements29. Moreover, the assignment 
of constitutive parameter such as effective refractive index for a dielectric PhC is limited to stringent effective 
medium  conditions31,32.

In the present work, we investigate the FP mode associated with HLD regimes of two-dimensional dielectric 
PhC at microwave frequencies through photonic bandstructure calculations, ray tracing, and refractive index 
calculations. Full-wave e-m computations are carried out to reveal the refraction and interference pictures 
on the formation of FP mode. By varying the PhC slab’s dimensions, we have observed the interesting spatial 
profiles of FP modes and we have also found that the role of e-m source position is important in exciting these 
modes. The FP mode in PhCs at HLD regimes is compared with the FP mode in an ideal indefinite medium. 
Finally, we demonstrate the application aspect of FP modes in sensing the bending angle and curvature of PhCs 
at microwave frequencies.

Results
observation of fp Modes and HLD regimes in dielectric phcs. The square lattice PhC formed by 
the periodic arrangement of circular glass rods of radius r = 0.3a in an air background is considered. Here ‘a’ 
is the lattice constant taken to be 1 cm. Glass has the relative dielectric permittivity of 5.5. When the transverse 
electric (TE) point source is excited near a glass PhC slab of various thicknesses, FP modes are formed as shown 
in Fig. 1. When the thickness of the PhC slab is increased from 6a to 9a, FP resonance is red-shifted linearly from 
14.511 to 14.482 GHz as shown in Fig. 1. Similar to the conventional FP resonator, thickness decides the stand-
ing wave resonance in dielectric PhCs. It is also noticed that the mode pattern is localized on the surface, where 
the maxima/minima of electric field is localized along y-direction at the PhC-air interface, and the outside PhC, 
it decays in the air along the x-direction. The localization of mode on surface is well-studied phenomenon in 
 PhCs33,34 and by harnessing the surface of PhCs, one can engineer characteristic e-m modes suitable for various 
 applications35–38. In the present work, we investigate how the anomalous dispersion of PhCs plays major role in 
the formation of FP modes. Especially the observed mode suggests that the refracted wavefronts are interfering 
constructively inside the PhC depending on the thickness of the PhC. To verify the formation of FP modes, the 
projected band structure and EFCs are plotted in Fig. 2.

Figure 2a shows the TE mode projected bandstructure of a glass PhC. In the projected band structure, various 
modes are designated as follows; (1) modes which are extended (E) in air and extended (E) in PhC, are called as 
EE modes. These modes are propagating modes. (2) Modes which are decayed (D) in the air but extended (E) 
in PhC are called as DE modes. From Fig. 2a, it is observed that DE modes fall below the light line. (3) Modes 
which are extended (E) in air but decayed (D) in PhCs are called as ED modes and these modes are forbidden 
as they correspond to the bandgap regime of the  PhC33,34. It is observed from Fig. 2a that the FP mode for a 
glass PhC at 0.4836(c/a) shares the regimes both above (EE regime) and below the light line (DE regime). This 
aspect indicates that when a point source is excited from air medium, e-m wave is coupled strongly for almost 
all range of kx values because mode above the light line will be coupled effectively to the PhC. On the other hand, 
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near band-edge, i.e., at higher kx values, this mode [0.4836(c/a)] falls below the light line. Hence the refracted 
cylindrical wavefront at a higher incident angle is expected to be reflected inside the PhC.

In Fig. 2b, EFCs are plotted for air and glass PhC at 0.4836(c/a). Firstly, it is found that the shape of the EFC at 
0.4836(c/a) is hyperbolic-like. It should be noted that unlike a trivial hyperbola, hyperbolic regimes in PhCs are 
closed due to the periodic modulation of dielectrics in both x and y directions. Secondly, it is observed that the 
size of the air EFC is larger than the size of the PhC EFC at 0.4836(c/a), i.e., air EFC includes PhC EFC. Hence 
an e-m wave incident from the air for a broad range of incident angles is effectively coupled to the PhC EFC. 
From the projected mode and EFC plot, we come to know that FP mode observed in glass PhC corresponds to 
the HLD EFC, and in case of a glass PhC, most of the HLD EFC is available for coupling.

observation of fp modes in phcs with strong anisotropy. Apart from glass PhC, FP modes associ-
ated with HLD regimes in dielectric PhCs are also verified in the case of a PhC with strong anisotropy. To show 
this, two different PhCs with dielectric contrasts 22:1 (PhC2) and 100:1 (PhC3) are considered. Except dielectric 
constant values (PhC2 rods εr = 22 and PhC3 rods εr = 100 ), all other parameters such as lattice type, lattice 
constant, radius of atom are same as that of the glass PhC. The projected bandstructure, EFC plot and FP mode 
profiles are shown in Fig. 3. In the case of strong anisotropy also, FP modes are associated with HLD regimes 
but with different coupling behavior. In the case of PhC2, the HLD EFC is intersecting with air EFC (Fig. 3c) 
whereas, in the case of PhC3, the HLD EFC is large than air EFC (Fig. 3d). However, both the cases show FP 
resonance at 0.2786 (c/a) and 0.1297 (c/a), as shown in Fig. 3e,f, respectively. Hence under three different cou-
pling cases, i.e. (1) air EFC is larger than PhC EFC, (2) air EFC and PhC EFCs are intersecting and (3) PhC EFC 
is larger than air EFC, the formation of FP mode at HLD regime is witnessed. From this observation, it is verified 

Figure 1.  FP resonance spectra for various thicknesses of a glass PhC. Inset shows  Enorm pattern at 14.511 GHz 
and 14.5 GHz for PhC thicknesses of 6a and 7a, respectively.

Figure 2.  (a) Projected bandstructure of glass PhC for TE polarization mode. The dashed line corresponds 
to the normalized frequency of 0.4836(c/a). Solid line shows the light line. The expansion for ED, DE and EE 
modes are given in the main text. (b) EFC contour plot for air and glass PhC at 0.4836(c/a). Here Ŵ,X,M are the 
highest symmetry points of irreducible Brillouine zone of a square lattice PhC.
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that the observed FP mode is the generalized characteristic of a dielectric PhC associated with the HLD regime 
and therefore analyzing their refractive index profiles are further essential.

Role of refractive index in the formation of fp mode. To gain insight on the refraction picture at FP 
resonance, phase index (np), group index (ng) and the angle between phase and group velocity vectors ( φ ) are 
computed for three different PhCs with respect to incident angle variation. The phase index (np) is defined as  

np = sgn (�k · �vg )
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39, where �kphc  is the wavevector of the PhC,  �kair is a wavevector of the air medium and 

sgn (�k · �vg ) is the sign function between the scalar product of wave and group velocity ( �vg ) vectors. The group 
velocity vector can be defined as �vg = ∇ωk  , where ωk are the angular dispersion frequencies. The group index 
(ng) is calculated as ng = 1

∇ωk
= 1

|�vg |
.

Figure 4 shows np, ng and φ plots for glass PhC, PhC2 and PhC3 at their respective FP mode resonances. 
The φ plot (Fig. 4g–i) reveals that at HLD regime, the phase and group velocity vectors follow obtuse angle 
behaviour, in which �k · �vg < 0 . Therefore, HLD regime exhibits mixed refractive behaviour, in which the phase 
index is negative (Fig. 4a–c) but the group index is positive (Fig. 4d–f). Mixed refraction is one of the salient 
characteristics of an indefinite medium. From Fig. 4, it is noted that the np and ng at HLD frequencies have strong 
functional dependence on the incident angle, and PhC is strongly dispersive. Suppose one considers isotropic, 
homogeneous and non-magnetic dielectric medium with refractive index n in air background, the critical angle 
(θc) condition for total internal reflection from denser to rarer medium is read as θc = sin

−1
(

1
/

n
)

 . For example, 
isotropic media with n1 = 1.897 and n2 = 2.345 , correspond to θc1 = 31.1

◦  and θc2 = 25.24
◦ , respectively. This 

implies that a conventional medium with high refractive index shows total internal reflection at lower critical 
angles. Similar to an isotropic medium, θc cannot be directly evaluated for PhCs owing to its strong spatial 
dispersion behaviour. However, PhC can provide rich spatial distribution of ng with sufficiently high values for 
various incident angles at HLD EFCs. This kind of distribution cannot be expected for circular EFC regimes, as 
they indicate isotropic nature. Therefore, one can anticipate that the internal reflection of refracted rays inside 
the PhCs could be observable for all three HLD EFC cases (Figs. 2b, 3c,d), and if these internally reflected rays 
interfere with each other which depends on the thickness of PhC, one can expect the formation of FP modes. To 
verify this notion, numerical demonstration of interference of e-m wave inside the PhC is carried out in Fig. 4j,k 
with the following idea.

A point source emits an e-m wave with all possible angles of incidence. If one takes two beams with opposite 
incident angles and excite a glass PhC, then it is possible to verify whether they are interfering to form an FP 
mode or not as proposed. In Fig. 4j,  Ez field map at 14.511 GHz is shown for a two line sources (marked as  l1 and 
 l2 in Fig. 4j) incident on a glass PhC with incident angles of 26° and − 26°. To create a phase difference between 

Figure 3.  (a,b) TE mode projected bandstructures of PhC2 and PhC3, respectively; (c,d) EFC contours plot of 
PhC2 and PhC3 and (e,f) FP mode profiles of PhC2 and PhC3 at 0.2786(c/a) and 0.1297(c/a), respectively.
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two beams, the distance between the line source and PhC is kept differently for two sources. It is evident that 
the interference of wavefronts from two-beams, forms FP mode in glass PhC at HLD frequency. To complete 
the demonstration, in Fig. 4k  Ez field map at 14.511 GHz is shown for a point source placed inside the PhC. As 
expected, FP mode is formed at HLD frequency.

Resonator’s size variation: observation of higher order fp modes in phcs. The FP modes so far 
discussed in this work are single mode standing wave pattern. However by varying the PhC slab’s dimensions 
(both x and y), one can witness FP modes with interesting spatial profiles as shown in Fig. 5 for a point source 
with TE polarization. For example, a PhC slab with 12 × 19 layers supports two different FP modes; (1)  TE11-like 
mode at 14.45 GHz (Fig. 5a), where the subscript 11 in  TE11 refers the number of standing wave nodes in x and 
y directions respectively, and (2)  TE21-like mode at 14.56 GHz. A PhC slab with 16 × 15 layers shows  TE31-like 
mode at 14.61 GHz (Fig. 5c) (scanning profiles of these modes are given in SI Fig. S1 for further visualization).

In Fig. 5d–f, FP modes for specific y-variation of a PhC slab are shown, and the role of source position in 
exciting symmetric and anti-symmetric profiles is demonstrated. For instance, in Fig. 5d, a PhC slab consisting of 
8 × 29 layers supports  TE11-like mode at 14.49 GHz for a point source placed at the centre of the y-axis of the PhC 
slab. It is obvious to note that by nearly doubling the PhC layer along y-axis ( 8 × 50 layers), an anti-symmetric 
 TE12-like mode at 14.49 GHz with a maxima and minima can be expected as shown in Fig. 5e. However, the 
observed  TE12-like mode corresponds to the source position indicated by the arrow in Fig. 5e–instead of an e-m 
source at the centre of the y-axis of a PhC slab. If a point source is placed at the centre of the y-axis,  TE12-like 
mode formation is not complete as shown in Fig. 5f. This feature indicates that the source position influences 
the formation of FP modes in PhCs. In Fig. 5g,  TE13-like mode at 14.435 GHz is witnessed for a PhC slab with 
8 × 39 layers.

For x- and y-variation of PhC layers, it is found that all the FP mode frequencies correspond to the HLD 
regimes of dielectric PhCs and the mode formation depends on the point-source position.

Comparison: FP mode in an ideal indefinite medium and in dielectric PhCs. In this section, FP 
mode formation in an ideal indefinite medium is presented for comparison with PhCs. An indefinite medium is 
modeled by considering an anisotropic slab for which the principal components 

ε =





εxx 0 0

0 εyy 0

0 0 εzz



,µ =


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µxx 0 0

0 µyy 0

0 0 µzz
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 are not of same sign in all  directions14,15. For simplicity, a magnetic 

type indefinite slab of dimension 7a × 40a (‘a’ is the fundamental length-scale) is taken with the following 
parameters; µx = −1, µy = 1, and µz = 1 and an isotropic relative permittivity value of 1 is assigned to the 
slab. These parameters will trace out an x-hyperbolic EFC in Fig. 6a. Ray tracing reveals that x-type hyperbolic 
EFC shows negative refraction for a TE wave incident from air medium. At the same time, for refraction from 
denser to rarer medium, a refracted ray at larger angle cannot be coupled to air medium (in Fig. 6a, construction 
line is not matched with air EFC for larger wavevectors). Hence side walls of an indefinite slab can act as a mirror 
for refracted rays inside the slab at larger angles. Secondly, by default, top/bottom walls of the x-hyperbolic 
indefinite slab acts as a mirror due to the non-availability of EFC. This feature offers internal reflection of e-m 
rays inside an indefinite slab and one can expect FP mode formation in it. In Fig. 6b,c shows two FP modes in 
x-hyperbolic indefinite slab at two different frequencies. Several work explored to this feature to build 3-D opti-
cal FP  cavities11 and planar type magnetic FP  cavity13.

Figure 4.  (a–c) Phase index (np), (d–f) group index (ng) and (g–i) angle plot ( φ ) between phase and group 
velocity vectors with respect to incident angle variation at FP resonance frequencies of glass PhC, PhC2 and 
PhC3 respectively. (j)  Ez field map for a two line sources (marked as  l1 and  l2) incident on a glass PhC with an 
incident angle of 26° and − 26° at 14.511 GHz. (k)  Ez field map at 14.511 GHz for TE point source placed inside 
the glass PhC.
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The FP mode observed in dielectric PHCs at HLD frequencies is similar to the FP modes in an ideal indefi-
nite slab. From these observations, two implications can be made; (1) partial focusing effect due to negative 
refraction in an indefinite slab was well-known15. When partial focusing is enabled with FP mode, near fields 

Figure 5.  (a–c) FP mode profiles at 14.45 GHz, 14.56 GHz and 14.61 GHz in a PhC slab of dimensions 12 × 19 , 
12 × 19 , and 16 × 15 layers, respectively. (d–g) FP mode profiles at 14.49 GHz, 14.49 GHz, 14.49 GHz and 
14.435 GHz for selective y-variation of PHC slab with dimensions 8 × 29 , 8 × 50 , 8 × 50 and 8 × 39 layers, 
respectively. Arrows in (d–g) indicate source position.

Figure 6.  (a) Ray tracing in an x-hyperbolic EFC of an ideal indefinite slab at 3.6202 GHz. Circular EFC is 
corresponding to air medium at 3.6202 GHz. Refracted ray shows negative refraction and reflected ray shows 
internal reflection. (b,c)  Ez field maps at 3.6202 GHz and 4.268 GHz for x-hyperbolic indefinite slab respectively.
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can be effectively transferred up to the image plane, as FP mode is localized at the slab–air interface. Similarly, 
in case of PhCs, the formation of FP modes at HLD regimes could also be harnessed for near field transfer. For 
instance in Wang and Kempa  work35, interface of a PHC slab was modified by introducing disorders and similar 
FP mode was observed in focusing effect. Extending this study further with respect to the surface harnessing 
of PhC could be useful. (2) It is interesting to investigate how the FP mode will survive in a curved or a bend-
ing PhC configuration. This could be useful in realizing sensors for detecting bending angle and this task is 
attempted in next section.

Bending angle sensor based on FP resonance in dielectric PhCs. It is known that the interference 
of e-m waves due to reflection and refraction from a material is highly sensitive to the thickness variation, defect 
and roughness, as structural modification significantly alters the phase of the interfering beams. In the present 
study, we have observed that FP modes associated with HLD regimes in dielectric PhC are formed due to the 
interference of refracted beams at air–PhC interfaces. It is interesting to examine the role of bending in PhC on 
the formation of FP modes. In Fig. 7a, two different bending configurations ( θbend = 1.1458

◦ and 0.4775◦ ) are 
shown with respect to PhC without bending. Based on the characteristics of FP modes in PhC with bending, an 
angle sensor concept is demonstrated numerically.

In Fig. 7b, norm of the electric field monitored on a specific point near the edge of a PhC wall is plotted for 
various bending angles. It is noted that in the case of PhC without bending, two different resonances centered 
around 14.488 GHz and 14.7 GHz are observed. For angle sensing, anyone of these two frequencies can be 
monitored. When a bending angle is increased from 0◦ to 0.095◦ , FP mode is shifted to lower frequency from 
14.488 to 14.464 GHz. A bending angle of 0.0637° and 0.095° corresponds to the resonance shift of 0.016 GHz 
and 0.024  GHz,  respect ively.  From this  response,  the angle  sensit ivity  is  deduced 
�fresonance

�θbend
=

fr(with bending)−fr(without bending)
θbending

∼ 0.255 GHz per degree . Apart from this linear regime, at very low bend-

ing angles, the shift in resonance is low, however, it is detectable. For instance, at 0.048°, a shift of 0.016 GHz is 
observed. If one keeps this as a limit, one can detect a bending angle at least less than 0.05° using FP modes. At 
an angle higher than 0.1°, the modes are degrading. It is also observed that apart from the shift in resonant 
frequency, the significant reduction in the intensity of FP mode (Fig. 7b) also can be used for sensing the bending 
angle.

Bending angle sensing with finite-height 3-D PhC. The above investigation is restricted to 2-D com-
putations with ideal conditions, in which the height of a PhC pillar is taken to be infinite and a theoretical point 
source is used in the formation of FP modes. However, for a practical realization, one will work with finite-height 
PhC and a practical point source. In this section, the results of 3-D full-wave e-m simulations are presented for 
a practical configuration shown in Fig. 8. Unlike infinite-height PhC, the setup shown in Fig. 8a suffers out-of 
plane radiation loss. However, from Fig. 8b,c one can verify that FP modes are existed for both bending and 
without bending cases. In Fig. 8b prominent peaks associated with FP mode resonances correspond to various 
bending angles. Particularly Fig. 8c corresponds to the PhC with a bending angle of 0.0477°. Due to out-of-plane 
radiation losses, red-shifted FP mode peaks are distorted in comparison with 2-D results. However, they are 
significant in Fig. 8b [14.664 GHz (0°), 14.648 GHz (0.0477°) and 14.622 GHz (0.095°)]. Hence including the 
limitations, the demonstrated bending angle sensing can be implemented successfully at microwave frequencies. 
Moreover, the FP modes in dielectric PhCs are scalable to terahertz and visible frequencies (Scaling results can 
be referred in SI Fig. S2).

conclusions
Fabry–Pérot modes associated with the HLD regimes of two-dimensional dielectric PhCs are investigated. The 
observed FP modes are formed due to the interference of refracted cylindrical TE wavefronts inside the PhC at 
HLD frequencies and they are surface localized at PhC-air interface. The interference formation is numerically 
verified for two line sources excited at an incident angle at HLD regimes. The projected bandstructure and EFC 
plot for PhCs reveal the existence of FP modes under three different cases namely (1) air EFC larger than HLD 
EFC, (2) air and HLD EFCs are intersecting and (3) HLD EFC is larger than air EFC. The effective index approach 
suggests that HLD regimes show mixed refractive behaviour in which group index is positive and phase index 
is negative. Though the critical angle cannot be easily derived for HLD regimes in PhCs due to its strong spatial 
dispersion characteristics, all three HLD EFCs provide larger group index values suitable for internal reflection 
conditions. The PhC slab of different dimensions supports interesting FP modes similar to  TE11,  TE12,  TE13 
modes at HLD frequencies. It is found that the source’s position is important in exciting the specific FP mode. 
The HLD regime of dielectric PhCs is compared with an ideal indefinite slab. The similar FP mode profile indi-
cates that HLD regimes of dielectric PhC could be used for near field controlling and sensing application. For 
the application aspect, the sustainability of FP mode formation is studied with respect to varying the bending 
angle of PhCs. It is found that the shift in FP resonance can detect a bending angle as small as 0.05°. Finally, the 
bending angle sensing is tested with respect to the out-of-plane radiation losses using 3-D finite height PhC. As 
the reported FP modes in PhCs are scalable to other parts of the e-m spectra, bending angle sensing could be 
further extended to terahertz and optical domains.

Methods
FP resonance spectra shown in Fig. 1 are obtained through two-dimensional full-wave e-m simulations using the 
finite-element method (FEM) based Comsol RF  module40. Around the computational domain, low-reflecting 
boundary conditions (e.g., highly absorbing boundary conditions) are employed to mimic the open space. A 
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TE point source is excited by setting up a line current of 1 A at a source point. A point probe is placed near the 
boundary of the PhC interface to detect the FP mode spectrum.

To obtain the projected band structure, open-source solver MIT Photonic Bands is  used41. This e-m solver 
employs planewave expansion method and solves Maxwell’s Wave equation as a linear Hermitian eigenvalue 
problem. To solve projected bandstructure, super cell consists of 1 × 11 layers of glass rods arranged in a square 
lattice is taken. The dispersion relation is obtained by projecting out the kx values within the I Brillouine zone, 
in the range of 0–0.5 (2π/a). The EFC plots shown in this work are obtained through MIT Photonic Bands. To 
solve EFC, single unit cell of square lattice PhC is taken and the band structure is solved within the k-grid defined 
with the range 

(

kx , ky
)

→ 0 to 0.5(2π/a) . It may be noted that polarization definition is different in different e-m 
solvers. Throughout the work, direction of propagation is used as a reference to define the polarization. Hence 
TE mode is defined such that electric field is perpendicular (y) to the direction of propagation (x).

EFC plot is suffice to extract the phase index value. However the sign for phase index is determined through 
group-velocity calculations. MPB solver computes the group velocity components via the Hellman–Feynmann 
theorem as described  in42.

Line sources used in the verification of interference due to refracted beams in the FP mode formation in 
Fig. 5, are created based on internal boundary conditions in COMSOL RF Module computations. Line sources are 
useful to create finite-size wavefront on a given length of line or curve. Line can be rotated about any given point 
so that the wave excitation at any incident angle can be easily modeled. The electric field boundary condition 
specified for a line source on a line is given as n̂ × �E = n̂ × �E0 , where �E0 = 1ẑ (V/m) is the initial TE polarized 
incident field and n̂ is the unit normal vector.

Bending-angle sensing results of finite-height 3-D PhC is performed using finite-integration based commer-
cial e-m solver CST Microwave  Studio43. A glass PhC with a finite height of 1.45λ is taken in Fig. 8a. A copper wire 

Figure 7.  (a) PhC configurations with different bending angles; (b) FP resonance spectra correspond to various 
bending angles. In this figure, magnitude of the electric field detected on a point closer to the PhC wall is 
plotted. In the inset  Ez field map is shown at 14.484 GHz and 14.464 GHz, which corresponds to bending angles 
of 0.0477° and 0.095°, respectively.
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with the length of λ/2 is excited with 1 A current source, which acts as a monopole TE polarization e-m source. 
The monopole source is kept behind the PhC slab at a distance of 0.146λ. Four point probe detectors are placed 
to probe the FP mode formation, as shown in Fig. 8a. Point probe detects the electric field at the probe position. 
Computationally solving a 3-D structure is challenging as the meshing of the structure influences accuracy of 
results and computational timings. In this calculation, 20 mesh cells per wavelength are kept.

Received: 10 April 2020; Accepted: 4 June 2020
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