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Abstract

Leading-edge separated flow field over a sharp flat plate is experimentally investigated in Reynolds numbers ranging from 

6.2 × 103 to 4.1 × 104, using particle image velocimetry (PIV) and its statistics. It was observed that the average reattachment 

length is nearly independent of Reynolds number and the small secondary bubble observed near the leading edge was found 

to shrink with increasing Reynolds number. The wall-normal profiles of the statistical values of kinematic quantities such 

as the velocity components and their fluctuations scaled well with average reattachment length lR and freestream velocity 

U∞. Their magnitudes compare well with previous investigations even though the current triangular shaped sharp leading 

edge is different from previous flat-faced or semi-circular ones. The shear layer was observed to exhibit 2 different linear 

growth rates over 2 distinct regions. Instantaneous PIV realizations demonstrate unsteady nature of the separation bubble, 

whose origins in the upstream portion of the bubble are analysed. Bimodal nature of the probability density function (PDF) 

of fluctuating streamwise velocity at around x/lR = 0.08–0.15 indicates successive generation and passage of vortices in the 

region, which subsequently interact and evolve into multiscale turbulent field exhibiting nearly Gaussian PDF. Shedding of 

vortices with wide range of scales are apparent in most of the instantaneous realizations. Proper Orthogonal Decomposition 

(POD) of the velocity fluctuation magnitude field revealed that the flow structures of the dominant modes and their relative 

energies are independent of Reynolds number. In each of the dominant modes (first 3 modes), the length scales corresponding 

to the large scale structures and their spacing are the same for all Reynolds numbers, suggesting that their Strouhal number 

(observed to be ~ 0.09–0.2 at Reynolds number of 6.2 × 103) of unsteadiness should also be independent of Reynolds number. 

A single large structure- comparable in size to lR—was apparent well before reattachment in a few instantaneous realizations, 

as compared to multiple small-scale structures visible in most realizations; at Reynolds number of 6.2 × 103, realizations 

with such large-scale structures occurred approximately after every 20–30 realizations, corresponding to non-dimensional 

frequency of 0.4–0.6, which is identified to be the “regular shedding”. It was possible to reconstruct the large-scale struc-

ture during the instances from just the first 3 POD modes, indicating that the Strouhal number of regular shedding too is 

independent of Reynolds number.
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Graphic abstract

1 Introduction

Sharp edge of a plate leading-edge can result in leading-edge 

separation of the flow. While with incompressible and with 

compressible subsonic freestream, the sharp edge separation 

(over plates with rectangular leading edge, in most litera-

ture) can occur even with zero or small “favorable” angles 

of plate incidence (Ota and Kon 1974), in supersonic flows 

leading-edge separation can be also caused by shock wave 

interactions (Wang et al. 2017). It is both of theoretical sig-

nificance, since the separation may occur at the location of 

vanishing boundary layer thickness (i.e. the leading edge), 

and of practical importance in airfoils, wings, and turbine 

blades for example whose aerodynamic performance are 

significantly affected by the separation phenomenon. Lead-

ing-edge separation on a sharp edge can also be expected 

in supersonic airfoils operating at low speeds (1958). The 

massively separated flow past sharp edges is an important 

issue in aerodynamics of vehicles such as buses and lorry 

trailers (Choi et al. 2014).

In the early work by Ota and Kon (1974), heat transfer 

measurements were conducted in a separated-reattached 

flow over a flat plate with flat forward-facing leading edge. It 

was reported in the work that the point of reattachment was 

about 4 times the plate thickness downstream away from the 

leading edge. Ota (1974) developed a free-streamline theory 

for the flow and the theoretically predicted value of reat-

tachment length were found to agree well with experimental 

data. Further, Ota et al. (1981) investigated the effects of 

Reynolds number and shape of leading edge on reattachment 

length. Using flow visualization technique with Aluminum 

powders, it was discovered that starting from low Reynolds 

number, the reattachment length increased and reached a 

maximum at a specific Reynolds number which was depend-

ent upon the shape of leading edge. They also categorized 

the flow around the plate into 3 regimes which were (i) lami-

nar separation-laminar reattachment, (ii) laminar separation-

turbulent reattachment, and (iii) turbulent separation-turbu-

lent reattachment. In the last regime, reattachment length 

demonstrated little variation against Reynolds number.

The theoretical analysis of flow field with the simplifica-

tion of “zero boundary layer thickness separation” at leading 

edge suggested a Reynolds number independent flow (Chap-

man et al. 1958). At low speeds, for zero or small “favora-

ble” angles of incidence, the separation is caused since the 

stagnation point is not exactly at the sharp leading edge, 

due to plate thickness. Considering, for instance, a flat (rec-

tangular) leading edge facing the freestream, the stagnation 

point will be at the middle of the flat-face; the streamlines 

above the stagnation streamline thus tend to have an upward 

velocity and acceleration, and are confronted by the sharp 

turning at the corner of the leading edge, which results in 

flow separation exactly at the corner. Although in such case, 

the theory of zero boundary layer thickness separation is not 

applicable, Reynolds number independence of the separation 

has been observed experimentally (Ota et al. 1981; Hiller 

and Cherry 1981), and is also evident from the reasonable 

comparison of data from different experimental (Kiya and 
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Sasaki 1983; Djilali and Gartshore 1991) and computational 

(Tafti and Vanka 1994; Yang and Abdalla 2009) works at 

different Reynolds numbers.

The separation is, however, not a steady phenomenon 

and its dynamics is characterized by flapping and shedding 

of vortices. In the study by Kiya and Sasaki (1983), they 

conducted experiments on separated-reattached flow over 

a flat plate with a 90° blunt (rectangular) leading edge at 

the Reynolds number of Ret = 2.6 × 104 based on freestream 

velocity, plate thickness, and kinematic viscosity. A fre-

quent shedding of vortices was observed and integral time 

scale along the edge of the separated shear layer had a linear 

increase indicating that rolled-up vortices coalesced succes-

sively upstream of the reattaching zone. The constant time 

scale after reattachment suggested these vortices travelled 

downstream without significant change in the structure. 

A large-scale structure was extracted and was found to be 

shed downstream from the bubble at a frequency around flR/

U∞ = 0.6 which was interpreted as a regular vortex shedding. 

The distance between the large-scale vortices was estimated 

to be around 0.8lR where lR is reattachment length. On top of 

this regular frequency, a large-scale unsteadiness in the bub-

ble whose frequency was about flR/U∞ = 0.12 was also dis-

covered. Cherry et al. (1984) also made similar observations 

concerning the frequencies in the separated and reattaching 

flow over the rectangular leading-edged plate. Similar fre-

quencies had been observed by Eaton and Johnston (1981) 

in the flow over a backward-facing step. The low-frequency 

unsteadiness was associated with a flapping motion of the 

shear layer near the separation line, which was related to the 

enlargement and shrinkage of the bubble. Numerical work 

by Tafti and Vank (1994) which overall had fair agreement 

with experimental work in other investigations also reported 

a similar low-frequency mode at flR/U∞ = 0.15 corresponding 

to the shear-layer flapping. Kiya and Sasaki (1985) further 

observed that the strength of the large-scale vortices in the 

reattaching zone appeared to be dependent on this low-fre-

quency shrinkage and enlargement of the bubble.

With the recent advancements in flow diagnostics such as 

particle image velocimetry (PIV) and fast response sensors, 

as well as with the advances in computational techniques 

and facilities, the separated and reattaching flow over sharp 

edges has been resolved better. Large Eddy Simulations 

(LES) data by Yang and Abdalla (2009) compared well with 

the experimental data on the reattachment length. Surpris-

ingly, the low-frequency shear layer flapping was observed 

to be absent in their LES results, and the shedding was the 

only unsteady mode in their simulations. The flapping mode 

was however observed in numerical results of Tenaud et al. 

(2011). The implementation of Proper Orthogonal Decom-

position (POD) to analyze the extensive data using advanced 

diagnostics has provided valuable insights. POD analysis 

of Podvin et al. (2014) and Tenaud et al. (2016) showed 

that although the flow exhibited 2 characteristic frequen-

cies corresponding to the flapping and shedding modes, 

the most energetic motions corresponded to the shedding 

of large-scale vortices. A quasi-invariance in the spanwise 

direction was also noted. Experimentally, Sicot et al. (2012) 

used fast response pressure sensors and PIV to study the 

flow structures downstream of reattachment region in a 

massively-separated flow. The pressure data was analyzed 

using extended POD technique. They identified the signature 

of the shedding mode of the shear layer on the pressure and 

the velocity spectra.

However, the focus of all recent studies has been made 

on the downstream region of the flow past the point of reat-

tachment. The interest seems to be more on the fluctuations 

upstream of the reattachment and their causes. The applica-

tion of advanced diagnostics and analytical techniques in the 

near field of flow separation (region near the leading edge) 

can better resolve the dynamics. In particular, given that 

the shedding mode constitutes the most energetic motions, 

their origins can be tracked. Further, on the Reynolds num-

ber independence of the reattachment length and the char-

acteristic frequencies, a detailed statistical analysis of the 

spatially resolved PIV data could be illuminating. It is with 

this backdrop that the present study has been initiated. The 

massive separated flow over a flat plate with triangular sharp 

edge is experimentally investigated at different Reynolds 

numbers varying by an order of magnitude, by means of 

planer PIV. In the previous works reported in the literature, 

the leading edges were bluff, typically flat-faced or semi-

circular, resulting in separation at corners. In the present 

study, triangular sharp edge was chosen to look for contrast 

with the bluff edges; however, the separation length scales 

(normalized by plate thickness) turned out to be comparable 

with those reported in the literature, as would be discussed 

later. Statistical quantities of the flow are analyzed from the 

PIV data. POD analysis of the PIV data is also used to study 

the behavior of the various modes in the separated region. 

With a reasonable temporal resolution of the lowest Reyn-

olds number flow, the time series of the data for this case 

are also analyzed.

2  Experimental facility

2.1  Wind tunnel and test model

The experiments were conducted in the de Havilland Wind 

Tunnel Facility at the School of Engineering, the University 

of Glasgow. This is a closed-circuit facility with an octago-

nal cross-section of 2.66 m wide, 2.1 m high, and 5.4 m 

long. Prior to the test section, the tunnel has entry section 

with screens and contraction ratio of 5:1 to ensure uniform 

velocity increase and low turbulence level. The tunnel flow 
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speed was monitored by a pitot tube installed in the tun-

nel and the freestream speed was controlled by a manual 

speed controller that drove the fan of the tunnel. In this 

experimental study, streamwise turbulence intensity of the 

freestream, defined as root mean square (RMS) of fluctuat-

ing streamwise velocity component divided by the speed 

of the freestream (i.e.Tu =

√

−

u�2∕U∞ ), was measured to be 

0.7–0.9% depending on the flow speed.

The experimental apparatus is illustrated in Fig. 1. A 

t = 30-mm thick flat Perspex plate of 800-mm length and 

1600-mm width was mounted on 3 aluminum legs which 

were firmly fixed in the test section of the tunnel. The sharp 

triangular leading edge in the present study in in contrast 

with the rectangular leading edges used for the investiga-

tion of sharp-edge separation in the reported literature. Its 

detailed geometry is shown in Fig. 2. The total blockage 

ratio of the model was 3.2%. An inclinometer was used to 

ensure that the surface of the plate is horizontal.

2.2  Particle image velocimetry (PIV)

The planar velocity field of the separated flow at the span-

wise-centered plane of the plate is visualized and quanti-

fied using PIV technique. The PIV set-up consisted of two 

Nd:YAG lasers (LPY-700, λ = 532 nm, 100 mJ/pulse), laser 

sheet optics, a high-speed CMOS camera (Phantom V341, 

Vision Research), and a synchronizer. The commercial soft-

ware package (DaVis 8.0, LaVision) was used to control the 

image acquisition timing. The flow was seeded with atom-

ized olive oil whose droplets had an average diameter of 

1 μm, yielding the Stokes number of Sk = 0.002 << 1. The 

particles were scattered well downstream of the test section, 

so that that the seeding outlet did not interfere with the test 

section as well as the droplets were uniformly distributed 

in the flow when they circulate back to the upstream of the 

test section. By means of laser sheet optics, the laser sheet is 

directed along the center-line of the plate (defined as z/lR = 0) 

and the sheet had a thickness of 3 mm. The CMOS cam-

era was equipped with a 300 mm focal length lens (Sigma 

120–300 mm f2.8), and its aperture was opened to its maxi-

mum (f/2.8) to ensure strong signal intensity. The camera 

was placed outside the test section, aligned perpendicularly 

to the laser sheet. The streamwise and vertical position of the 

flow field are denoted by x and y (Fig. 1), where the origin 

of the field is defined at the very tip of the leading edge. The 

measurements were conducted from x = − 20 to 315 mm. 

Since the camera cannot capture such a wide domain in a 

single measurement, the measurements were conducted in 3 

different zones which were x =− 20 to 95 mm, 90–205 mm, 

and 201– 315 mm. Each measurements were conducted at a 

full resolution of 2560 × 1600  pix2.

Shown in Table 1 are the freestream conditions under 

which the present experiments were performed. Reynolds 

number is defined by freestream velocity, plate thickness, 

and kinematic viscosity of the freestream,  Ret = U∞t/ν. Based 

on the particle movement, the time delay was determined, 

so that the movement was less than 8 pixels or 1/4 of the 

size of the interrogation window. For every experiment, the 

laser was run at its maximum repetition rate of 200 Hz over 

3 s to illuminate the particles, and 4 measurements were 

taken at one flow velocity at one camera position. Thus, 

each case has 2400 realizations with a time resolution of 

200 Hz for the 600 realizations. Statistical quantities such 

as average and RMS are calculated from 2400 realizations. 

To ensure the convergence, the wall-normal profile of veloc-

ity in streamwise and wall-normal directions are compared 

in Figs. 3 and 4. The streamwise position x/lR = 0.25 is 

Fig. 1  Sketch of the experimental set-up

Fig. 2  Triangular leading-edge

Table 1  Experimental conditions

Symbol Reynolds

number

Freestream

velocity

Re
t
=

U
∞

t

�

U
∞

[m/s]

Case 1 6.2 × 103 3

Case 2 1.2 × 104 6

Case 3 2.1 × 104 10

Case 4 3.1 × 104 15

Case 5 4.1 × 104 20
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arbitrary. Above 1000 samples, the profiles overlap with 

each other therefore 2400 samples are considered ample for 

statistical convergence.

Particle images were processed by the LaVision DaVis 

8.0 software. A pair of particle images is subdivided into 

smaller rectangular sub-region called interrogation window 

for planer cross-correlation and the spatial displacement of 

the particles in the window was quantified to calculate the 

velocity. The images were processed using multiple inter-

rogation windows that decrease in size in successive itera-

tions: 128 × 128 pixels with 50% overlap, 64 × 64 pixels with 

50% overlap, and 32 × 32 pixels with 75% overlap. The 75% 

overlap at the final pass was implemented to increase the 

spatial resolution of the calculated vector field. With that 

final interrogation window, the acquired vector fields contain 

64,000 vectors (320 × 200) and the final spatial resolution 

based on the final window size is approximately 0.36 mm/

pixel in both streamwise and vertical directions. Uncertainty 

in velocity was also calculated in the process which was 

evaluated to be less than 2.0% of mainstream velocity.

3  Results and discussions

3.1  Mean quantities

One of the most important quantities in a separated-reat-

tached flow is the average bubble length denoted by lR. Since 

velocity information was not available at the wall due to 

strong laser reflection, the length was determined visually 

by tracking the streamline so that the streamline before the 

re-attachment point circulates back to the bubble and the 

one after the point continues to flow downstream. This is 

illustrated in Fig. 5 by the red vectors and the dot in between. 

Figure 6 plots the average bubble length normalized by the 

plate thickness against the Reynolds number. As illustrated 

in the graph, the average bubble length slightly varies around 

lR/t = 5.8 in the range of Reynolds number investigated. 

Weak dependency of the average bubble length is experi-

mentally observed by Hiller and Cherry (1981), and Cherry 

et al. (1984) who reported lR/t = 4.9 at  Ret = 3.2 × 104, Kiya 

and Sasaki (1983) who reported lR/t = 5.05 at  Ret = 2.6 × 104, 

and Djilali and Gartshore (1991) who reported lR/t = 4.7 at 

 Ret = 5.6 × 104. Numerical investigation also suggested a 

weak dependency on Reynolds number: Yang and Abdalla 

Fig. 3  Statistical convergence of streamwise velocity component at x/

lR = 0.25 (at  Ret = 4.1 × 104)

Fig. 4  Statistical convergence of wall-normal velocity component at 

x/lR = 0.25 (at  Ret = 4.1 × 104)

Fig. 5  Determination of re-attachment point

Fig. 6  Average bubble length
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(2009) reported lR/t = 6.5 at  Ret = 6.5 × 103 for the case 

of no freestream turbulence and Tafti and Vanka (1994) 

reported lR/t = 6.36 at  Ret = 1.0 × 103. The present values 

compare well with the previous experimental and numeri-

cal results. Hiller and Cherry (1981) remarked that the flow 

is essentially independent of Reynolds number in the range 

3.4 × 104 < Ret < 8 × 104 and only a weak extension of the 

bubble was observed at  Ret = 2.7 × 104.

The discrepancy in bubble length in the present experi-

ments with those from previous investigations may be due to 

the geometry of the leading edge (45° angle in this investiga-

tion) whereas a blunt 90° edge or circular edge were used 

previously or other factors; differences in the blockage ratio 

of the apparatus, and turbulence intensity in freestream in 

different experiments can also contribute to the discrepan-

cies in the observations. Of these factors, turbulence inten-

sity is known to have an effect of reducing the separation 

length. In the present PIV measurement, turbulence intensity 

slightly increased from 0.7 to 0.9% with Reynolds number 

(i.e. freestream velocity). This could have contributed to the 

slight decrease of the separation length at higher Reynolds 

number, but considering all the differences from previous 

investigations, the present result strongly supports that the 

bubble length is weakly dependent on Reynolds number as 

far as the range of Reynolds number in the present investiga-

tion is concerned.

Figure 7 illustrates the average streamlines at the lowest 

and highest Reynolds number in the experiment. Note that 

the coordinates and velocity magnitude in the background 

are non-dimensionalized by the average separation length 

and freestream velocity respectively. In the figures, the air is 

directed upward as it approaches the leading edge and accel-

erates as it flows around the ovally-shaped bubble. Not only 

the bubble length, but also the bubble heights are nearly the 

same for both cases, which are approximately y/lR = 0.1. This 

was observed in the other flow conditions, too. Inside the 

bubble is a large zone of clockwise circulation. The center 

of the circulation slightly moves downstream with increas-

ing Reynolds number. It is also discovered that the small 

secondary bubble which circulates counter-clockwise very 

near the leading edge exists in the case of low Reynolds 

number whereas it almost vanishes with slight expansion of 

the primary bubble towards leading edge in the case of high 

Reynolds number. It is likely that the secondary bubble will 

disappear at even higher Reynolds number which was not 

investigated in the present paper.

Figure 8 presents profiles (variation in the y-direction) 

of the horizontal and vertical components of the average 

velocities at different streamwise locations for all Reynolds 

number. The velocities are normalized by the freestream 

velocity U∞, and the profiles are taken at 8 different stream-

wise locations (x/lR = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.6). 

As presented in the graphs, both velocity profiles are well 

scaled using lR and U∞ and there is only little difference at 

different Reynolds numbers. The large region of reversed 

flow exists, and after re-attachment length, horizontal com-

ponent especially near the wall increases in positive direc-

tion in any cases. The reversed velocity in the streamwise 

Fig. 7  Average streamlines (top)  Ret = 6.2 × 103, (bottom)  Ret = 4.1 × 104
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direction reached as large as − 0.3 U∞ around x/lR = 0.4–0.6 

which compares well with that of Kiya and Sasaki (1983).

3.2  Turbulence quantities

Figure 9 presents profiles (variation in the y-direction) of 

normalized RMS values of the fluctuating velocity com-

ponents and Reynolds stress respectively. The graphs are 

plotted at the same locations as the average velocities in 

Fig. 8. In Fig. 9, it may be seen that the scaled RMS veloc-

ity fluctuation profiles at any given streamwise location are 

generally the same for all the cases, except for the small 

discrepancies between them, particularly for v-fluctuations 

for x/lR = 0.05–0.2. Despite such small differences, the verti-

cal position at which the RMS fluctuation attains maximum 

value is the same for all the cases at any given streamwise 

location. After x/lR = 0.6, the profiles of the RMS fluctua-

tions appear to be similar.

Fig. 8  Vertical profiles of average (top) streamwise velocity, (bottom) vertical velocity (from left: x/lR = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.6)

Fig. 9  Vertical profiles of RMS of fluctuating velocity in (top) streamwise direction, (bottom) vertical direction (from left: x/lR = 0.05, 0.1, 0.2, 

0.4, 0.6, 0.8, 1.0, 1.6)
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The present results for the RMS fluctuations well 

compare with the results obtained by Kiya and Sasaki 

(1983) whose values were around u′ = 0.15–0.25U∞ and 

v′ = 0.1–0.2 U∞ in streamwise and vertical directions 

respectively at x/lR = 0.2–1.0 except for some points 

where the present results reached as high as u′ = 0.4U∞ 

and v′ = 0.3U∞ in streamwise and vertical direction respec-

tively. The profiles appear sharper in the upstream location 

which was caused by a large velocity difference across a 

thin shear layer while the RMS inside the bubble is rela-

tively small in contrast to the shear layer. Also, the peaks 

of the sharp profile were later found to be where vortices 

had been continuously being formed in the instantaneous 

realizations. The peak RMS fluctuation decreases and the 

profile widens downstream due to shear layer growth and 

turbulent mixing. It can be observed from Fig. 10 that 

Reynolds stress in each case has similar profiles as well 

with the exception in the upstream region, especially at 

x/lR = 0.1–0.2. Also, unlike the RMS of the fluctuating 

velocities, Reynolds stress profile widens without much 

decrease in the maximum value.

The growth in shear layer thickness with streamwise dis-

tance is plotted in Fig. 11. The thickness is the vorticity 

thickness based on Eq. (1), defined by Djilali and Gartshore 

(1991). The thickness is taken from averaged velocity 

field and normalized by the reattachment length as in the 

equation,

It can be observed that normalized shear layer thick-

ness, too, is independent of Reynolds number, since the 

plot of all the cases almost overlap. Three separate regions 

having different linear slopes can be observed; very short 

smooth region (whose growth rate count not be ascertained) 

for 0.04 < x/lR < 0.1, dδω/dx ≈ 0.23 for 0.1 < x/lR < 0.5, and 

dδω/dx ≈ 0.06 for 0.5 < x/lR < 1.1 which correspond to stable 

�
�
∕lR =

U
max

− U
min

lR

(

�U∕�y
)

max

region near the leading edge, the region of vortex generation, 

and turbulent reattachment region respectively (discussed in 

subsequent section). The trend of having separate regions 

of different growth rates were also observed by Djilali 

and Gartshore (1991) and they obtained the growth rates 

of 0.147 for x/lR < 0.65 and 0.1 for x/lR > 0.65. Similarly, 

Ruderich and Fernholtz (1986) obtained 0.148, and Brown 

and Roshko (1974) obtained 0.145–0.22 in the first half. 

The values from the present investigation are close to the 

previous values.

3.3  Dynamic structures

Figures 12 and 13 illustrate instantaneous distributions of 

fluctuating velocity vectors and vorticity in the upstream 

region at  Ret = 6.2 × 103. Note that the vorticity is in z-direc-

tion, and the all physical quantities are normalized by U∞ 

and lR. The figures clearly illustrate how the separated 

shear layer, which is apparently steady (as seen from dif-

ferent instantaneous realizations) and laminar for up to x/

lR = 0.1, breaks down into vortex structures whose details 

Fig. 10  Vertical profiles of 
−

u
�
v
� ∕U

2

∞
 (from left: x/lR = 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.6)

Fig. 11  Shear layer thickness
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are captured well. As the flow approaches the leading edge, 

the flow is directed upwards and travels along the curvature 

of the primary bubble, and a smooth free shear is established 

at the very beginning of the curvature. However, around x/

lR = 0.1–0.15, the inviscid instabilities due to inflectional 

profile seem to have grown rapidly and developed into Kel-

vin–Helmholtz type vortices, which are shed downstream. 

After around x/lR = 0.2, the vortices break down. Even 

though the separation is laminar, the initial development of 

instabilities in the shear layer of the leading-edge separation 

bubble cannot be compared with other laminar separation 

bubbles, for which the origin of inflectional instabilities has 

been traced back to the boundary layer upstream of sepa-

ration (Diwan and Ramesh 2009). In the present case, the 

separation occurs right at the leading edge. The develop-

ment of these instabilities into vortices, and the shedding of 

those vortices in the initial part of the bubble must signifi-

cantly affect the unsteady aspects reported in the previous 

Fig. 12  Instantaneous fluctuating velocity vectors (near leading edge)

Fig. 13  Instantaneous vorticity (near leading edge)
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literature. It is for this reason that the present study espe-

cially focuses on the dynamics of the shear layer in the initial 

portion of the leading-edge separated bubble.

In the absence of sufficiently time-resolved data, it is 

useful to look at the probability density functions (PDF) 

of velocity fluctuations at various points on the shear layer.  

Figures 14, 15, 16, 17 are the PDF of the velocity fluctua-

tions at (x/lR, y/lR) = (0.05, 0.01), (0.08, 0.055), (0.12, 0.06), 

(0.15, 0.08), (0.25, 0.10), (0.5, 0.12), (1.0, 0.02), and (1.6, 

0.02) at  Ret = 6.2 × 103 and 4.1 × 104. The points are taken 

arbitrarily along the streamline which divides the flow field 

into the bubble and external freestream. In the graphs, the 

PDF of streamwise velocity fluctuation at both Reynolds 

number are rather narrow (though apparently Gaussian) in 

the beginning of the separation around (x/lR, y/lR) = (0.05, 

0.01) and becomes wider and clearly bi-modal as the flow 

progresses downstream, and become Gaussian-like further 

downstream. At lower Reynolds number for x/lR = 0.12–0.5, 

and at higher Reynolds number for x/lR = 0.08–0.25, the PDF 

is clearly bimodal; that is, two different values of velocity 

fluctuation tend to have locally high probability. Particularly, 

while one of the modes is at the positive side of the fluctua-

tion the other is at the negative side. This suggest passage 

of successive vortices intermittently over those points, since 

each of the vortex has opposing sense of velocity on any 

two opposite sides about its axis. Further downstream, the 

PDF suggest a random velocity distribution, suggesting the 

flow becoming turbulent exhibiting multiple scales. In fact, 

it was observed from large numbers of instantaneous PIV 

realizations that it was always around x/lR = 0.1–0.2 along 

the dividing line, the shear layer rolls up and start producing 

vortices, which is supposedly contributing to the bimodal 

peaks in the streamwise direction. In contrast to the PDF of 

streamwise velocity fluctuation, the PDF of vertical velocity 

fluctuation do not exhibit bimodal behaviors, but appear to 

be Gaussian-like at all streamwise positions. However, the 

distributions do appear relatively wider in the middle loca-

tions, where the PDF of streamwise velocity fluctuations 

exhibit bimodal behavior.

Fig. 14  PDF of u′ at  Ret = 6.2 × 103

Fig. 15  PDF of u′ at  Ret = 4.1 × 104

Fig. 16  PDF of v′ at  Ret = 6.2 × 103

Fig. 17  PDF of v′ at  Ret = 4.1 × 104



Experiments in Fluids (2020) 61:205 

1 3

Page 11 of 21 205

Downstream of the region, the fluctuations become 

random (with unimodal Gaussian distribution) due to the 

non-linear evolution and interaction of vortices. From x/

lR = 0.15–0.35, fairly large vortices are apparent in Fig. 12. 

The produced vortices travel downstream and break apart 

into smaller ones. Also, the region after this point occasion-

ally experiences an emergence of one large structure, and 

one typical moment is illustrated in Fig. 18. In the figure, 

one can observe a large structure of high velocity fluctua-

tion from x/lR = 0.25 to the end of the image, which is in 

contrast to Fig. 12 where one finds many smaller regions of 

high fluctuation. This was observed once in approximately 

20–30 images, i.e. for every 100–150 ms. This large-scale 

structure continues downstream, too, and therefore were 

also captured in the region downstream. Using smoke visu-

alization technique, Cherry et al. (1984), too, captured the 

Fig. 18  Instantaneous fluctuating velocity vectors at the moment of larger structure from x/lR = 0.32–0.53

Fig. 19  Instantaneous fluctuating velocity vectors (near Reattachment Point)
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large-scale structures which occurred occasionally and was 

shed downstream.

Shown in Fig. 19 is the fluctuating vectors around the 

average reattachment point. The PIV realization in this 

region illustrates a lot of smaller structures as well as the 

occasional passing-by of the large structures generated 

upstream, both of which contributing to variation in instan-

taneous re-attachment point. The fluctuating nature of reat-

tachment length were illustrated in the detailed numerical 

work by Yang and Voke (2001) who reported that it varied 

about ± 25% of the average value. Although it was not pos-

sible to precisely identify the instantaneous re-attachment 

point in the present study, the variation is visually apparent 

from the realizations.

The maximum temporal resolution of the PIV system in 

the present study is 200 Hz, which does not help to study 

high-frequency phenomena. However, for the lowest Reyn-

olds number case, the quantity U∞/lR ~ 18.2 Hz which is an 

order lower than the acquisition frequency, encouraged the 

analysis of temporal series of the velocity (fluctuations) data 

at different locations in the specific case. Figure 20 shows 

the power spectral density (PSD) functions of streamwise 

velocity at three different points, (x/lR, y/lR) = (0.01, 0.015), 

(0.1, 0.06), and (0.5, 0.12). At all points, it appears that a 

weak peak appears around low non-dimensional frequency 

of flR/U∞ = 0.09–0.2 where f is the dimensional frequency 

which turns out to be close to low-frequency mode discov-

ered by previous investigations in literature. The present 

work could not resolve higher frequencies, however, since 

even the lower frequencies are not greatly lower than the 

acquisition rates in other cases, the temporal series studies 

are extremely limited by the PIV system. The large sam-

ple of data can however be resolved by means of the POD, 

which helps in revealing the dynamics of the flow field. This 

is discussed in the next subsection.

3.4  POD of flow field

Proper Orthogonal Decomposition (POD) is used to identify 

statistical coherent structures in the flow field. It was first 

introduced in fluid mechanics for the investigation of turbu-

lence by Lumley (1967) in 1967, and a detailed review on 

the application of the technique in the analysis of turbulent 

flows was presented by Berkooz et al. (1993). Applying POD 

to the stereo-PIV data of turbulent jet in a crossflow, Meyer 

et al. (2007) found that the first 2 modes had significant 

energy to sufficiently approximate the flow, and could infer 

that the 2 modes were different phases in time of the same 

phenomena. Mandal et al. (2010) resolved bypass transi-

tion over a plate from the POD of planar PIV data. Thus, 

with the large amount of data that can be obtained from 

advanced diagnostics as well as computations, the dynamics 

of the flow can be resolved by studying the significant POD 

modes. POD method by Sirovich (1987) was employed in 

the present investigation. The POD is done on the fluctuating 

components of velocity. 2 separate eigenvalue problems are 

solved to find the eigenvectors, from which the POD modes 

are constructed; the formulations are elaborated by Pedersen 

(2003). The code distributed by Meyer (2008) was employed 

in the present investigation.

Comparisons of the first 7 decomposed orthogonal modes 

of the field of fluctuation of velocity magnitude in region 

near leading edge is shown in Fig. 21 for the 2 extreme 

Reynolds numbers of  Ret = 6.2 × 103 and 4.1 × 104. It was 

apparent that for both Reynolds numbers, the first 3 modes 

generally have similar structures with nearly the same length 

scales as well as the spacing between them. Thus, the first 3 

modes are Reynolds number independent. These modes have 

large length scales. The normalized length scales are thus the 

Reynolds number independent for each of the lower modes, 

since the separation length is observed to be Reynolds num-

ber independent. Since the length scales are the same, the 

time scale is inversely proportional to freestream velocity. 

Thus, the non-dimensional frequency (Strouhal number, 

St = flR/U∞) is expected to be Reynolds number independent 

with these lower modes.

Physically, the 1st and 3rd modes present shedding of 

structures shown in Fig. 21, with the regions of high energy 

one after another as one move along the shear layer, and the 

vector direction in one structure is nearly the opposite of 

the vector direction in the subsequent structures as shown 

in Fig. 22 for the 1st POD mode for  Ret = 6.2 × 103. The 

2nd mode corresponds to the shear mode, with one long 

high energy region along the shear layer and another inside 

the bubble. Even among these 2 structures, the vectors are 

observed to be opposite to each other in direction. The 3rd 

mode too displays shedding structures.

POD of the downstream region of the bubble (the reat-

tachment region) is shown in Figs. 23 and 24. Shedding Fig. 20  PSD of streamwise velocity
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structures along the shear layer are apparent in both 1st and 

2nd modes, in contrast to the shearing structures in the 2nd 

mode of the leading-edge region. The Reynolds number 

independence is also apparent in the first 2 modes. In the 

3rd mode, qualitative differences with Reynolds number 

start to appear, though the length scales and the number 

of apparent structures is nearly same for different Reyn-

olds numbers. The region is thus dominated by shedding 

structures. The coalescence of vortices to form large-scale 

structure upstream of the reattachment, and the injection of 

fluid into the bubble at the unsteady reattachment location 

make the picture complex, with all realizations displaying 

multiple flow scales. The evolution and coalescence of the 

vortices is non-linear phenomena, and hence it cannot be 

addressed from the present study with 2 separate sets of data 

for the leading edge and reattachment region which are not 

Fig. 21  POD Modes in LE 

region Left:  Ret = 6.2 × 103, 

Right:  Ret = 4.1 × 104
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Fig. 22  Enlarged fluctuating velocity vectors in the 1st POD mode at  Ret = 6.2 × 103

Fig. 23  1st to 4th POD Modes in Reattachment Region Left:  Ret = 6.2 × 103, Right:  Ret = 4.1 × 104
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obtained simultaneously. The observation of regular shed-

ding and flapping at reattachment are detailed in the litera-

ture as discussed in Section II. The subsequent discussions 

shall rather explore the origin of the regular shedding and 

flapping frequencies by inspecting the flow field near lead-

ing edge, without attempting to explain how the structures 

evolve downstream of this region (due to the limitation of 

spatial window of the PIV).

In order to be able to comment on the frequencies associ-

ated with the modes, a time series is formed from the tem-

poral coefficients (Chronos) for different realizations corre-

sponding to each mode. For the lowest Reynolds number of 

 Ret = 6.2 × 103, the freestream velocity was 3 m/s, for which 

the PIV time resolution is reasonable: at 200 Hz, the PIV 

operating frequency is an order of magnitude higher than 

the phenomena with frequency of ~ 15 Hz based on charac-

teristic flow time scale lR/U∞—corresponding to Strouhal 

number of 1- for 3 m/s flow velocity (it will be apparent sub-

sequently that the second POD mode has significant energy 

at Strouhal number of ~ 1). At higher Reynolds numbers the 

frequencies corresponding to St = 1 is higher, and thus the 

time resolution of the PIV gets worse with the increasing 

freestream. The time series and FFT of the coefficients for 

different modes are shown in Figs. 25, 26, 27, 28, 29, 30, 31, 

32, 33, 34, 35, 36, 37, 38 for the region near leading edge, 

are thus examined for the case of  Ret = 6.2 × 103 having the 

best possible time resolution in the present study. The 1st 

and 3rd modes illustrate a clear peak at a non-dimensional 

frequency of flR/U∞ = 0.09 and 0.18 (harmonic of the fre-

quency of 1st mode) respectively, which is roughly close to 

the low-frequency mode reported in the previous literatures. 

The peak is also close to the range of frequencies apparent 

in Fig. 20. The 1st and 3rd modes also have considerable 

energy for up to a non-dimensional frequency of around 0.8, 

Fig. 24  5th to 7th POD Modes in Reattachment Region Left:  Ret = 6.2 × 103, Right:  Ret = 4.1 × 104

Fig. 25  Time series of coefficient of 1st mode
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Fig. 27  Time series of coefficient of 2nd mode

Fig. 28  FFT of coefficient of 2nd mode

Fig. 29  Time series of coefficient of 3rd mode

Fig. 30  FFT of coefficient of 3rd mode

Fig. 31  Time series of coefficient of 4th mode

Fig. 26  FFT of coefficient of 1st mode
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Fig. 32  FFT of coefficient of 4th mode

Fig. 33  Time series of coefficient of 5th mode

Fig. 34  FFT of coefficient of 5th mode

Fig. 35  Time series of coefficient of 6th mode

Fig. 36  FFT of coefficient of 6th mode

Fig. 37  Time series of coefficient of 7th mode
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which is close to that of the high-frequency mode (‘regular’ 

shedding) in previous reports in the literature. Particularly, 

the 3rd mode has prominent local peaks at flR/U∞ of 0.6 and 

0.7. The power spectrum of the 2nd and 4th modes appears 

to be broad band, though with the 2nd mode considerable 

amplitudes are apparent for flR/U∞in the range 0.4–0.8.

With higher modes, the structures are found to become 

smaller, and the number of such structures increase with 

mode number. Significantly, from the 4th mode, the shapes 

and the length scales of the structures are different for dif-

ferent Reynolds numbers; the contrast in the mode shapes 

and scales in the 4th and  5th at different Reynolds numbers 

can be observed in Fig. 21. Thus, with the smaller scales, 

there is clear Reynolds number dependence in their dynam-

ics, though it was not possible in the present investigation 

to establish trends for the higher modes.  5th and  6th mode 

appear to have a peak at flR/U∞ = 0.4, though this is specific 

to the case of  Ret = 6.2 × 103, for which the PIV time reso-

lution is reasonable to enable spectral analysis. It must be 

admitted that with limited time resolution, the higher fre-

quencies, even those corresponding to the realizations show-

ing the large structure for higher Reynolds number cases, 

may not have been resolved. Thus, it was not attempted to 

interpret the spectrum of higher modes having smaller high-

frequency structures.

The reconstruction of the realizations using a few lower 

modes revealed an interesting pattern. A comparison of the 

reconstruction of velocity fluctuations fields using the first 3 

modes, 5 modes, and up to 7 modes, of a realization typical 

of most instants (at tU∞∕l
R
=0.08), and the realization when 

Fig. 38  FFT of coefficient of 7th mode

Fig. 39  Original Field and POD Reconstruction up to 3rd mode at  Ret = 6.2 × 103 (Left: A typical instance, Right: Instance of appearance one 

large-scale structure)
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a single large coherent structure was apparent (at tU∞∕l
R

=2.48), are shown in Figs. 39 and 40. It is only with first 7 

modes that the structures start to appear in the reconstructed 

realization of most instants, and the first 3 modes did not 

result in any physically meaningful reconstruction. With 

the addition of further higher modes, the finer details of 

the field could be reconstructed. However, for the instance 

when a large-scale structure appears, the first 3 modes were 

sufficient to capture general structures, while finer struc-

tures emerge with the addition of higher modes. In fact, the 

mode coefficients (the Chronos) of 1st, 2nd, 3rd mode for 

most instances are low; for example, at tU∞∕l
R
=0.08 the 

coefficients are − 5.0, − 1.6, and − 2.7. However, during 

the instances when the one large-scale structure appears, 

the coefficients are large, especially those of the 1st and 3rd 

modes; for example, at tU∞∕l
R
=2.48 the coefficients are 

33.5, − 1.1, and 11.2.

Thus, the most important aspect to be noted with the 

comparison is that, the reconstructions of these realizations 

tells the way the energy of the various modes are distrib-

uted temporally, through the POD temporal coefficient. The 

lower modes—the first 3—which have the highest energies 

(i.e. largest eigen values, since the modes are arranged in 

descending order of eigen values in POD analysis), and 

observed to be Reynolds number independent, do not con-

tribute significantly in the reconstruction of most realizations 

involving multiple small-scale structures. The coefficients at 

those instances are very small. Meaningful reconstruction 

of those instances is possible only with inclusion of higher 

modes.

However, at a certain frequency, the coefficients of the 

lower modes take high values in those instances when 

the large structures appear, such that the Reynolds num-

ber independent lower modes play a significant role at 

those instances. For the lowest Reynolds number case 

 (Ret = 6.2 × 103), these instances appear every 20–30 realiza-

tions as noted above. With the acquisition rate of 200 frames 

per second, this corresponds to 100–150 ms, and non-dimen-

sional frequency of flR/U∞ = 0.4–0.6, which corresponds to 

the ‘regular shedding’ frequency of large-scale vortices 

reported in the literature (Kiya and Sasaki 1983). The for-

mation of large-scale vortices that constitute ‘regular shed-

ding’ are thus resolved to be formed in the earlier part of the 

separation bubble, from the small-scale vortices in preced-

ing instances. This is not however the dominant frequency 

that is reflected in the power spectrum of the coefficients 

of 1st and 3rd modes whose peak is at flR/U∞~0.1 (though 

there is considerable energy for flR/U∞ in the range 0.4–0.6). 

Fig. 40  POD Reconstruction up to 5th and 7th mode at  Ret = 6.2 × 103 (Left: A typical instance, Right: Instance of appearance one large-scale 

structure)
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Further, with very limited time resolution, the inferences 

regarding higher frequencies from the power spectrum could 

be misleading, although the low frequencies are apparent 

in the spectrum. The larger scale “flapping mode” at lower 

frequency of flR/U∞ ~ 0.1 cannot be isolated and explained 

from these reconstructions, though the frequency shows up 

in the power spectrum. Two of the dominant modes 1st and 

3rd, which are Reynolds number independent, have clear 

peaks at this frequency range, with amplitudes well above 

the other peaks at higher frequencies. The ‘flapping’, being 

a phenomenon related to the enlargement and shrinking of 

bubble, cannot however be identified from the resolution of 

shedding structures in localized PIV window—the separa-

tion bubble was visually split into two in the current inves-

tigation. A larger window that can capture the entire bubble 

may resolve the mode, which cannot however be pursued in 

the present study. It is nonetheless evident from the POD 

analysis that both the “large-scale” phenomena—the flap-

ping as well as the regular shedding—are Reynolds number 

independent phenomena since they are dominated by the 

lower modes.

4  Conclusions

Leading-edge separated flow field over a sharp flat plate is 

experimentally investigated at Reynolds number ranging 

from 6.2 × 103 to 4.1 × 104, using the statistics of the PIV 

data. It was observed that the average reattachment length is 

nearly independent of Reynolds number and a small second-

ary bubble near the leading edge was observed, which was 

found to shrink with increasing Reynolds number.

The profiles in wall-normal direction (along y/lR) of both 

streamwise and wall-normal (non-dimensional) velocity 

components, and their fluctuations, at all streamwise loca-

tions are found to be nearly Reynolds number independent. 

Shear layer thickness grew along streamwise distance with 

3 distinct growth rates in 3 different regions, for all Reyn-

olds numbers. The first region was very close to the leading 

edge, whose growth could not be resolved. In the subsequent 

regions, 2 distinct linear growth rates (slopes) of 0.23 and 

0.06 respectively were noted, for the streamwise positions 

of 0.1 < x/lR < 0.5 (region of vortex generation) and 0.5 < x/

lR < 1.1 (reattachment region).

The unsteady nature of the bubble was clearly apparent in 

from the different instantaneous realizations. It was observed 

that at x/lR = 0.1, the shear layer was rolling up into vor-

tices, and after x/lR = 0.2, the field is dominated by many 

vortex structures of varying scales. There were however few 

odd instances when the structures seemed to occasionally 

become one large coherent structure of scale comparable to 

the separation length. At the lowest Reynolds number, for 

which the PIV frame rate provided reasonable time reso-

lution, it was observed that these instance occurred every 

20–30 frames (6.6–10 Hz), suggesting a non-dimensional 

frequency of flR/U∞ ~ 0.4–0.6.

Proper orthogonal decomposition of the flow field, espe-

cially in the region near the leading edge, helped in under-

standing the origins of the unsteadiness. While the 1st and 

3rd mode shapes indicated shedding, it was shear flapping 

that corresponded to the 2nd mode shape in the region near 

the leading edge. The scales in the first 3 modes were found 

to be independent of Reynolds number. The higher modes 

were observed to have multiple smaller scales, and were 

found to be dependent on Reynolds number. Reconstruction 

of the realizations of most instants required at least 7 POD 

modes, suggesting the significance of higher modes during 

most instances. However, the Reynolds number independent 

first 3 high-energy modes sufficiently reconstructed the dom-

inant structures at the instance when the large-scale coherent 

structure appeared. This suggests that most of the energy 

of the lower modes are manifested in those few instances 

when large-scale coherent structure appears. The scale 

of the structure, and the non-dimensional frequency (flR/

U∞ = 0.4 ~ 0.6) of such instance corresponds to the regular 

shedding, which is traced to the upstream portion of the bub-

ble. The low-frequency phenomena of flapping, associated 

with enlargement and shrinking of the bubble, cannot be 

identified by inspecting the snapshots in local PIV windows 

that visually split the bubble into two. However, the power 

spectrum of the velocity fluctuation time series at different 

positions on the shear layer, as well as the power spectrum 

of the POD coefficients of the 1st and the 3rd mode indicated 

the frequency of flR/U∞ ~ 0.1. Both large-scale phenomena—

flapping and regular shedding- are therefore dominated by 

the first 3 modes, and thus are Reynolds number independent 

phenomena.
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