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Key Points: 15 

• The inertial formulation of the St. Venant equations is unstable when applied to low friction 16 

areas typical of urban environments.  17 

• Numerical stability is improved using the diffusive term but calibration is required to obtain 18 

an optimal value of the diffusion coefficient.  19 

• This study proposes an explicit expression for the diffusion coefficient, obviating the need 20 

for trial and error calibration.  21 
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Abstract 23 

Two-dimensional shallow water models have been widely used in forecasting, risk assessment and 24 

management of floods. Application of these models to large-scale floods with high-resolution 25 

terrain data significantly increases the computation cost. In order to reduce computation time, 26 

shallow water models are simplified by neglecting the inertial and/or convective acceleration terms 27 

in the momentum equations. The local-inertial models have proved to significantly improve the 28 

computational efficiency even for large scale flood forecasting. However, instability issues are 29 

encountered on smooth surfaces of urban areas having low friction values. This problem was 30 

resolved by de Almeida et al. (Water Resources Research 48: 1 - 14, 2012) by introducing limited 31 

artificial diffusion in the form of weighting factors for the neighboring fluxes. The arbitrary value 32 

of the weighting factor poses a practical limitation of being case specific and requiring calibration 33 

for accurate solutions. This study derives an explicit expression for the weighting factor, an 34 

adaptive formulation dependent on local velocity, flow depth, grid and time step size, that 35 

eliminates the need for trials and approximations. Comparisons between analytical, experimental 36 

and real-world applications confirm the accuracy and robustness of the proposed weighting factor. 37 

Implementation of adaptive weights results in less computation time compared to LISFLOOD-FP 38 

(~1.2 times) and hold a significant advantage over HEC-RAS (~25.9 times) as it allows the use of 39 

larger time step at higher CFL values. The contribution of the present study therefore resolves an 40 

important problem of current large scale flood simulations, especially those implemented in real-41 

time. 42 

Keywords: Flood modeling; Local-inertial model; Adaptive weighting factor; Chennai flood 2015 43 

1 Introduction 44 

Flood inundation is considered as a major natural hazard. Its accurate prediction is therefore 45 

necessary for developing flood hazard zone maps and issuing warnings before the occurrence of 46 

extreme flood events. Mathematical models simulating the physics thus play a pivotal role in these 47 

flood risk assessment tools. Most models solve the depth-averaged two-dimensional (2D) shallow 48 

water equations (SWEs) and in the past few decades, substantial research has gone into the 49 

development of various numerical schemes that form the basis of these models (Peraire et al., 50 

1986; Bermudez et al., 1991; Hubbard, 1999; Sanders et al., 2008; Liang, 2010; Cea and Blade, 51 

2015). In spite of the high-computational power and substantial progress in numerical methods, 52 

application of these models to large-domain with high-resolution topographical details, especially 53 

for issuing early warnings, demands high computation time (de Almeida et al., 2012). Simulation 54 

at high-resolution is particularly important in urban areas for capturing the complex hydrodynamic 55 

processes with a detailed representation of topographical features (Horritt and Bates, 2001; Brown 56 

et al., 2007; Fewtrell et al., 2008; Neal et al., 2009; Horritt et al., 2010; Sampson et al., 2012). This 57 

indicates the limitations of using complete 2D models for simulating floods over large areas at 58 

high resolution. In order to reduce the computational burden, four different speed-up approaches 59 

are currently employed: (i) high-performance parallelization approach that takes advantage of 60 

general purpose graphics processing unit (GPGPU) (Kalyanapu et al., 2011), distributed memory 61 

parallelization (Pau and Sanders, 2006, Neal et al., 2009), multi-core central processing units 62 

(MCs), cloud computing (Lamb et al., 2009), etc.; (ii) a simplified hydraulic model approach, in 63 

which one (i.e. convective acceleration) or both inertial terms from the complete 2D SWEs are 64 

ignored to obtain either a diffusion wave (Bates and De Roo, 2000) or a local-inertial model (de 65 

Almeida et al., 2012); (iii) a coarse-grid approach, in which the computation time is reduced either 66 

by increasing the grid size or using techniques like sub-grid treatment (Yu and Lane, 2011) and 67 
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porosity parameter (Sanders et al., 2008; Bruwier et al., 2017) to compensate for loss of accuracy; 68 

and (iv) the Cellular Automata (CA) approach (Dottori and Todini, 2010; Guidolin et al., 2016), 69 

in which the computational efficiency is improved using the universal transition rule for spatial 70 

discretization. This study attempts to use the simplified hydraulic model approach, which can 71 

render a much reduced computation time if implemented using techniques like GPGPU, 72 

parallelization or sub-grid approach. The diffusive or local-inertial models adopt simpler 73 

numerical methods for its solution algorithm. As a result, the computational cost of simplified 74 

models for each time step is significantly reduced in comparison to the equivalent numerical 75 

solution of full 2D models (Bates et al., 2010; de Almeida et al., 2012; Shustikova et al., 2019). 76 

This improvement in computational efficiency has allowed the use of simplified models to a new 77 

range of applications, such as Monte Carlo simulations for estimating uncertainty (Aronica et al., 78 

2002) and ensemble simulations for flood forecasting (Pappenberger et al., 2005). 79 

Of the two simplified SWE formulations that have been developed, the local-inertial formulation 80 

provides a better alternative to the diffusive wave approximation. The main advantage of the local-81 

inertial formulation lies in the improved stability condition that can be used to determine the time 82 

step. The time step for the local-inertial model reduces linearly with grid size, unlike diffusive 83 

wave models where the time step decreases quadratically (Bates et al., 2010). This is because the 84 

local-inertial formulation is a shallow water model and the time step is therefore controlled by the 85 

Courant-Friedrichs-Lewy (CFL) condition, rather than the more restrictive time step constraint 86 

necessary for the diffusion wave equation developed by Hunter et al. (2005). This property of 87 

local-inertial models thus substantially enhances the computational efficiency even for problems 88 

with fine grids that would have been prohibitively expensive to be solved with diffusive models. 89 

Also, it avoids the dramatic reduction in time step that is usually the case for diffusive wave models 90 

in regions of negligible water surface gradient. Several local-inertial models have been developed 91 

based on different numerical schemes (Ponce, 1990; Xia, 1994; Aronica et al., 1998; Bates et al., 92 

2010; Martins et al., 2015). Among these, the scheme proposed by Bates et al. (2010) for solving 93 

the local-inertial equations is widely used for its relative simplicity and low computation cost. 94 

Recent versions of the local-inertial model, LISFLOOD-FP, are based on the numerical solution 95 

scheme given by Bates et al. (2010). This scheme has been successfully used for flood inundation 96 

modeling in various parts of the world such as Europe (Bates et al., 2010), West Africa (Neal et 97 

al., 2012), the Amazon (Baugh et al., 2013), India (Sanyal et al., 2013; Lewis et al., 2013) and 98 

North Africa (Yan et al., 2014). The European Flood Awareness System (https://www.efas.eu/) 99 

uses LISFLOOD-FP as its hydraulic model for the flood forecasting of entire Europe. The 100 

landscape evaluation model CAESAR-LISFLOOD (Coulthard et al., 2013) uses the local-inertial 101 

formulation of Bates et al. (2010) for its hydraulic simulation. MGB-IPH is another model that 102 

uses the same solution scheme of Bates et al. (2010) for flow routing and has been applied for 103 

large-scale flood simulations (de Paiva et al., 2013, Pontes et al., 2017). CaMa-Flood, which is a 104 

global river model, developed by Yamazaki et al. (2013) also uses the local-inertial formulation. 105 

These local-inertial models run on the scheme proposed by Bates et al. (2010) and are shown to 106 

outperform both diffusive as well as full 2D models in terms of computational efficiency for sub-107 

critical flows (Neal et al., 2012; de Almeida et al., 2013). 108 

Despite its high performance, the solution scheme was reported to suffer from numerical instability 109 

under certain flow conditions in low friction regions such as urban areas (Bates et al., 2010). In 110 

order to overcome this issue, de Almeida et al. (2012) proposed an improvement by introducing 111 

an artificial diffusive term for accurate estimation of the numerical flux. The numerical diffusion 112 

https://www.efas.eu/
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is added to the flux computed through an interface of a computational cell using the discharge 113 

values of the neighboring interfaces. The amount of diffusion is limited and controlled by a 114 

weighting factor ( )  which is effectively a diffusion coefficient (de Almeida et al., 2012). Two 115 

numerical schemes (q-schemes), namely, upwind and centered schemes were proposed by de 116 

Almeida et al. (2012) based on the way the weight is applied to the flux calculations. These 117 

schemes were shown to provide smooth solutions even for a wide range of friction values (down 118 

to values of Manning’s friction coefficient (n) of 0.01 m-1/3s), unlike the numerical solution of 119 

Bates et al. (2010) which had a tendency to break down for values of n < 0.03 m-1/3s. However, the 120 

accuracy of the solution depends on the value of the parameter  , which is chosen empirically. It 121 

is observed from the applications of the LISFLOOD-FP model that stable solutions are obtained 122 

for the range 0.7 1.0  . Since the value of   controls the amount of diffusion, that is the flux, 123 

its value needs to be optimized through trial and error. Martins et al. (2015) have argued that this 124 

poses a problem since the calibration procedure makes use of real-world data for obtaining the best 125 

value of  . To overcome this issue, they proposed a well-balanced local-inertial model, in which 126 

the mass and momentum fluxes are computed using the Riemann solver. Although this model 127 

avoids the requirement of the trial and error procedure, it is computationally ~ 4.0 times more 128 

expensive compared to the scheme proposed in de Almeida et al. (2012) and subsequently 129 

implemented in LISFLOOD-FP. This motivates formulating an explicit expression for   to be 130 

used in local-inertial models such as LISFLOOD-FP. Such an expression is derived in this paper 131 

based on the local flow dynamics at each computational cell boundary and eliminates the need for 132 

the trial and error approximation of  . Considering the range of applications an explicit expression 133 

for estimating the value of   is expected to improve the accuracy and numerical stability of 134 

LISFLOOD-FP model.  135 

This study, therefore, aims at formulating an expression for   to automatically control the amount 136 

of diffusion for calculating flux in the solution scheme of de Almeida et al. (2012). The value of 137 

  varies both spatially and temporally, adapting itself automatically with those of the local 138 

variables. The adaptive expression for   is then implemented into the upwind and centered 139 

schemes, also termed as s-schemes, of the local-inertial formulations as described in de Almeida 140 

et al. (2012). The accuracy is first verified by solving a 1D analytical test case. The 2D flood flows 141 

observed in an experimental river-network-floodplain setup is simulated to demonstrate the effect 142 

of   on the performance of s-schemes and the LISFLOOD-FP model. Then a real-time urban flood 143 

event in Glasgow, UK, is simulated to show the improved stability condition of adaptive   based 144 

s-schemes compared to the use of constant  in q-scheme of de Almeida et al. (2012). Finally, s-145 

schemes are applied to one of the most devastating floods in the history of Chennai city in Southern 146 

India that occurred in 2015. It is observed that the proposed adaptive   for local-inertial model not 147 

only automatically controls the amount of diffusion but also increases the computational time step 148 

size as and when required. As a result, a significant reduction in computation time is also achieved 149 

in the reported applications compared to LISFLOOD-FP. The detailed analyses and comparisons 150 

of results imply that the contribution of this study in formulating an explicit expression for adaptive 151 

  improves accuracy, computational efficiency and stability of a local-inertial model.  152 
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2 Governing Equations  153 

The governing equations for the proposed model are derived by simplifying the 2D SWEs. The 154 

simplification is primarily based on the assumption that for slowly varying flows the convective 155 

acceleration terms can be neglected (de Almeida et al., 2012) and the resulting system of local-156 

inertial equations can be written as  157 

0
yx

qqh

t x y


+ + =

  
         (1) 158 

2

7/3
0

x xx
gn q qq H

gh
t x h

 
+ + =

 
        (2) 159 

2

7/3
0

y yy
gn q qq H

gh
t y h

 
+ + =

 
        (3) 160 

where t is the time; x and y are the Cartesian directions; h  is the water depth, x
q  and y

q  are the 161 

unit width discharges in the x- and y -directions, respectively; H h z= +  is the water surface 162 

elevation; z is the bed elevation with respect to a datum and g is the acceleration due to gravity. 163 

The numerical scheme adopted herein uses the simplified momentum equations (2) and (3) in the 164 

two spatial directions for updating corresponding unit discharges, which in turn are used to 165 

compute mass fluxes in equation (1). In the next step, equation (1) is used to update the unknown 166 

water surface elevation at the cell centroid. The numerical discretization of the above governing 167 

equations is discussed in the following section. 168 

3 Numerical scheme 169 

The computational domain is described by a structured grid (Figure 1) which has the advantage to 170 

exploit the expanding wealth of raster terrain data. The mass and simplified inertial momentum 171 

equations are discretized using the Godunov like approach, in which the mass fluxes are computed 172 

through the interfaces (i ± 1/2 and j ± 1/2) of a cell using a simple analytical equation and the water 173 

depth is updated at the cell center (i, j) (de Almeida et al., 2012).  174 

Equation (1) is discretized for a computational cell as shown in Figure 1 using a first-order forward 175 

time marching scheme as follows 176 

, , 1/2, 1/2, , 1/2 , 1/2

t t t t t t t t t t t

i j i j i j i j i j i j
h h q q q q

t x y

+ + + + +
− + − += +

  

− − −
      (4) 177 

where x and y  are the cell sizes in the x-and y-directions, respectively; t  is the time step size; 178 

,

t

i jh and 
,

t t

i jh
+ are the water depths at the cell centroid in the current and next time steps respectively; 179 

1/2,

t t

i jq
+
+  and 1/2,

t t

i jq
+
− are the mass fluxes through the interfaces (i±1/2, j) along the x-direction; and 180 

, 1/2

t t

i jq
+
+  

and , 1/2

t t

i jq
+
−  are the mass fluxes through the interfaces (i, j±1/2) along the y-direction. The 181 

mass flux 
t t

q
+

 at an interface is computed after solving the corresponding momentum equation.  182 



6 

 

The local-inertial momentum equations (2) and (3) are also similarly discretized, for example, the 183 

flux along the x-direction at the interface ( 1/ 2,i j− ) is written using equation (2) as 184 

2

1/2, 1/2,1/2, 1/2,

7 3
0

t tt t t
i j i ji j i j

flow t

flow

gn q qq q
gh S

t h

+
− −− −−

+ + =


     (5) 185 

where, /
t

S H x=   is the water surface gradient and flow
h represents the effective flow depth across 186 

the interface (i-1/2, j). The effective flow depth at an interface is estimated as 187 

, 1, , 1,max( ) max( )
flow i j i j i j i j

h H H z z− −= − − − . Hence, equation (5) may now be used to explicitly 188 

compute 
t t

q
+

 at an interface using the known values of 
t

q , 
t

h  and z . A further improvement may 189 

also be made in equation (5) by replacing one 
t

q
 
in the friction term by 

t t
q

+
, as instabilities may 190 

still arise at shallow depths (e.g. near the wet-dry interface), where the friction term becomes too 191 

large (Bates et al., 2010; Kuiry et al., 2010). This substitution leads to an explicit equation for the 192 

unknown 1/2,

t t

i jq
+
−  with improved convergence properties similar to that of an implicit time stepping 193 

scheme. Rearranging terms, equation (5) reads as under: 194 

( )7/3

1/2,

1/2,
2

1/2,1 /

t

i j flow tt t

i j
t

i j flow

q gh tS
q

gn t q h

−+
−

−

− 
=

+ 
       (6) 195 

Equation (6) is used to compute mass fluxes through the interface, ( 1/ 2,i j− ). Similarly, fluxes 196 

through the other three interfaces of the cell ( ,i j ) can be obtained by following the above 197 

discretization procedure. Once the fluxes are computed, equation (4) is used to explicitly update 198 

the unknown flow depth at the center of a cell,
 ,

t t

i jh
+ . The solution methodology followed here is 199 

similar to the semi-implicit scheme proposed by Bates et al. (2010). Equation (6) improves the 200 

computational efficiency significantly due to the fact that the time step is computed using the CFL 201 

condition instead of the more restrictive time step constraint proposed by Hunter et al. (2005). 202 

However, the finite difference technique of discretizing the spatial derivatives leads to lack of 203 

diffusive terms. As a result, the scheme suffers from numerical instability at low friction values (n 204 

< ~0.03) as the dampening effect reduces. de Almeida et al. (2012) conducted a detailed study for 205 

counteracting the instabilities by incorporating a diffusion like term in equation (6). The diffusion 206 

term is in fact a modification of 
1/2,

t

i jq −  in the numerator of equation (6) by taking the contribution 207 

of fluxes from the neighboring cells. In effect, such a modification improves the estimation of 208 

fluxes through a cell boundary by considering a larger stencil in a similar way to that of upwind 209 

and centered schemes. However, this simple modification in equation (6) has been shown to yield 210 

a large improvement in the numerical stability of the local-inertial models (de Almeida et al., 2012) 211 

at low friction values.  212 

3.1 Numerical schemes with diffusive terms 213 

de Almeida et al. (2012) proposed two schemes (i.e. q-schemes), termed as (a) q-upwind and (b) 214 

q-centered, depending on the way the information from the neighboring cell(s) is used to introduce 215 

the dissipation effect. For example, in case of the q-upwind scheme, flux at the interface 216 

( 1/ 2, )i j−  - 
1/2,

t t

i jq
+
− , is obtained by adding a small amount of flux from either the left or right of 217 
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its neighboring interfaces based on the direction of flow. The modified flux equation at an interface 218 

is thus computed as  219 

( )

( )

7/3

7/3

1/2, 3/2,

1/2,
2

1/2,

1/2,

1/2, 1/2,

1/2,
2

1/2,

(1 )
   if 0

1 /

(1 )
  if 0

1 /

t t

i j i j flow t t

i j
t

i j flow
t t

i j t t

i j i j flow t t

i j
t

i j flow

q q gh tS
q

gn t q h
q

q q gh tS
q

gn t q h

 

 

− −
−

−
+
−

− +
−

−

 + − − 


+ = 
+ − −   + 

    (7) 220 

 221 

For the q-centered scheme, the weighting of fluxes from both neighboring interfaces is used to 222 

stabilize the solution. The flux
1/2,

t t

i jq
+
− , for example, is computed as  223 

( )

( )7/3

3/2, 1/2,

1/2,

1/2,
2

1/2,

1
2

1 /

t t

i j i jt

i j flow t

t t

i j
t

i j flow

q q
q gh tS

q
gn t q h

  − +
−

+
−

−

 +
+ − −   

 =
+ 

    (8) 224 

In equations (7) and (8), θ is the empirical flux weighting factor. The terms associated with (1- θ) 225 

in the same equations are called the diffusive terms. The value of   controls the amount of 226 

dissipation and gives non-oscillatory water surface profile when an appropriate value for   is 227 

chosen. With 1 = , the semi-implicit scheme of Bates et al. (2010) is obtained, which is found to 228 

give numerical instability for n < 0.03 m-1/3s (de Almeida et al., 2012). 0 =  results in a scheme 229 

similar to the Lax diffusive. de Almeida et al. (2012) used a constant value for   (such as, 0.8 and 230 

0.9) to improve the stability for the test cases in their study. However, this constant value needs to 231 

be fixed for each case through a trial process. The derivation of the proposed closed-form solution 232 

for  , which being based on the local flow characteristics obviates the need for its ad hoc selection, 233 

is presented in the following section. 234 

3.2 Expression for adaptive theta  235 

The terms of q-schemes given by equations (7) and (8) are inspired by the concept of upwinding 236 

and centered schemes, respectively (de Almeida et al., 2012). These equations mainly use the 237 

direction of flow (i.e., towards left or right along x-direction and towards top or bottom along y-238 

direction) to obtain the artificial diffusive terms but neglect the directions of individual waves, as 239 

in the case of the full SWEs. Hence, considering the similarities with upwind and centered schemes 240 

(de Almeida et al., 2012), the same names are used in this study. However, it is important to note 241 

that the inclusion of the diffusive terms in equations (7) and (8) is akin to the concept of the 242 

weighted average flux (WAF) method (Toro, 2001). Ying et al. (2004) used a similar concept of 243 

applying weights computed from the CFL number as a function of velocity, time step and grid 244 

size, to remove oscillations associated with the centered discretization of the bed slope terms. 245 

Following the concept of Ying et al. (2004), a simple expression as given below, is proposed here 246 

for computing the weighting factor. 247 

1/2, 1/2,1 r

i j i jc − −= −          (9) 248 

and 249 
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1/2, 1/2,

r

i j i j

t
c u

x
− −


=


         (10) 250 

where 1/2,

r

i jc −  is the interface CFL number.  251 

The CFL number is generally used as the criteria for stability in shallow water models and the 252 

minimum value of CFL within a time step is obtained by a heuristic search through all the cells of 253 

the computational domain. However, implementation of a minimum value of CFL and 254 

subsequently a single value of   at all cell interfaces is found to under/over predict the solution, 255 

as in de Almeida et al. (2012). One possible reason could be that the flux at all the interfaces cannot 256 

be scaled by a single value of   as it may not consider the effect of local flow dynamics. Therefore, 257 

it is proposed to compute   at all the interfaces at each time step considering the local flow velocity 258 

and water depth for better accuracy. Since local-inertial models do not compute velocity as a 259 

solution variable, the velocity at a typical interface, for example 1/2,i j
u −  (Figure 1) is obtained from 260 

the calculated discharge value as,  261 

1/2,

1/2,

i j

i j

flow

q
u

h

−
− =          (11) 262 

The expression of the diffusion coefficient thus becomes 263 

1/2, 1/2,1
i j i j

t
u

x
 − −


= −


         (12) 264 

It is found that near the wet-dry interface,   may become very small or even negative as the second 265 

term on the right side of equation (9) may turn out to be greater than unity. For that reason, the 266 

wave celerity at the interface is also considered and the expression for   is redefined as  267 

( )1/2, 1/2,1 min ,
i j i j flow

t
u gh

x
 − −


= −


       (13) 268 

It can be observed from equation (13), that more diffusion from the neighboring interface is 269 

introduced when the flow velocity is high, while it tends to be zero in the region having negligible 270 

water surface slope. Since this weighting factor is likely to change both spatially and temporally 271 

depending upon the value of discharge and water depth, it may be referred to as “adaptive 272 

weighting factor” or simply “adaptive ”. The proposed expression for   as given in equation (13) 273 

is substituted in equations (7) and (8) and the modified form of q-schemes (q-centered and q-274 

upwind) are re-named as s-schemes (s-upwind and s-centered) in this study. Though the proposed 275 

s-schemes involve a few extra computations compared to q-schemes, the numerical experiments 276 

presented subsequently prove that improved numerical stability achieved at higher CFL numbers 277 

to compensate the additional computational cost. Martins et al. (2015) also neglected the 278 

convective acceleration term aiming to reduce the computation time of a full 2D model by applying 279 

a well-balanced Roe scheme for computing mass and momentum fluxes through each cell 280 

interface. Following this, the momentum and water depth at the cell centroids are updated. 281 

However, the present implementation of the same scheme proves that the use of the shock-282 

capturing algorithm of Roe results in more than twice the computation time compared to the local-283 
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inertial schemes. This is quite obvious since local-inertial models do not solve the mass and 284 

momentum equations separately and the Roe scheme based finite volume solution is restricted by 285 

CFL number (Kuiry et al., 2008). Therefore, the proposed adaptive   has the potential to improve 286 

the numerical stability of local-inertial models and also to reduce the overall computation time. 287 

4 Stability condition 288 

The model time step is evaluated as suggested in Bates et al. (2010) 289 

max

x
t

gh
 

 =          (14) 290 

where 
maxh is the maximum depth at any time step and   is the CFL number. The s-schemes are 291 

run with  = 0.9 for stable results and are reported herein. Both the q-schemes (de Almeida et al., 292 

2012) have been coded in the present model since q-upwind scheme is not available in 293 

LISFLOOD-FP (version 5.8.9). The q-schemes implemented by the authors as well as the q- 294 

centered scheme in LISFLOOD-FP show numerical oscillations for  = 0.9, hence  = 0.8 is used 295 

for all the test cases.  296 

5 Model testing and results 297 

The performance of the proposed adaptive   in inertial models is assessed through a variety of 298 

numerical tests as follows  299 
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The results of the s-schemes are compared with those obtained from analytical solutions, 303 

LISFLOOD-FP (de Almeida et al., 2012), full dynamic version of HEC-RAS 2D (Brunner, 2016), 304 

TELEMAC 2D (Hervouet, 2000) and the results reported in Hunter et al. (2008).  305 

5.1 Non-breaking wave propagation on a horizontal plane 306 

This case is simulated here to assess the sensitivity of   in q-schemes and the proposed adaptive 307 

  in s-schemes on overall accuracy when Manning’s roughness is varied from smooth surface to 308 

a numerically challenging low value. Hunter et al. (2005) developed an analytical solution for this 309 

problem by simplifying the full Saint-Venant equations, where water depth is expressed as a 310 

function of space and time as given below. 311 

( )( )
3/7

2 37
( , )

3
h x t C n u x ut

 = − −  
       (15) 312 
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where u is the constant velocity along the x-direction, n is the Manning's roughness coefficient, 313 

and C is an integration constant which can be obtained using ( , ) 0h u t = . The upstream boundary 314 

condition of time-varying depth is imposed at 0x =  as 315 

( )
3/7

2 37
0,

3
h t n u t

 =  
 

         (16) 316 

The computation domain consists of 32 × 240 square cells each of size 25 m × 25 m. The upstream 317 

boundary condition is imposed along the entire width of the domain and as a result the problem 318 

reduces to 1D wave propagation along the x-direction. Two simulations are performed with 319 

different Manning’s coefficients, n = 0.01 and 0.005 m-1/3s, with upstream velocities, u = 0.4 and 320 

0.635 m/s respectively. These velocities and roughness coefficients are chosen to maintain the 321 

same boundary condition as given by equation (16). The friction value of 0.01 m-1/3s is chosen to 322 

represent smooth surfaces (e.g., the cemented surface in urban areas) and the very low friction of 323 

0.005 m-1/3s is chosen to investigate the ability of the proposed schemes in providing oscillation-324 

free solutions under a numerically challenging condition. The simulations are run for a duration of 325 

9000 s. Since q-upwind scheme is not available in the recent version of LISFLOOD-FP, the q-326 

schemes implemented by authors and the analytical solutions are used here for comparison. 327 

Figures 2a and 2b compare the water surface profiles of the q-schemes for  = 0.8 and 0.9 with the 328 

proposed s-schemes and the analytical solutions at different instants of time. Figures 2c and 2d 329 

show the magnified views of the wavefront in Figures 2a and 2b at time t = 9000 s. The q-centered 330 

and s-centered schemes are seen to propagate the wave front with almost the same accuracy but 331 

slightly slower than the corresponding analytical solutions for both the n values. It is interesting to 332 

note from Figures 2e and 2f that during the entire simulation period, the average adaptive   values 333 

for the s-centered scheme are 0.87 and 0.80 (Figure 2e and 2f) for n = 0.01 and 0.005 m-1/3s, 334 

respectively. Also, these values are close to the fixed values of 0.90 and 0.80 for   used by de 335 

Almeida et al. (2012) in their q-centered scheme. In addition, it should be noted that the q-centered 336 

scheme is almost insensitive to the value of   within the considered range.  337 

Figure 2c shows that for  = 0.9 and n = 0.01 m-1/3s, the wave front propagation obtained using the 338 

q-upwind scheme falls closer to the analytical solution and it is over predicted for   = 0.8. 339 

However, the simulated wave front propagation by the q-upwind scheme for n = 0.005 m-1/3s with 340 

both the fixed values of   are slower than the analytical solution as shown in Figure 2d. Hence, it 341 

is clear that for various Manning’s n, the q-upwind scheme is sensitive to the   value, de Almeida 342 

et al. (2012) reported that the q-upwind scheme is sensitive due to the zero-th order term and 343 

dropped this scheme from the LISFLOOD-FP model. Interestingly, the s-upwind scheme 344 

consistently performs better for both the n values and the wave fronts are always closer to the 345 

analytical solutions. This is due to the usage of adaptive   following the local hydrodynamics such 346 

as velocity as shown in Figures 2e and 2f.  347 

It is also observed that the results obtained using the q-schemes fall closer to the s-schemes, 348 

provided the adaptive   value throughout the simulation period varies within a narrow range and 349 

the empirically fixed   value is chosen from that specific bound of values rather than from a wide 350 

range. In this test case, though the s-upwind scheme is shown to be more accurate than the fixed 351 
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  based q-upwind scheme, the improved accuracy of the s-centered scheme over the q-centered 352 

scheme is marginal.  353 

For stable results, the s-schemes and q-schemes were run with time steps of 11.68 s and 9.8 s 354 

respectively. Therefore, s-schemes have been proven to be faster than q-schemes by ~1.19 times, 355 

which is about ~19% improvement in overall computation time.  356 

5.2 Non-breaking Wave Runup on a Sloping Beach 357 

This test case proposed by Hunter et al. (2005) explores the propagation of a wave over an adverse 358 

longitudinal slope. This test case examines the numerical stability of the proposed s-schemes as 359 

the reduction in water depth along the adverse slope enhances the non-linear effect that in turn 360 

leads to more shocks. The solution for this problem can be obtained by using a fourth order Runge-361 

Kutta method as described in de Almeida et al. (2012). The computational domain is again 362 

discretized into 32 × 240 square cells each of size 25 m×25 m and along the longitudinal direction 363 

the adverse slope of 10-3 is maintained. Two simulations are performed using the Manning’s 364 

coefficients, 0.03n =  and 0.01 m-1/3s and the velocity of 0.4u = m/s is used at the upstream for 365 

both the simulations. In the absence of q-upwind scheme in the recent version of LISFLOOD-FP, 366 

the q-schemes implemented by the authors and the analytical solution are used for comparisons. 367 

Figures 3a and 3b show the comparisons of the simulated water surface profiles along the x-368 

direction with the Runge-Kutta solution at different instants of time. 369 

Figures 3c and 3d show the magnified views of Figures 3a and 3b, respectively at time t = 3600 s. 370 

For both the n values, the s-schemes produce smooth solutions without any numerical oscillations 371 

similar to the q-schemes as reported in de Almeida et al. (2012). The water surface profiles 372 

obtained by all the centered schemes are under-predicted and the wave front propagation is slower 373 

compared to the corresponding Runge-Kutta solutions. In case of the q-upwind scheme, for 0.8 =374 

, the water surface profile is over predicted and accordingly the wave front moves faster. The water 375 

surface profile and wave front are closer to the Runge-Kutta solution for 0.9 =  as shown in 376 

Figures 3c and 3d. On the other hand, the results of the proposed s-upwind scheme are found to be 377 

consistently closer to the Runge-Kutta solutions for both the n values, similar to the previous test 378 

case. It can be observed that again the results from the q-schemes fall closer to those of s-schemes 379 

provided the fixed value of   (0.90 for both q-centered and q-upwind schemes) is chosen from 380 

the narrow range of the adaptive   values (average   of 0.91 and 0.93 for q-centered and q-381 

upwind schemes, respectively) over the entire simulation period. The s-schemes are observed to 382 

be ~1.15 and ~1.20 times faster than the q-schemes for n = 0.01 and 0.03 m-1/3s, respectively. 383 

The above two test cases prove that the proposed adaptive   concept gives results with either 384 

similar or better accuracy with less computation time compared to the q-schemes of de Almeida 385 

et al. (2012) irrespective of the type of schemes and Manning’s roughness values. The advantage 386 

of the proposed adaptive   concept is that the trial and error procedure required to fix   value is 387 

completely eliminated. In addition, it is found that q-upwind scheme is also consistent provided 388 

that   is chosen adaptively as provided in this study.   389 

5.2 Experimental Flood Propagation in a River-Network-Floodplain Setup  390 

The above test cases demonstrate the performance of the proposed s-schemes for 1D flow 391 

problems. It was found that in the case of 1D flow if the fixed   value is chosen from the narrow 392 
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range of adaptive , the wave front computed by the q-schemes are closer to that of s-schemes. To 393 

further assess the performance of s- and q-schemes for 2D flow problems, simulations are run to 394 

reproduce the experimental flood event generated in a physical setup at the Hydraulics Laboratory 395 

of Indian Institute of Technology Madras (IITM), India (Figure. 4). The physical model represents 396 

a typical river-network-floodplain system, as commonly seen in delta regions. The setup is 20 m 397 

long and 5 m wide, and consisting of 8 channels, 4 junctions and 5 distinct floodplains (F1-F5). 398 

The channels are rectangular in section and are connected to the flood plains on either side. All the 399 

channels slope downstream with a uniform bed slope of 1:1000. The digital topography of the 400 

setup is represented by an elevation model (DEM) of 2 cm × 2 cm resolution. More details on the 401 

DEM of the setup can be found in Mali and Kuiry (2018).  402 

Water is released into the setup at its upstream through the main channel from an overhead tank 403 

using two pipelines of diameters 8′′ (203.2 mm) and 3′′ (76.2 mm), respectively. The discharge of 404 

water is measured using an electromagnetic flow meter. The flow rate is controlled using a sluice 405 

gate in the 8′′ (203.2 mm) diameter pipe and a SCADA (supervisory control and data acquisition) 406 

system in the 3′′ (76.2 mm) diameter pipe. The test cases are conducted for a steady-state flow of 407 

0.078 and 0.098 m3/s. Initially, a small amount of water at a rate of about ~0.018 m3/s is released 408 

into the model for one hour until initial disturbances dampen out. The inflow is then gradually 409 

increased up to 0.078 and 0.098 m3/s in a sufficiently long duration. The SCADA control is used 410 

to avoid unnecessary wetting of the floodplains and subsequently to improve the accuracy of 411 

delineated flood extent using the image processing technique. Once steady state is attained water 412 

depths are measured using point gauges. The observation locations in the river (green colour) and 413 

over the floodplains (light yellow colour) are shown in Figure 4. The inundation extent is captured 414 

using a Nikon D5300 DSLR camera from the top. Finally, the captured images are processed in 415 

ARCGIS to delineate the inundation extent. Each experiment takes about 10 hours to complete 416 

and are repeated thrice to ensure the reliability of the observed water depths as well as the 417 

generated inundation extent maps. The details of the experiment can be found in Mali and Kuiry 418 

(2019).   419 

Calibration of Manning’s n value  420 

To calibrate Manning’s coefficients for LISFLOOD-FP and the proposed s-schemes the 421 

simulations are conducted using the steady-state flow of 0.078 m3/s. For calibration purpose, 422 

Manning’s coefficient is varied between 0.008-0.014 m-1/3s for smooth concrete surface with an 423 

increment of 0.001. In case of the LISFLOOD-FP model, apart from Manning’s coefficients, 424 

different   values are also needed to be calibrated. The value of   is chosen between 0.70 - 0.95 425 

with an incremental step of 0.05. Hence, the LISFLOOD-FP model was run forty-two times using 426 

the combinations of Manning’s roughness coefficients (0.008-0.014 m-1/3s) and weighting factors 427 

(0.70 - 0.95), while the proposed s-schemes are run only for seven values of Manning’s coefficient. 428 

The simulations are carried out using the discharge of 0.078 m3/s at the upstream and measured 429 

water levels (locations shown as red dots in Figure 4) at three downstream outlets. The initial 430 

condition of the model was set by specifying a uniform water depth of 0.08 m inside the river 431 

network. The optimal value of Manning’s coefficients for the LISFLOOD-FP and s-schemes are 432 

identified by comparing the simulated inundation extents with observed maps. The simulated water 433 

depth using optimal Manning’s coefficients of the LISFLOOD-FP and s-schemes are then 434 

compared with observed water depths to analyze their accuracy.   435 
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The accuracies of the s-schemes and the LISFLOOD-FP model in predicting the flood extent are 436 

examined based on the number of wet/dry cells. For quantitative evaluation, the goodness-of-fit 437 

(F) values are computed using the simulated and observed inundation extents. The following 438 

expression used in Bates et al. (2006) and Kuiry et al. (2010) is adapted in this study to evaluate 439 

the measure of fit (F) value as, 440 

A
F

A B C
=

+ +
× 100 %        (17)

 
441 

where A is the wet area correctly predicted by an inertial model, B and C are the over- and under-442 

predicted areas by a model compared to the observed data. Therefore, the value of F varies from 443 

0 to 100 %. F = 0 % indicates no overlap of the predicted and observed areas and F = 100 % 444 

indicates a perfect overlap.  445 

From the simulations, it was found that the LISFLOOD-FP model significantly over-predicts the 446 

inundation extent at the upstream of the flood-plain F1 when the Manning’s coefficient is greater  447 

than 0.009 and the value of   is less than 0.95. The observed inundation map indicates that this 448 

prediction is unphysical and apparently is caused by the use of high diffusion value (low weighting 449 

factor) and Manning’s coefficient. As a result of this over prediction, the accuracy of simulated 450 

flood extent is reduced and F value is found to be less than 66%. On the other hand, the 451 

LISFLOOD-FP result shows significant under-prediction of inundation extent for   = 0.95, 452 

irrespective of Manning’s coefficients and the F values are in the range of ~56 - 68%. The realistic 453 

inundation extents are simulated for Manning’s coefficients of 0.008 and 0.009 m-1/3s. Among 454 

these two values, a better prediction is obtained only for Manning’s coefficient of 0.009 m-1/3s with 455 

F = 76% (for 0.008 m-1/3s the F value is 73%) when   = 0.90. However, when   = 0.85 these two 456 

Manning’s coefficients produced overprediction of inundation extents (F = 68% for 0.008 and 457 

66% for 0.009 m-1/3s). Hence, 0.009 m-1/3s is treated as the calibrated value for the LISFLOOD-FP 458 

model. Similarly, the calibration process is carried out for s-schemes by taking value of Manning’s 459 

coefficient within the range of 0.008-0.014 m-1/3s. From the simulations, it was found that 460 

Manning’s coefficient of 0.01 m-1/3s results in better prediction (F = 84% and 86% for s-centered 461 

and s-upwind schemes, respectively) and is thus taken as the calibrated value. These calibrated 462 

Manning’s coefficients are then used to simulate the steady-state flow of 0.098 m-1/3s for assessing 463 

the performance of LISFLOOD-FP and s-schemes. The dependency of   on the accuracy of the 464 

LISFLOOD-FP model and the solution to this problem given by s-schemes are discussed in the 465 

following sections. 466 

Steady-sate experimental flood caused by inflow of 0.078 m3/s in a set-up 467 

To demonstrate the effect of   on accuracies, the results of LISFLOOD-FP model obtained with 468 

the calibrated n value of 0.009 m-1/3s for   = 0.85, 0.90 and 0.95 are discussed along with the 469 

results of s-schemes obtained using the optimal n value of 0.01 m-1/3s. The comparison of simulated 470 

maximum inundation extent maps obtained from these two models are shown in Figure 5. The 471 

observed inundation extent is shown in red solid line (Figure 5). For   = 0.85, the LISFLOOD-472 

FP model produces over-prediction of the inundation extent (Figure 5a) at the upstream part of the 473 

floodplain F1. The over prediction is unphysical and occurred due to the use of the constant value 474 

of . For   = 0.9, the LISFLOOD-FP model shows better prediction as shown in Figure 5b. A 475 

higher value of   as 0.95 (Figure 5c) conversely leads to significant under-prediction of the 476 
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inundation extent. From the above three cases with various values of , it is clear that the 477 

inundation extent changes depending on the value of   and the optimum value of   falls between 478 

0.85 and 0.90. It is therefore clear that the use of constant   demands a trial procedure for better 479 

prediction of inundation map. Figures 5d and 5e show the inundation extents predicted by s-480 

centered and s-upwind schemes, respectively. It can be observed from Figures 5d and 5e that the 481 

use of adaptive   in the s-schemes leads to the realistic prediction of the inundation extent.  482 

To gain a better understanding on the effect of the value of  , the amount of diffusion at each 483 

interface along the x-and y-directions are plotted along with the corresponding velocities for both 484 

s-centered and s-upwind schemes (Figure 6). A comparison of the plots shows that the amounts of 485 

diffusion and corresponding velocity at a location vary in a similar pattern. For instance, the 486 

simulated velocity along the x-direction is relatively higher when compared to that along the y-487 

direction (Figures 6b and 6d, and Figures 6f and 6h). This velocity pattern is consistent with the 488 

physical behavior as the water flows from upstream to downstream of the setup. Subsequently, 489 

more diffusion is introduced by the s-schemes (Figures 6a and 6e) along the x-direction compared 490 

to the y-direction (Figures 6c and 6g). On the floodplain F1, LISFLOOD-FP with   < 0.90 491 

produced unphysical over-flooding. The over-flooding is caused by a high diffusion value (~ 0.20) 492 

along the y-direction. However, when the diffusion along the y-direction is less than 0.1, the 493 

unphysical flooding does not occur on F1 (Figures 5d and 5e). In case of s-schemes, the proposed 494 

adaptive   automatically takes care of such variations in the diffusion based on local water depth 495 

and velocity. Therefore, it produces a realistic inundation extent. The F values of the LISFLOOD-496 

FP and the proposed s-schemes are summarized in Table 1, from which it can be seen that the 497 

proposed s-schemes show good skill in predicting inundation extents due to the use of adaptive  498 

. It may therefore be concluded that the proposed s-schemes improves the accuracy of the model 499 

compared to LISFLOOD-FP.  500 

In addition to inundation extent, water depths simulated using the optimal Manning’s coefficient 501 

(i.e., 0.009 m-1/3s for LISFLOOD-FP and 0.01 m-1/3s for s-schemes) is also compared with 502 

observed depths in the river as well as over the floodplains. Inside the river, the LISFLOOD-FP 503 

for   = 0.90 show reasonably good agreement with the observed water depths (Figure 7) and for 504 

  = 0.85 and 0.95 the accuracy of the simulated water depths are reduced. In case of s-schemes, 505 

the results agree well with the observed water depths at most of the gauges. In contrast, the 506 

comparison of results from s-schemes and LISFLOOD-FP over the floodplain, show both under 507 

and over prediction (Figure 8) at different gauges. However, the LISFLOOD-FP significantly over 508 

and under predicts the inundation extents for   = 0.85 and 0.95, respectively as discussed before. 509 

The water depths obtained using s-schemes fall between those of the LISFLOOD-FP for   = 0.85 510 

and 0.90. The accuracy of predicted water depths estimated through the root mean square errors 511 

(RMSE) are given in Table 2. From the RMSE values, it can also be confirmed that the accuracy 512 

of s-schemes is better than that of the LISFLOOD-FP. 513 

Steady-state experimental flood caused by inflow of 0.098 m3/s in a set-up 514 

The calibrated Manning’s roughness values of 0.009 and 0.01 are used to further assess the 515 

performance of the LISFLOOD-FP and s-schemes, for reproducing the steady-state experimental 516 

flood caused by an inflow of 0.098 m3/s. The simulated inundation extents of LISFLOOD-FP for 517 

  = 0.85, 0.90 and 0.95, and the proposed s-schemes are compared with the observed map (Figure 518 

9). For   = 0.85, the LISFLOOD-FP model (Figure 9a) over predicts the inundation extent on 519 
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floodplains F1, F3 and F5. The over prediction is unphysical and it is because of the high diffusion 520 

value as discussed before. For   = 0.90, the predicted inundation extent is closer to the observed 521 

map (Figure 9b). In case of   = 0.95, the LISFLOOD-FP model shows under-prediction of the 522 

inundation extent (Figure 9c) at the upstream of the floodplain F1 and downstream of floodplain 523 

F2. It can be observed from Figures 9d and 9e that the s-schemes produce inundation extents closer 524 

to those observed. The accuracy of inundation extents obtained by the LISFLOOD-FP model (for 525 

  = 0.85, 0.90 and 0.95) and proposed s-schemes are compared in Table 3. The fitness values of 526 

s-schemes, once again underlines the improved predictive ability of adaptive  . To demonstrate 527 

the effect of a variation in  , the amount of diffusion along the x-and y-directions are plotted 528 

along with the corresponding velocities for both s-centered and s-upwind schemes (Figure 10). 529 

The simulated velocity along the x-direction is relatively higher in comparison to that along the y-530 

direction (Figures 10b and 10d, and Figures 10f and 10h). Subsequently, higher diffusion is 531 

introduced by the s-schemes (Figures 10a and 10e) along the x-direction than in the y-direction 532 

(Figures 10c and 10g). On the floodplain F5, LISFLOOD-FP with   = 0.85 produces unphysical 533 

over-flooding owing to a high diffusion value (~ 0.20) along the y-direction. On the floodplains 534 

F1 and F4, LISFLOOD-FP with   = 0.95 under-predicts the inundation extent due to low 535 

diffusion value (~0.05) along the y-direction. In the case of s-schemes, adaptive   varies the 536 

optimal amount of diffusion (~ 0.10) spatially based on local water depth and velocity (Figures 537 

10d and 10h).This test case reconfirms the improved accuracy of s-schemes compared to 538 

LISFLOOD-FP.  539 

Figures 11 and 12 compare the simulated and observed water depths in the river as well as over 540 

the floodplains. The results of LISFLOOD-FP show closer prediction of water depth for   = 0.9, 541 

over and under prediction for   = 0.85 and 0.95, respectively. It can be observed that water depth 542 

results from s-schemes match very well in most of the gauges inside the river. On the other hand, 543 

the simulated water depths of LISFLOOD-FP as wells as s-schemes over the floodplain are either 544 

under predicted or over predicted when compared to the observed depths. Interestingly, the water 545 

depths simulated by the s-schemes fall closer to the observed depths in most of the gauges 546 

compared to those by the LISFLOOD-FP model. The RMSE error in Table 4 suggests that the s-547 

schemes predict water depths better than the LISFLOOD-FP model. 548 

The relative computation time with respect to the s-centered scheme are also summarized in Tables 549 

1 and 3, from which it can be observed that the LISFLOOD-FP model with   = 0.8 and 0.9 takes 550 

at least 18 % more computational time compared to the s-schemes. The enhanced stability 551 

condition of the proposed s-schemes allows a larger time step which in turn this improves the 552 

overall computational efficiency. The accuracy of the proposed s-schemes is shown to be 553 

consistently better than LISFLOO-FP. Therefore, it may be concluded that the proposed s-schemes 554 

will help in eliminating the trial and error process of selecting an optimal value of   as well as 555 

improve the accuracy of predicting the inundation extent in relatively less computation time 556 

compared to LISFLOOD-FP.   557 

5.3 Urban flood simulation in Glasgow, UK 558 

This test case is simulated to demonstrate the improved stability and performance of the proposed 559 

adaptive   for a field application in an urban environment. The area of Greenfield, a suburb of 560 

Glasgow, UK, is thus chosen as a benchmark test case for comparing the performance of 2D 561 
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numerical models for which DEM and other data is available (Hunter et al., 2008; Fewtrell et al., 562 

2008). The flooding at this site has been observed in response to a heavy rainfall event in the 563 

upstream catchment. The study site consists of a densely populated urban area along two main 564 

streets and topologically complex minor road networks as shown in Figure 13. The extent of the 565 

rectangular domain is 970 m × 400 m. 566 

On July 30, 2002, the site experienced an episode of flooding due to heavy rainfall at the upstream 567 

catchment area (~ 5 km2) of X0. The runoff from the upstream flows through a small stream and 568 

enters the culvert at location X0 near the north-east corner (shown in Figure 13a). Beyond this 569 

point, the stream runs underground throughout the entire site. The flow exceeding the carrying 570 

capacity of the culvert is spilled onto the nearby surface and then flows along the two main streets 571 

that are oriented in the east-west direction through points X2 and X3. After interacting with the 572 

complex building network and minor road networks, the water eventually converges and ponds in 573 

the low-lying area, i.e. the southern part of the domain.  574 

The hydrograph reported in Hunter et al. (2008) is used to specify the inflow boundary condition. 575 

The values of this hydrograph are constructed from the volume of water exceeding the carrying 576 

capacity of the culvert based on the best interpretation of eyewitnesses and historical photographs. 577 

For this study, such a hydrograph is digitized and imposed as the point source boundary condition 578 

at X0 (Figure 13a). All external boundary conditions are closed with zero mass fluxes. Simulations 579 

are carried out using the combinations of 13 friction coefficients (Table 5) chosen from physically 580 

plausible range as reported in Hunter et al. (2008). To corroborate the results of the proposed s-581 

schemes, water depth results reported in Hunter et al. (2008) for two diffusive models (JFLOW 582 

and LISFLOOD-FP diffusive version) and four different full 2D models (TUFLOW, DIVAST, 583 

DIVAST-TVD and TRENT) are used as reference solutions. The model like JFLOW (Bradbrook 584 

et al., 2004), LISFLOOD-FP (Hunter et al., 2005) use simplified versions 2D equations, 585 

specifically the diffusive wave formulation, for its numerical solution. The full 2D models 586 

TUFLOW (Syme, 1991) and DIVAST (Falconer, 1986) solve the SWEs by implicit schemes, 587 

while DIVAST-DVT (D-TVD) (Liang et al., 2006) and TRENT (Villanueva and Wright, 2006) 588 

use explicit schemes. These model results are considered as reference solutions for comparisons. 589 

Two different cases are simulated for the duration of 120 minutes. In the first case, the proposed 590 

s-schemes and LISFLOOD-FP (version 5.8.9) inertial model are simulated with a single set of 591 

friction coefficients 0.015 m-1/3s and 0.05 m-1/3s as reported in Hunter et al. (2008). In the second 592 

case, simulation is carried out using an ensemble of 13 friction coefficient (Table 5). These 593 

identical spatially distributed friction coefficients are chosen to differentiate two land-use classes 594 

such as vegetated areas and tarmac areas from the OS Mastermap(R) data.  595 

In the first case, the time series of water depth obtained using s-schemes and LISFLOOD-FP 596 

inertial model are compared at four points X1, X2, X3 and X4 (Figure 13). These representative 597 

points are chosen to understand the hydraulic conditions occurring in the computational domain. 598 

The excess water from the culvert at X0 moves simultaneously towards points X1 and X2. At the 599 

commencement of simulation, water accumulates rapidly at point X1 as it is closer to point X0. 600 

Subsequently, the accumulated water drains slowly as the simulation proceeds. It may be observed 601 

from Figure 14a that the water depth predicted by s-schemes as well as LISFLOOD-FP models 602 

are in good agreement with the reference solutions. Point X2 is located along one of the main 603 

streets and it receives water from a single direction (from east to west). This point represents the 604 

area of shallow water zone with high velocity over which the complete flood wave travels. The 605 

comparison of water depths at X2 as shown in Figure 14b implies that the result from proposed s-606 
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upwind and s-centered schemes fall closer to reference solutions. In contrast, the LISFLOOD-FP 607 

inertial model produces oscillatory water depth despite using   to remove oscillations. The 608 

oscillations are more when the value of   = 0.8 or 0.9 and are relatively less for   = 0.7. Thus the 609 

results obtained for   = 0.7 (at all four stations) are reported in this section. The constant value of  610 

  =0.7, 0.8 or 0.9 is not able to vary the right amount diffusion required to avoid oscillations. As 611 

a result, the LISFLOOD-FP inertial model becomes unstable for this combination of friction 612 

coefficient and shallow water depth. Point X3 is located in the area where ponding takes place 613 

eventually after receiving water from both the main streets through points X1 and X4. Therefore, 614 

the water depth is relatively deep at this location than at other places. Figure 14c shows close 615 

agreement of water depth simulated using the proposed s-schemes with the reference solutions, 616 

whereas LISFLOOD-FP inertial model over-predicts the water depth with small numerical 617 

oscillations. Point X4 represents the zone of convergent flow as it receives water along the north-618 

south direction as well. This point also experiences shallow water depth similar to point X2. The 619 

water depths are compared in Figure 14d and the results by s-schemes are again observed to be 620 

closer to the reference solutions. It is clear from the Figure 14 that the proposed s-schemes produce 621 

smooth solutions without any numerical oscillations though with the LISFLOOD-FP inertial 622 

model, such oscillations are encountered. The absolute maximum difference between the peak 623 

water depths is found to be ~2 cm and ~3 cm for s-upwind and s-centered schemes, respectively. 624 

The error is of the same order as the vertical error in the LiDAR DEM (RMSE of ~ 5 cm). 625 

Figure 15 shows the maximum inundation extents predicted by the s-schemes and the 2D-model 626 

available in LISFLOOD-FP suite. The results from the 2D-model is considered as reference 627 

inundation map (Figure 20c) since there is no observed inundation map available. It can be 628 

observed that s-upwind scheme behaves somewhat similar to full 2D model, while s-centered 629 

scheme slightly under-predicts the extent towards the west side. Overall, inside the urban area both 630 

the s-schemes produce results similar to those of the full 2D model.  631 

In the second case, a mini-ensemble simulation is carried out using all the 13 pairs of roughness 632 

coefficients (n road and n veg) that are provided in Table 5. These identical spatially distributed 633 

parameter pairs are defined based on the major classes of land-use. Parameter n veg is varied 634 

between 0.015 (bare earth) and 0.075 (dense tall grass and shrubs) with the increment of 0.005. 635 

Parameter n road is varied between 0.008 and 0.020 with an interval of 0.001. These parameter sets 636 

are considered here to understand the performance of the diffusion coefficient in simulating urban 637 

flood with low Manning’s roughness values. The simulations are carried out for all 13 638 

combinations using the LISFLOOD-FP inertial model with   = 0.7, 0.8 and 0.9 and s-schemes 639 

with adaptive . The best results obtained for   = 0.7 are used herein for comparative study. The 640 

results of LISFLOOD-FP inertial model are compared with the maximum and minimum water 641 

depths obtained from the reference solution of full 2D models (Figures 16-18). The results 642 

corresponding to simulation number 1, 7 and 13 (Table 5) are discussed for clarity. The red line 643 

indicates the maximum and minimum possible range of the results for different combinations of 644 

Manning’s coefficient (Table 5) from full 2D models. The black, blue and green lines indicate the 645 

results corresponding to the simulation test sequence 1 (n road: 0.008, n veg: 0.015), 7 (n road: 0.014, 646 

n veg: 0.045) and 13 (n road: 0.020, n veg: 0.075), respectively. It can be observed from Figure 21 that 647 

the LISFLOOD-FP inertial model produces numerical oscillations especially at points X2 and X4. 648 

For simulation number 13, the oscillations are relatively less. However, the water depths are either 649 

under or over predicted. Although   = 0.9 produces smooth solutions for simulation number 13 650 
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the oscillations are more pronounced for other roughness combinations, i.e., for simulations 1 to 651 

12. 652 

Figures 17 and 18 show the comparison of water depths obtained using the proposed s-schemes 653 

with adaptive  . It is quite clear from Figures 17 and 18 that s-schemes are able to produce smooth 654 

results for all 13 combinations of the friction coefficients. The predicted water depths are found to 655 

be more or less within the minimum and maximum water depths of full 2D models. The smooth 656 

solutions have achieved from the use of adaptive  , which is able to vary the value of diffusion 657 

(1- ) more accurately in removing the oscillations. The relative computation time of the 658 

LISFLOOD-FP model (for   = 0.7) and s-upwind scheme are 1.14 and 1.02 times more compared 659 

to s-centered scheme. This case demonstrates the accuracy, robustness and the ability of adaptive 660 

  in s-schemes to produce oscillation free solutions.  661 

Overall, it can therefore be concluded that the use of constant   value based local inertial model 662 

LISFLOOD-FP still suffers from numerical instability. Interestingly, the proposed s-schemes with 663 

adaptive, predicts the water depth accurately and also removes the issue of numerical oscillations. 664 

5.4 Case Study on Chennai floods in 2015, India 665 

In order to investigate the applicability of the proposed adaptive based local-inertial model for 666 

simulating large-scale floods, a rapidly urbanizing ungauged basin (Adyar) is chosen. The basin 667 

comprises the Southern part of Chennai city, India. The study area, as shown in Figure 19, extends 668 

between the latitudes 12°47’6” N and 13°3’22” N and longitudes 79°52’36” and E 80°17’1” E. 669 

The upstream portion of the study area is dominated by shrub land and water bodies, while the 670 

lower areas are a part of the Chennai Metropolitan Area (CMA). The Adyar River makes entry 671 

into the city at Nandambakkam Bridge and flows through the densely populated CMA before 672 

discharging into Bay of Bengal. It remains dry for most of the year but swells during the months 673 

October – November, the period coinciding with North - East (NE) monsoon. The city of Chennai 674 

often comes under the grip of deep depressions and cyclones during the NE monsoon. Coupled 675 

with the intense precipitation during this period, the city’s low-lying terrain (average elevation is 676 

~ 6 m), inefficient drainage structures, poorly maintained river and estuary hamper drainage of 677 

flood waters into the sea creating recurrent massive floods. During all the flood events, the areas 678 

close to Adyar River are the worst affected. Chennai and its adjacent districts experienced 679 

devastating floods during November-December 2015 which caused enormous economic loss along 680 

with a death toll of more than 400 people (Nithila Devi et al., 2019). The city received multiple 681 

torrential rainfalls during November 8 - December 1, 2015. On December 1, extremely heavy 682 

rainfall (about 60 mm/hr) was recorded that was considered to be a one in hundred year return 683 

period (i.e. 0.01 annual exceedance probability) event. As a consequence of such an extreme event, 684 

most parts of the city were flooded and the area adjacent to Adyar River were worst affected. The 685 

applicability of the developed model can therefore be rigorously tested if such a massive flood can 686 

be simulated with reasonable accuracy. For this purpose, the hydrological model HEC-HMS is set 687 

up for the entire Adyar basin as shown in Figure 19, whereas the hydraulic models (inertial and 688 

HEC-RAS) are set up from the confluence point (marked by a red dot in Figure 19) between the 689 

canal from the Chembarambakkam reservoir and the Adyar River to the downstream boundary at 690 

Bay of Bengal. The hydraulic model domain is represented by the shaded portion in Figure 19. 691 

The calibration and validation of HEC-HMS for the selected flood event is presented in Nithila 692 

Devi et al. (2019). The flood hydrograph obtained from HEC-HMS model at the confluence point 693 
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is applied as the inflow boundary condition to the hydraulic models. At the ocean side, the observed 694 

tidal variations (Narasimhan et al., 2016) are prescribed as the downstream boundary condition. 695 

The bathymetry of the river and floodplains is represented using a 10 m × 10 m resolution digital 696 

elevation model (DEM). The flood event is also simulated using 2D hydraulic models HEC-RAS 697 

and TELEMAC for comparison. Two 2D models results are used to examine if there is any model 698 

uncertainty before considering their results as reference solutions in the absence of detailed 699 

measured data for this particular event. For HEC-RAS and local-inertial models, the 150 km × 8.5 700 

km model domain is discretized into square grids with cell size of 10 m × 10 m, whereas the same 701 

flow domain is discretized into 59800 triangles for the TELEMAC model. It may be noted that 702 

TELEMAC 2D can capture the channel alignment with high accuracy by employing unstructured 703 

grids. The single Manning’s n values of 0.025, 0.030, 0.035, 0.040, and 0.045 m-1/3s as in Nithila 704 

Devi et al. (2019) are used to understand the variations in the simulated results.  705 

Flood depth comparison 706 

For comparing the results of s-schemes, simulations are also carried out using the LISFLOOD-FP 707 

model and the 2D models. All the model results are compared with high flood water marks, which 708 

were surveyed soon after the flood by a team of researchers from various institutes such as IIT 709 

Madras, Anna University, National Institute of Ocean Technology (Chennai), and National 710 

Remote Sensing Centre (Hyderabad) using Differential Global Positioning System (DGPS) and 711 

digital point gauge. The accuracy of DGPS is of the order of ± 76 mm while that of the point gauge 712 

is ± 0.5 mm. It should be noted that the measured data also involves certain amount of human 713 

error, which cannot be quantified (Fewtrell et al., 2011; Parkes et al., 2013). The hydraulic 714 

simulations are run from November 30 to December 3, 2015. The simulated and surveyed flood 715 

water-marks are compared in Figure 20. It is observed that for full 2D models, better results are 716 

obtained for Manning’s n value of 0.035 m-1/3s with the RMSE error of 0.52 and 0.54 m and 717 

coefficient of regression of 0.95 and 0.94 for HEC-RAS and TELEMAC models, respectively. The 718 

2D models are found to maintain similar level of accuracy and hence the 2D model results can be 719 

used as reference solutions, especially time-series of water depth and maximum flood extent. On 720 

the other hand, s-schemes and LISFLOOD-FP are found to produce best results for Manning’s n 721 

value of 0.040 m-1/3s. Also, LISFLOOD-FP is observed to be accurate for   = 0.8. Therefore, for 722 

full 2D and inertial models Manning’s n values of 0.035 m-1/3s and 0.040 m-1/3s are considered as 723 

the calibrated values. It can also be observed (Figure 20) that both the s-schemes are able to 724 

simulate this flood event with the similar levels of accuracy, which are relatively better than 725 

LISLOOD-FP model.  726 

Furthermore, to assess the accuracy of the proposed s-schemes, the time-series of water depths at 727 

selected locations (shown in Figure 19) are compared against LISFLOOD-FP, TELEMAC and 728 

HEC-RAS results (Figure 21). The water depth profiles obtained using inertial models are found 729 

to be closer to HEC-RAS results compared to TELEMAC. This might be due to the fact that the 730 

inertial models and HEC-RAS use the same computational grid, in addition the solution of HEC-731 

RAS and TELEMAC models are also different. Hence, the accuracies of the local-inertial models 732 

is evaluated using water depths computed by HEC-RAS as reference solutions and are enlisted in 733 

Table 6 and 7. It can be observed from Table 6 that the proposed s-upwind scheme is able to predict 734 

the water depths better than s-centered scheme and LISFLOOD-FP. In terms of time to peak flood, 735 

all the inertial schemes show certain amount of delay (Table 7), among which the s-upwind scheme 736 

has lesser delay followed by the s-centered scheme and LISFLOOD-FP model. The delay might 737 

be due to the fact that the advection term is neglected in the momentum equation. Overall, it can 738 
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be concluded that the adaptive  concept for local-inertial model is seen to improve the prediction 739 

of time-series of water depth in comparison to the LISFLOOD-FP model. 740 

Comparison of flood extent 741 

The maximum flood extent obtained by HEC-RAS is used as reference solution due to lack of 742 

observed inundation extent. For qualitative comparison, actual, under and over predicted areas are 743 

shown in three different colours in Figure 22. Figures 22a and 22b imply that the s-upwind and s-744 

cenetered schemes predict inundation extent better than LISFLOOD-FP model (Figure 22c). 745 

Quantitative comparisons using the measure of fit function, F (equation 17) emphasize the same 746 

conclusion with the values of 94%, 90% and 86% for the proposed s-upwind and s-centered 747 

schemes and LISFLOOD-FP, respectively. The contour maps of maximum flood extent are plotted 748 

in Figure 23. The difference of maximum flood depth of HEC-RAS with s-schemes and 749 

LISFLOOD-FP is within ~ 0.5 m. Altogether the results imply that the local-inertial models can 750 

simulate a severe flood event with a level of accuracy similar to that of a full 2D model.  751 

The relative computation time of the LISFLOOD-FP model is ~1.32 and ~1.37 times more than 752 

that of the proposed s-upwind and s-centered schemes, respectively, whereas, HEC-RAS 2D model 753 

takes ~26 times more computation time. Hence, it is clear that the proposed local-inertial model 754 

takes significantly less computation time compared to HEC-RAS 2D model. In addition, the 755 

proposed s-schemes improve the overall computation time by at least ~1.3 times compared to 756 

LISFLOOD-FP model. The computation time of inertial models can be reduced significantly 757 

through the implementation of parallel processing as described in the introduction.  758 

6 Conclusions 759 

This study focuses on the development of a rapid flood prediction model with minimum process 760 

representation. One such model developed by Bates et al. (2010) and improved by de Almeida et 761 

al. (2012) is used in many applications for large-scale flood simulations. For oscillation free 762 

solutions, de Almeida et al. (2012) introduced an artificial diffusion term through a weighting 763 

factor   in the numerical schemes (termed as q-schemes). The value of   controls the amount of 764 

diffusion and hence determines the flux diffusion through the cell boundaries. As a consequence, 765 

the accuracy of the q-schemes depends on the value of  , which is considered to be an arbitrary 766 

constant value and requires repeated trials to arrive at its optimal value. To circumvent this 767 

problem, an explicit expression for   is proposed in this study, where   varies both spatially and 768 

temporally, being a function of velocity, water depth, grid and time step size. The proposed 769 

adaptive   is implemented in the q-schemes proposed in de Almeida et al. (2012) and are termed 770 

as s-schemes in this study. The s-schemes are rigorously investigated by simulating the following 771 

test cases: (a) nonbreaking wave propagation over a horizontal plane, (b) nonbreaking wave 772 

propagation on a planar beach, (c) an experimental 2D steady flow in a river-network-floodplain 773 

setup, (d) an urban flood event in Glasgow, UK and (f) Chennai flood of 2015, India.  774 

The analytical test cases indicate that the proposed s-schemes perform consistently better than q-775 

schemes for different Manning’s n values without numerical oscillations. Further, it is found that 776 

the accuracy of upwind scheme is influenced more by the value of weighting factor   rather than 777 

the zero-th order term associated with the upwind scheme as reported in de Almeida et al. (2012). 778 

The simulation of the experimental set-up at IITM demonstrates that the usage of the same constant 779 

  along both the x- and y-directions deteriorates the accuracies of predicted inundation extent and 780 
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inappropriate value of   can produce nonphysical inundation extent. The proposed s-schemes 781 

predict the inundation extent accurately as it maintains the spatial and temporal variations of 782 

diffusion value using adaptive  . The results from the simulation of the urban flood event in 783 

Glasgow, UK indicates that the q-schemes still sufferer from numerical instability despite the use 784 

of constant   value, while the proposed s-scheme delivers smooth solutions for all considered 785 

combinations of low frictions. Finally, the large-scale simulation of the disastrous Chennai flood 786 

(2015) prove that the proposed s-schemes can simulate a severe flood event with accuracy similar 787 

to that of a full 2D model. Overall, the prosed s-schemes improve the model stability and accuracy.     788 

The proposed s-schemes are also shown to be stable even at higher value of CFL = 0.9 compared 789 

to CFL = 0.8 used in LISFLOOD-FP. As a result, the proposed s-schemes not only improve the 790 

numerical stability but also enhances the computational efficiency. Again, q- as well as s-schemes 791 

are found to be significantly faster than the HEC-RAS 2D model (~ 25 times). The validation and 792 

application prove that the developed local-inertial model with adaptive   has the potential to be 793 

used in a rapid flood prediction system. 794 

The following specific conclusions are drawn from this study. 795 

i) A mathematical expression for adaptive   is derived on the basis of water depth, velocity, 796 

grid and time step size. This explicit expression eliminates the trial and error procedure 797 

used so far in local-inertial models and also solves the problem on numerical instability. 798 

The expression can be used in both centered and upwind schemes of local-inertial models, 799 

which can be used for rapid large-scale flood prediction. 800 

ii) The rigorous validation and application clearly show that the developed s-schemes with 801 

adaptive   improve the accuracy when compared to LISFLOOD-FP model for slow rising 802 

floods.  803 

iii) The adaptive   is shown to allow the use of higher CFL value and hence overall 804 

computation time is reduced compared to LISFLOOD-FP and 2D models.  805 

iv) The proposed adaptive   in the s-upwind scheme performs with almost the same accuracy 806 

and computation time as that of the s-centered scheme. Hence, the conclusion of de 807 

Almeida et al. (2012) that the performance of the upwind scheme is inconsistent is proven 808 

to be invalid. 809 
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 1019 

 1020 

Table 1. Comparison of inundation fitness and computation time of inertial schemes for 0.078 1021 

m3/s 1022 

Schemes 
Fitness 

(%) 

Relative computation 

time 

s-upwind 86 1.02 

s-centered 84 1.00 

LISFLOOD-FP ( = 0.85) 66 1.19 

LISFLOOD-FP ( = 0.90) 76 1.17 

LISFLOOD-FP ( = 0.95) 56 1.15 

 1023 

Table 2. RMSE (m) of water surface elevation of s-scheme and LISFLOOD-FP model for 0.078 1024 

m3/s 1025 

Schemes River Flood plain 

s-upwind 0.83 0.70 

s-centered 0.98 0.76 

LISFLOOD-FP (  = 0.85) 1.68 2.60 

LISFLOOD-FP (  = 0.90) 1.08 0.91 

LISFLOOD-FP (  = 0.95) 1.23 2.52 

 1026 

Table 3. Comparison of fitness values for inundation extent and computation times of inertial 1027 

schemes for 0.098 m3/s 1028 

Schemes 
Fitness 

(%) 

Relative computation 

time 

s-upwind 92 1.03 

s-centered 89 1.00 

LISFLOOD-FP (  = 0.85) 87 1.21 
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LISFLOOD-FP (  = 0.90) 82 1.18 

LISFLOOD-FP (  = 0.95) 79 1.14 

 1029 

Table 4. RMSE (m) of water surface elevation of s-scheme and LISFLOOD-FP model for 0.098 1030 

m3/s 1031 

Schemes River Flood plain 

s-upwind 0.73 0.81 

s-centered 0.72 1.02 

LISFLOOD-FP (  = 0.85) 1.03 0.99 

LISFLOOD-FP (  = 0.90) 0.76 1.35 

LISFLOOD-FP (  = 0.95) 1.22 1.82 

 1032 

Table 5. Friction coefficient values used for the second case 1033 

Simulation 

No. 
n road n veg 

1 0.008 0.015 

2 0.009 0.020 

3 0.010 0.025 

4 0.011 0.030 

5 0.012 0.035 

6 0.013 0.040 

7 0.014 0.045 

8 0.015 0.050 

9 0.016 0.055 

10 0.017 0.060 

11 0.018 0.065 

12 0.019 0.070 

13 0.020 0.075 
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 1034 

 1035 

 1036 

Table 6. Comparison of errors in peak water depth with respect to HEC-RAS solutions 1037 

Schemes Error in peak water depth (m) 

 Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5 Gauge 6 

s-upwind 0.007 0.198 0.231 -0.020 -0.055 -0.031 

s-centered 0.258 0.467 0.547 -0.422 0.154 0.153 

LISFLOOD-FP ( = 0.8) 0.411 0.619 0.649 -0.280 0.308 0.177 

 1038 

Table 7. Comparison of errors in time to peak flood with respect to HEC-RAS solutions 1039 

Schemes Error in time to peak flood (min) 

 Gauge 1 Gauge 2 Gauge 3 Gauge 4 Gauge 5 Gauge 6 

s-upwind -27 -2 -32 -16 -16 -1 

s-centered -35 -17 -35 -28 -20 -8 

LISFLOOD-FP ( = 0.8) -40 -19 -36 -34 -26 -12 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 
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 1054 

 1055 

Figure Captions 1056 

Figure 1. Grid and variables used in the numerical scheme. 1057 

Figure 2. Diffusion and velocity profile obtained by the proposed s-schemes at t = 2700, 5400, 1058 

and 9000 s for (e) 0.01 and (f) 0.005 m-1/3s.  1059 

Figure 3. Predicted water surface elevation at t = 1080, 2160, 2800 and 3600 s using a uniform 1060 

Manning coefficient of (a) 0.03 and (b) 0.01 m-1/3s; (c) and (d) are the zoomed-in view of (a) and 1061 

(b) at t = 3600 s.  1062 

Figure 4. IITM physical model setup showing the observation locations in the river and over the 1063 

floodplain. 1064 

Figure 5. Comparison of simulated and observed inundation extent maps for LISFLOOD with 1065 

= (a) 0.85, (b) 0.90, (c) 0.95, (d) s-centered scheme and (e) s-upwind scheme for the steady-state 1066 

discharge of 0.078 m3/s. 1067 

Figure 6. Diffusion and velocity dependence for s-upwind scheme: along x-direction (a) diffusion, 1068 

(b) velocity and along y-direction (c) diffusion and (d) velocity. Diffusion and velocity dependence 1069 

for s-centered scheme: along x-direction (a) diffusion, (b) velocity and along y-direction (c) 1070 

diffusion and (d) velocity. 1071 

Figure 7. Comparison of simulated and observed water depths in the river branches. 1072 

Figure 8. Comparison of simulated and observed water depth over floodplains 1073 

Figure 9. Comparison of simulated and observed inundation extent maps for LISFLOOD with (a) 1074 

 =0.85, (b)  =0.90, (c) 0.95, (d) s-centered scheme and (e) s-upwind scheme for the steady-state 1075 

discharge of 0.098 m3/s. 1076 

Figure 10. Diffusion and velocity dependence for s-upwind scheme: along x-direction (a) 1077 

diffusion, (b) velocity and along y-direction (c) diffusion and (d) velocity. 1078 

Figure 11. Comparison of simulated and observed water depths in the river branches. 1079 

Figure 12. Comparison of simulated and observed water depth over floodplains 1080 

Figure 13. The Greenfield study site in Glasgow, UK (a) building and road network and (b) aerial 1081 

photograph. 1082 

Figure 14. Comparison of water depths at stations (a) X1 (b) X2, (c) X3 and X4. 1083 

Figure 15. Comparison of inundation extents predicted by (a) s-upwind, (b) s-centered scheme 1084 

with (c) full 2D model available in LISFLOOD-FP suite. 1085 
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Figure 16. Water depth time series simulated using LISFLOOD-FP inertial model at (a) X1 (b) 1086 

X2, (c) X3 and X4 for simulation no 1, 7 and 13 in Table 5. 1087 

Figure 17. Water depth time series simulated using s-upwind scheme at (a) X1 (b) X2, (c) X3 and 1088 

X4 for the ensample of Manning’s roughness coefficients provided in Table 5. 1089 

Figure 18. Water depth time series simulated using s-centered scheme at (a) X1 (b) X2, (c) X3 1090 

and X4 for the ensample of Manning’s roughness coefficients provided in Table 5. 1091 

Figure 19. Map of the study area, Adyar basin. The red dot and the pink line indicate the location 1092 

where the upstream and downstream boundary conditions, respectively are specified. Green dots 1093 

indicate the locations where the time-series of water depth are compared. 1094 

Figure 20. Scatter plot of simulated vs. observed maximum flood depths for 2015 flood in Chennai 1095 

city. 1096 

Figure 21: Comparison of time-series of water depth at (a) Gauge 1, (b) Gauge 2, (c) Gauge 3, (d) 1097 

Gauge 4, (e) Gauge 5 and (f) Gauge 6. 1098 

Figure 22: The maximum flood extent predicted by (a) s-upwind, (b) s-centered and (c) 1099 

LISFLOOD-FP. 1100 

Figure 23: The maximum flood extent predicted by (a) HEC-RAS, (b) s-upwind, (c) s-centered 1101 

and (d) LISFLOOD-FP. 1102 
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