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ABSTRACT

Cusp singularities in fluids have been experimentally demonstrated in the past only at a low Reynolds number, Re ≪ 1, and large capillary
number, Ca≫ 1, in Newtonian or non-Newtonian fluids. Here, we show that the collapse of a free surface wave depression cavity can lead
to inertial-viscous cusp formation at local Re > 1 and Ca > 1, which gives rise to extreme events, i.e., very high-velocity surface jets. The
cavities are generated in a cylindrical container (2R = 10 cm), partially filled with glycerine–water solution, by parametrically forcing the
axi-symmetric wave mode beyond the breaking limit. By varying the forcing amplitude and the fluid viscosity, parabolic or cusp singularities
manifest, depending on the last stable wave amplitude b that determines the cavity shape. Cusp formation in collapse without bubble pinch-
off, leading to very high-velocity surface jets, is obtained when b is close to the singular wave amplitude bs and Ca > 1. The free surface shape
is self-similar, changing from an inertial to a viscous regime when the singularity is approached. At cusp singularity, the cavity shape takes
the form of (z − Z0)/R ∼ −(r/R)2/3, where Z0 is the final cavity depth. Cavity collapse with bubble pinch-off, which occurs when b > bs, also
exhibits a cusp singularity when bs < b ≤ 1.14 bs and Ca > 1, but surface jet velocities are much less because about half of the wave energy is
lost.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0010421., s

I. INTRODUCTION

Singular events have attracted physicists over decades.1 Cusp
singularities have been identified and applied in the context of grav-
itational lensing,2 in optics, leading to bright spots,3 in biological
systems,4 and in tsunami amplification using ray theory.5 In two
dimensional Stokes flow, Richardson6 theoretically investigated an
inviscid bubble in shear and pure straining flow separately. In both
cases, for an extreme condition of zero surface tension, a cusp is
formed. In this analysis, the cusp is a two dimensional counterpart
of the Taylor7 experiment of shear and pure straining flow. Experi-
mentally, cusp singularities in fluids have been demonstrated only at
a low Reynolds number, Re≪ 1, and large capillary number,Ca≫ 1,
in Newtonian8 or non-Newtonian fluids.9,10 Jeong andMoffatt8 gen-
erated cusps by rotating submerged cylinders in a range of low
Reynolds numbers (based on angular velocity and cylinder radius),
0 < Re ≤ 0.25, and large capillary numbers, 0 < Ca ≤ 61. At a crit-
ical angular velocity, the interface takes the form of a downward
pointing cusp represented by y = c x2/3, where x and y are the cavity

width and depth, respectively, and c is a constant of order one. These
curvature singularities are line singularities. Point singularities have
been described by Taylor,7,11 Buckmaster,12 Hinch and Acrivos,13

and Sherwood.14

The free surface cavity and bubble collapse have been associ-
ated with conical15,16 or parabolic shapes.17–19 The collapse gives rise
to high-velocity surface jets and sometimes bubble pinch-off at the
cavity base during the collapse, in which case the jet velocity is lower.
Zeff et al.17 observed jet velocities as high as 52 m/s using high vis-
cosity glycerine–water solution as the working fluid and scaled the
experimentally obtained jet velocities by a capillary velocity. Later,
Das and Hopfinger and18 Raja, Das, and Hopfinger19 suggested an
inertial scaling in good agreement with experiments. By contrast,
surface bubble collapse is driven by capillary forces,20–24 in which
case Ca is always Ca≪ 1.

In this paper, we demonstrate, for the first time, that the rel-
atively large Reynolds number inertial cavity collapse can lead to
extreme events, i.e., emerging jet velocities of 120 m/s or larger,
associated with cusp singularities. These extreme singular events
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manifest when at singular collapse, the local capillary number
Ca > 1 and the last stable wave amplitude b that determines the
cavity shape are close to the singular wave amplitude bs. When
b > bs, bubble pinch-off occurs, and jet velocities are much less
even though cusp formation is observed when bs ≤ 1.14 and
Ca > 1.

The experimental conditions and procedures are presented in
Sec. II. Then, in Sec. III, the results of no pinch-off cavity collapse
are discussed, by first presenting the self-similarity in the inertial and
viscous regimes and then the conditions of cusp formation, followed
by the theoretical formulation of cusp geometries. In Sec. IV, cavity
collapse with pinch-off and possible cusp formation is discussed. Jet
velocities are analyzed in Sec. V, followed by conclusions in Sec. VI.

II. EXPERIMENTAL CONDITIONS

The experiments have been conducted in a circular cylindri-
cal container, made of plexiglas, of diameter 2R = 10 cm and 10 cm
deep, mounted on a vertically oscillating vibration exciter (Model:
APS 400 ELECTRO-SEIS) of peak force 440 N. After calibration,
the vibration amplitude was kept within ±0.30% of the nominal
value and the frequency within 0.02%. The container was partially
filled with glycerine–water (GW) solutions of kinematic viscosities
ν = 0.09 cm2/s (GW 60) and 0.5 cm2/s (GW 80). Here, 60 and 80
stand for the percentage by volume of glycerine in the solution. The
surface tension is σ ≅ 0.067N/m and the density is ρ= 1160 kg/m3 for
GW 60 and 0.064 N/m and 1205 kg/m3 for GW 80, respectively. As
in previous experiments,17,19 the wave motions were parametrically
excited by accelerating the container at ωf , twice the axi-symmetric
mode wave frequency ω, in the form a(t) = A sinωf t, where A is
the amplitude of container motion. The stability boundaries for the
two viscosity fluids used are, respectively, (A/R)c = 0.006 and 0.013
with associated frequencies ω0 = 28.20 rad/s and 28.10 rad/s. Large
amplitude standing waves are obtained by overdriving the system at
A/R > (A/R)b and slightly off resonance, i.e., ωf /2ω0 = 0.995, where
(A/R)b is the wave breaking threshold. In the Appendix, the instabil-
ity threshold (A/R)c and wave breaking boundaries (A/R)b for both
GW 60 and GW 80 are shown. The Reynolds and Weber numbers
are Re = ω0R

2/ν = 7833 and 1405 and We ≙ ρω0
2R3/σ ≙ 1709

and 1858, respectively, giving global capillary numbers Ca = ω0Rμ/σ
= 0.22 and 1.32. The experiments have been started each time from
an unperturbed condition, i.e., interface at rest. The last stable wave
amplitude depends on the rate of increase in forcing amplitude (on
A/R). Fine-tuning is required to obtain the wave amplitude bs (bs/R
= 1.002), called the singular wave amplitude, at which the jet veloc-
ity is highest. The displacement of the shaker has been measured
using aWenglor CP24 laser displacement sensor with a resolution of
20 μm.

Wave amplitude and wave trough shapes are measured by visu-
alizations and image analysis only. A Photron FASTCAM Mini
UX100 high-speed camera is used to capture the interface with an
acquisition speed of 2000–10 000 fps. Concerning the measurement
of jet velocity, Raja, Das, and Hopfinger19 showed that the vertical
retraction speed of the singular cavity depth Z0(t0) is equal to the
jet velocities. Thus, jet velocities have been determined from the dis-
tance moved by the jet in the time interval (ts − t0), from Z0 at time
t0 to the position above the free surface where the jet has been seen
first at time ts.

III. NO PINCH-OFF CAVITY COLLAPSE

A. Self-similarity of collapse

No pinch-off cavity collapse is obtained when the last stable
wave amplitude b ≤ bs (bs/R = 1.002 in the present experiments). The
different stages of no pinch-off cavity collapse are presented in Fig. 1.
Figure 1(a) shows a composite image of the last wave amplitude b
and the wave depression cavity of radius ri. The cavity radius r(z, t)
at any instant of time τ during the collapse is shown in Fig. 1(b), and
the final cavity shape (lower half) and jet appearance (upper half)
are shown in Fig. 1(c). Here, the minimum radius is rm = r(Z, t), and
Z0 is the final cavity depth measured from the free surface at τ = 0
where τ = (t0 − t), with t0 being the time at singularity.

The change in minimum cavity radius rm = r(Z, t) as a func-
tion of τ in GW 80 for wave amplitude b ≃ bs is shown in Fig. 2.
Two self-similar regimes are clearly identified, with the first regime
being inertial with a time dependency of cavity radius rm varying
as rm ∝ τ1/2, followed by a viscous regime with time dependency

FIG. 1. Cavity shapes without pinch-off
and definitions of b, Z0, Z(t), r i , and
r(z, t). Composite image of (a) the last
wave amplitude b (upper half) and ini-
tial cavity shape (lower half), (b) cavity
shape at an intermediate time, and (c)
final cavity shape (lower half) at t = t0

and jet formation (upper half). The dot-
ted horizontal line corresponds to z = 0.
The scale bars represent 1 cm.
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FIG. 2. Change in minimum cavity radius [rm = r(z = Z, t)] as a function of τ∗

≙ τ/√R/g in GW 80 (ν = 0.5 cm2/s), where τ = (t0 − t) is the time remaining
to singularity. The forcing amplitude is A/R = 0.0340, giving b ≃ bs. In the initial
stage of cavity collapse, the change in the cavity radius follows rm/R ∝ τ∗1/2

with a gradual crossover in the late stage of collapse to rm/R ∝ τ∗. The solid
and dashed lines show slopes 0.5 and 1, respectively. Inset (a): cavity shapes in
the inertial regime at eight different instants 10 ms, 9 ms, 8 ms, 7 ms, 6 ms, 5 ms,
4 ms, and 3 ms before singularity, showing a self-similar behavior when scaled with
τ∗1/2 and the container radius R. Inset (b): cavity shapes in the viscous regime at
2 ms, 1.4 ms, 0.8 ms, 0.6 ms, 0.4 ms, and 0.2 ms before singularity, showing self-
similarity when scaled with τ and the container radius R. Z0 is the final cavity depth
(corresponding to τ = 0), measured from the free surface (z = 0).

rm ∝ τ. Similar power-law behaviors have been identified in the
collapse of the crater/cavity generated by disk impact on a free sur-
face,25,26 drop impact on liquid pool,27 and wave depression cavi-
ties.19 The collapse of a small hole in fluid sheet28 also indicates a
similar behavior with an early inertial regime and late Stokes regime
close to collapse.

B. Singular collapse and cusp formation

The cavities considered in the present experiments are iner-
tia driven, similar to the impact generated cavities. In the viscous
regime, for conditions corresponding to Fig. 2 (Ca > 1 and b/bs
≃ 1), a cusp forms at the cavity base, which has geometric similar-
ities with cusps in Stokes flow, investigated by Jeong and Moffatt,8

in the highly viscous liquid (ν = 0.014 m2/s) at Re≪ 1 and Ca≫ 1,
based on the rotation speed of submerged counter-rotating cylinders
that drive the flow. These cusps are of generic form y = c x2/3, earlier
shown by Joseph et al.9 for non-Newtonian viscous fluids. Joseph
et al.9 also demonstrated cusp formation with rotating cylinders in
liquids of low surface tension where the cusp geometry is also of the
form y = c x2/3, with the value of c determined close to the cusping
point.

In the present experiments with GW 80, the Reynolds num-
ber based on the cavity radius rm and radial velocity, Ur = δrm/δt,
is in the inertial range (Fig. 2, inset a), ReI ≙ (Urrm/ν)I ≈ 66 and
the Weber numberWeI ≙ (ρUr

2rm/σ)I ≈ 22.4. In the viscous range

(Fig. 2, inset b), Reν ≈ 43 and Weν ≈ 103, giving a local capillary
number Ca =Weν/Reν ≈ 2.4, indicating that viscous forces are domi-
nating over capillarity. We observe that in this case, when the system
is driven at A/R = 0.0340 such that b ≃ bs, the extreme singular event
leads to jet formation, with the jet velocity U j ≈ 120 ± 20 m/s. The
corresponding singularity shape is a cusp [Fig. 3(b)]. At lower viscos-
ity, (here in GW 60 of ν = 0.09 cm2/s, giving a capillary number Ca
= 0.40), capillary forces dominate the late stage of singular collapse
preventing cusp formation, as shown in Fig. 3(a). Experiments con-
ducted with a glycerine–water solution (ν = 2.16 cm2/s) also exhibit a
cusp singularity at collapse, but the maximum jet velocity here drops
to 80 m/s because of viscous damping. The experiments by Zeff
et al.17 conducted in fluids of similar viscosity showed, surprisingly,
a parabolic cavity shape.

In surface bubble collapse, cusp formation is not possi-
ble because the collapse is driven by capillary forces with the
length scales varying as τ2/3.24 Hence, in the capillary number Ca
= μU/σ, the velocity U scales with the capillary velocity, U

≙ α Uc ≙ α
√
σ/ρR0, where R0 is the bubble radius, giving Ca

≙ αμ/(ρσR2
0)1/2 ≙ α Oh. When Oh ≪ 122,23 and α ≙ O(10),

we get Ca < 1, which means that cusp formation is not possi-
ble. However, when gravity effects are negligible, i.e., Bo ≙ ρgR2

0/σ
< 0.1, viscosity is necessary for the reversal of the curvature at
the bubble base, and jet initiation depends on the Ohnesorge
number.22,23 More recently, Gordillo and Rodríguez-Rodríguez29

found that the jet velocity increases with the Oh number for bub-
ble collapse with Bo = 0.05, reaching a maximum at Oh = Ohc,
which corresponds to the conical shape of the bubble cavity at
collapse.

C. Theoretical description of cusp geometries

Geometrically, a cusp is formed by the trajectory of a point
attached to the perimeter of a disk rolling on a flat surface. A loop or
parabola is generated when the point is displaced from the perime-
ter by a small parameter ε. The generic form of the curve close to
singularity30 is

x ≙ εη + β

3
η
3

and y ≙ η2

2
. (1)

Adding a translation in y, Eq. (1) can be written as

x
2 ≙ 2ε2(y + ζ) + 8β2(y + ζ)3

9
+
8βε(y + ζ)2

3
(2)

such that ε = 0 gives a cusp of the form (y + ζ) = (1/2)(3/β)2/3x2/3.
Here, β is a constant, which determines the strength of the cusp.

In viscous fluids, Jeong and Moffatt8 used conformal mapping
to express the free surface by

x ≙ a cos θ +
(a + 1) cos θ
1 + sin θ

and y ≙ a (1 + sin θ). (3)

Singularity conditions require that dx/dθ = dy/dθ = 0 at the singu-
lar point, which is satisfied when θ = π/2 and a = −1/3. Expanding
Eq. (3) in the neighborhood of the singular point, using a = −1/3
+ ε and θ = π/2 + η, leads to the parametric form x = −(3/2)εη
− η3/12 and y = −2/3 + 2ε + η2/6, which is equivalent to Eq. (1),
hence also Eq. (2), when applying a translation such that y = η2/6.
Different values of the small parameter ε represent the shape of the
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FIG. 3. Final cavity surface when b/bs ≃ 1 in (a) GW 60 and (b) GW 80. In (a), the experimental points ◽ are fitted by (z − Z)/R = −c (r /R)2/3 (solid line), with c = 1 (here
Z/R = 0.6). The dashed curve is given by Eq. (2) with ε = 0.05, which is close to ε ≈ exp(−2πCa) ≈ 0.08, ζ = 0.579, and β = 1.06. The inset on the right in (a) shows an enlarged
view of the cavity tip indicating a parabolic shape. (b) Final cavity surface in GW 80, experimental points ∗, compared with Eq. (2), which, in the (r /R, z/R) plane for ε = 0 [ε
≈ exp(−2πCa) ∼ 10−7], ζ = 0.586, and β = 2.2, reduces to z/R − 0.586 = −0.615(r /R)2/3. The enlarged view of the cavity tip (inset on the lower right) shows a cusp. The
insets at the left-hand side in (a) and (b) show images of the cavity tip shapes. The horizontal and vertical bars represent 1 cm.

curve in the neighborhood of the singular point, as shown in Fig. 4.
A cusp singularity is obtained for ε = 0. At singularity, Fig. 4(a) can

also be represented by Eq. (2) with β ≙ 1/
√
3 and ζ = 2/3 − 2ε. The

cavity profiles of the present experiments can be fitted by Eq. (2) by
adjusting the parameters ζ and β. The free surface shapes of Jeong
and Moffatt8 leading to a cusp are two dimensional curvatures. In
the present case, for axi-symmetric collapse, y ≡ −z/R, x ≡ r/R, and ζ
≡Z/R so that taking in Eq. (2), β = 1.06 and ε = 0, the final free surface
cavity boundary takes the form (z − Z)/R =−(r/R)2/3. In Fig. 3(a), the
measured final cavity surface shape in GW 60 is compared with the
form (z − Z)/R = −(r/R)2/3 [solid line in Fig. 3(a)] with Z/R = 0.6. In
the enlarged view of the tip [inset in Fig. 3(a)], the measured shape
shows a stagnation point (parabolic shape) as in Fig. 5 in the work
of Jeong and Moffatt.8 With ε = 0.05 in Eq. (2), good agreement is
obtained with a parabolic tip, as shown by the dashed line in the inset
of Fig. 3(a). In Fig. 3(b), the measured final free surface in GW 80 is
compared with a cusp form represented by Eq. (2), with ε = 0 and
β = 2.2. There exists a genuine cusp singularity, highlighted in
the inset of Fig. 3(b), in good agreement with the cusp geometry

of Eq. (2). Figures 5(a) and 5(b) show, in the doubly logarithmic
plot, the final cavity shape in GW 60 and GW 80, respectively; there
is excellent agreement with Eq. (2) with ε = 0.05 in GW 60 and ε
= 0 in GW 80. This demonstrates that because of the exponential
dependency of the cavity base radius on the capillary number,8 rel-
atively small changes in the capillary number have a large effect on
the cavity base radius. According to Eggers and Fontelos,30 citing
Hinch, ε varies as ε ≈ exp(−2πCa). For GW 60, we get ε ≈ 0.08; the
cavity base is parabolic [Fig. 3(a)]. For Ca = 2.4 and ε ≈ 10−7 → 0, a
cusp is formed [Fig. 3(b)].

The foregoing results have been obtained when b ≃ bs. When
the last wave amplitude is less, b ≈ 0.93 bs, the cavity tip is parabolic,
as shown in Fig. 6, even though Ca > 1. In Figs. 6(a) and 6(b), the ini-
tial and final cavity shapes generated, respectively, by the last wave
amplitudes b ≃ bs and b ≃ 0.93 bs are compared; the final cavity shape
when b/bs ≃ 0.93 is in good agreement with Eq. (2) with ε ≈ 0.05 and
β = 1.8, indicating a parabolic shape. Thus, for cusp formation, a cer-
tain initial cavity shape, which depends on the last wave amplitude,
is required in addition to Ca > 1.

FIG. 4. Curves representing the para-
metric form x = −(3ε/2)η − η3/12 and y

= 2ε + η2/6 (translating y to the origin),
obtained from Eq. (3) using a = −1/3 + ε
and θ = π/2 + η in the neighborhood of
singularity. (a) ε = 0.1, (b) ε = 0, giving a
cusp shape y = 0.874 x2/3, and (c) loop
for ε = −0.1.
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FIG. 5. Log–log plot of final cavity shapes with origins shifted to the cusp tip: (a) GW 60 (◽), where the solid and dashed lines represent (Z − z)/R = (r /R)2/3 and Eq. (2) with
ε = 0.05 and β = 1.06, respectively, and (b) final cavity shape in GW 80 (∗), compared with Eq. (2). Conditions are the same as in Fig. 3.

FIG. 6. Comparison of (a) the initial cav-
ity shapes in GW 80 for b ≃ bs (grayscale
images) and b/bs ≃ 0.93 (white line) and
(b) singular cavity shapes. (c) Experi-
mental final cavity shape for b/bs ≃ 0.93
compared with Eq. (2) using ε ≈ 0.05
and β = 1.8, indicated by a dashed line.
For comparison, a cusp (z/R − 0.5565)
= −0.615 (r /R)2/3 is shown by the solid
line.

FIG. 7. Cavity shapes with pinch-off and
definitions of b, Z0, r i , and r(z, t). (a)
Composite image of last wave amplitude
b > bs and the full-grown cavity depth of
radius r i , (b) cavity shape at an interme-
diate time during collapse, and (c) com-
posite image of bubble pinch-off at the
cavity base and jet formation above.
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FIG. 8. Logarithmic corrected31 neck radius (rn/R) exp(√− log τ∗/2) in GW

80 as a function of time τ∗ ≙ τ/√R/g. The forcing amplitude is A/R = 0.0365
and b/bs = 1.14. ∎ indicates experiments; the solid line indicates a slope of ½, and
the dashed line shows a slope of 1.

IV. CAVITY COLLAPSE WITH PINCH-OFF

Pinch-off occurs when the last stable wave amplitude b > bs.
The definitions of b, ri, r(z, t), and Z0 are shown in Fig. 7. The neck
radius at any instant of time is here rn = r(z = Z0, t) [Figs. 7(b)],
and Z0 is the effective cavity depth, which is the pinch-off loca-
tion [Fig. 7(c)]. The velocity field at the pinch-off location is radially
inward.26 A plausible reason for pinch-off is that there is onset of
Rayleigh–Taylor instability at the lower cavity boundary during the
downward wave deceleration a ≈ 3g. The most unstable wavelength

is then λRT ≙ 2π
√
3σ/ρa ≈ 1.4 cm, which is indicated in Fig. 7(a).

When b > bs, the cylindrical portion of the wave cavity, as shown in
Fig. 1(a), exceeds the critical wavelength λRT , which initiates cavity
pinch-off. The variation of the neck radius with time in pinch-off
cavity collapse exhibits a power-law similar to no pinch-off collapse
(Fig. 2), but with a larger time exponent (>1/2) in the inertial regime.
The collapse dynamics is similar to disk impact25 on fluid or pinch-
off of a bubble issuing from a submerged nozzle.32,33 Gas bubble
pinch-off exhibits power-law behavior with the exponent varying
with fluid viscosity such that the neck radius is proportional to τ1/2

for less viscous fluids and to τ in highly viscous fluids.34,35 In their
experiments with Newtonian fluids, Jiang, Zhu, and Li35 observed
a cusp shape for high viscous fluids and “tail” for non-Newtonian
fluids. In coalescence of circular lenses in water, a viscous-inertial
crossover has been identified with a smooth transition from r ∝ τ
to r ∝ τ1/2, where τ is here the time after initial contact.36 Consid-
ering the crossover between viscous-inertial regimes, Xia, He, and
Zhang37 developed a master curve capturing the full range of coales-
cence dynamics for different fluid viscosities. Axisymmetric bubble
pinch-off38 or cavity pinch-off25 is logarithmically slow, i.e., the time
exponent relies on logarithmic terms such that r(−log r)1/4 ∝ τ1/239

and r ∝ τ1/2e−
√
− log τ/2.31 Fontelos, Snoeijer, and Eggers40 devel-

oped a theory of the spatial structure of bubble pinch-off in the low
viscosity fluid. This confirms that collapse is logarithmically slow
and can be expressed in terms of the square of the aspect ratio of
the neck radius to the axial extent of pinch-off, in good agreement
with experiments.25,32 Figure 8 shows the time evolution of the neck

radius, (rn/R) exp (
√
− log τ∗/2) ∝ τ∗1/2. At the late stage, the neck

radius rn is linear in τ∗, which indicates a viscous transition. In the
case of no pinch-off cavity collapse (Fig. 2), a logarithmic term was
not necessary because the cavity collapses radially and axially. Fig-
ure 9 shows the final surface shape at pinch-off. Cusp formation at
the pinch-off position is identified, as shown in the semi-logarithmic
plot [Fig. 9(b)], where experiments are compared with (z − Z0)/R
= ±c (r/R)2/3. Best fit with the experimental data is obtained with

FIG. 9. Final surface shape at pinch-off in GW 80 (A/R ≙ 0.0365, b/bs ≙ 1.14). The solid line curves are given by Eq. (2) with ϵ ≈ 0, β ≙ 1.64, and ζ ≙ 0.42 such that

z/R − 0.42 ≙ ±0.75(r/R)2/3. (a) ×, represents the cavity shape at t − t0. (b) Semi-log plot of the final cavity shape with the origin shifted to pinch-off location Z0.
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FIG. 10. Cavity shapes at pinch-off. (a) GW 60, b/bs = 1.08 and (b) GW 80, b/bs

= 1.14. The scale bars represent 1 cm.

c = 0.75. Away from the singular location, and especially below it, i.e.,
z > Z0, the free surface boundary notably deviates from the theoret-
ical surface topology because the cavity is not open but surrounded
by liquid underneath the air. It is important to note that cusp forma-
tion at the pinch-off location occurs in GW80 [Fig. 10(b)], where the
local capillary number Ca > 1 in addition to b ≤ 1.14 bs. In GW 60,
capillary forces dominate (Ca < 1), and the shape is parabolic after
pinch-off [Fig. 10(a)].

V. JET VELOCITIES

Dimensionless jet velocities Uj/
√
gR in glycerine water GW

80 (ν = 0.5 cm2/s), measured as in the work of Raja, Das, and
Hopfinger19 (see Sec. II), are shown in Fig. 11 as a function of
b/bs. The experimental points compare well with the singular scal-

ing Uj/
√
gR ≙ C1(b/R)∥b/(∣b − bs∣)∥1/219 corresponding to the solid

lines obtained with the prefactor C1 = 14. The singular amplitude
is bs/R = 1.002, where the velocity can theoretically be infinite with
the jet diameter going to zero. However, viscosity prevents this to
happen. Composite images of cavity shape at time t0 below and jets
above are shown in the insets of Fig. 11. The novelty here is the cusp
formation at the cavity base when b ≃ bs (see inset b), as demon-
strated in Fig. 3(b), giving rise to very high-velocity surface jets, here,
of velocity 120 ± 20 m/s or higher. The jet energy is Ej ≈ π

2
ρUj

2rj
2Z0,

and wave energy is evaluated as Ew ≈ 1
25
πρgb2R2, giving a ratio

Ej
Ew
≲ 0.70, for U j = 120 m/s with b ≈ R, Z0 ≈ 0.6R, and rj ≲ R/550.

As the last stable wave amplitude approaches the critical value bs,
the singular scaling17,19 predicts that the velocity diverges and fur-
ther increase in forcing amplitude such that b > bs leads to cavity
collapse with bubble pinch-off (inset c). In this case, at the pinch-
off position, the cavity has also a cusp shape, but the jet velocity
is U j ≲ 33 ± 1.6 m/s only. The decrease in jet velocity is mainly
because of loss of wave energy due to bubble pinch-off. This loss
is ΔEw ≙ Ew(1 − E

wP

Ew
), where wave energy after pinch-off is given as

EwP ≈ 1
25
πρgbP

2R2, with effective wave amplitude bP ≈ 1.7 (Z0)P.
Thus, the loss is ΔEw ≈ Ew(1 − (Z2

0)P
Z2
0

) ≈ 0.5Ew. When b is fur-

ther increased, the cavity tip is parabolic just after pinch-off (inset
d). Thus, cusp singularities exist when 0.97 ≲ b/bs ≲ 1.14, but these
lead to high jet velocities only when b/bs ≲ 1. For wave amplitudes
b/bs < 0.97 or b/bs > 1.14, the cavity shapes (at t0) are no longer

FIG. 11. Log–log plot of dimensionless jet velocity Uj/√gR as a function of
last wave amplitude b/bs, where bs/R = 1.002. The symbols × and • show the
measured jet velocities for no pinch-off and pinch-off cavity collapse, respec-
tively. The solid line shows the theoretical curve given by the singular scaling

Uj/√gR ≙ C1(b/R)∥b/(∣b − bs∣)∥1/2. Insets a and b show the composite
images of wave depression cavity collapse and jet formation for no-pinch, b ≤ bs,
and insets c and d for pinch-off, b > bs. When b ≃ bs (A/R = 0.0340, inset b),
the jet velocity just above the undisturbed free surface is Uj = 120 ± 20 m/s. In
the case of bubble pinch-off, b > bs for A/R = 0.0358 (inset c), Uj = 33 ± 1.6 m/s
even though the cavity tip after pinch-off is a cusp. Further away from the singular
amplitude at b/bs < 0.97 (inset a) and b/bs > 1.14 (inset d), jet velocities are much
less, and the cavity tips are parabolic (inset d). The images of the jets have been
taken at 10 ms after emergence from the free surface. The horizontal and vertical
bars represent 1 cm.

cusp-like, and jet velocities decrease rapidly. The capillary and
Reynolds numbers have values similar to those of b/bs < 0.97 and
b/bs > 1.14. However, the cavity aspect ratio of width to depth
increases [see Figs. 6(b), 11(a), and 11(d)] with an increase in
deviation of b from bs.

VI. CONCLUSIONS

The present experiments demonstrate that collapse (Re≫ 1) of
a free surface wave depression cavity leads to inertial-viscous cusp
formation when (i) the local capillary number at collapse is Ca > 1
and (ii) the cavity depth to radius ratio is appropriate, which can be
monitored through the last stable wave amplitude b with respect to
the singular wave amplitude bs. The singular wave amplitude deter-
mines the change from no pinch-off (b < bs) to pinch-off (b > bs).
Cusp formation in no pinch-off collapse gives rise to extreme events,
i.e., very high-velocity surface jets, here U j ≈ 120 ± 20 m/s when
b ≃ bs. The free surface shape is self-similar, changing from an iner-
tial to a viscous regime when the singularity is approached. At cusp
singularity, the cavity shape takes the form of (z − Z0)/R ∼ −(r/R)2/3,
where Z0 is the final cavity depth. When Ca < 1, capillary forces pre-
vent cusp formation, and the cavity tip becomes parabolic in shape,
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resulting in considerably lower jet velocities. The parabolic cavity
shape at collapse also occurs when the last stable wave amplitude
b/bs < 0.97 even though Ca > 1. For much larger fluid viscosity such
that Ca≫ 1 with cusp formation, viscosity has a damping effect, and
jet ejection speeds are less. Viscosity has a similar damping effect for
jetting from bubble bursting, where beyond a critical Oh, i.e., at Oh
> Ohc(Bo), the jet velocity decreases.

Cavity collapse with bubble pinch-off also exhibits cusp forma-
tion of shape z/R − 0.42 = ±0.75 (r/R)2/3 when Ca > 1 and 1 < b/bs
≤ 1.14. However, jet velocities are much less because more than half
of the wave energy is lost by the bubble pinch-off and is thus not
available for jet formation. The time evolution of the neck radius is

(rn/R) exp (√− log τ∗/2) ∝ τ∗1/2 with a viscous transition to rn/R
∼ τ∗ at the late stage of cavity collapse.

It is remarkable that in fluids, parabolic and cusp singularities,
as indicated in Fig. 4, can be demonstrated (Figs. 3 and 9).

APPENDIX: INSTABILITY THRESHOLD AND WAVE
BREAKING BOUNDARIES

Figure 12 shows the boundaries of instability (A/R)c and wave
breaking thresholds (A/R)b as a function of forcing frequency. (A/R)c
is the minimum forcing amplitude for the onset of wave appearance
at the free surface, and (A/R)b is the wave breaking threshold ampli-
tude. The solid lines correspond to the weakly nonlinear theory,41

with the damping estimated from decay experiments. The dashed
line indicates ω/ω0 = 0.995, at which the experiments have been con-
ducted. For excitation amplitude, A/R ≥ (A/R)b, the surface wave
grows exponentially and reaches a wave amplitude b/R ≥ 0.8, which
eventually leads to cavity collapse and jet formation. The breaking

FIG. 12. Dimensionless forcing amplitude (A/R) as a function of frequency, ω/ω0.

The solid lines are the theoretical instability curves.41 (A/R)c and (A/R)b are,
respectively, the instability and wave breaking bounds. Symbols × and ∗ show the
instability boundaries for GW 60 and GW 80, respectively. ◽ and • represent the
respective wave breaking threshold. The vertical dashed line refers to conditions
at which the jetting experiments are conducted.

boundaries for GW 60 and GW 80 are indicated in Fig. 12 by ◽

and •.
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