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Study Design: A biomechanical study of pedicle-screw pullout strength.

Purpose: To develop a decision tree based on pullout strength for evaluating pedicle-screw instrumentation.

Overview of Literature: Clinically, a surgeon’s understanding of the holding power of a pedicle screw is based on perioperative 

intuition (which is like insertion torque) while inserting the screw. This is a subjective feeling that depends on the skill and experience 

of the surgeon. With the advent of robotic surgery, there is an urgent need for the creation of a patient-specific surgical planning sys-

tem. A learning-based predictive model is needed to understand the sensitivity of pedicle-screw holding power to various factors. 

Methods: Pullout studies were carried out on rigid polyurethane foam, representing extremely osteoporotic to normal bone for dif-

ferent insertion depths and angles of a pedicle screw. The results of these experimental studies were used to build a pullout-strength 

predictor and a decision tree using a machine-learning approach.

Results: Based on analysis of variance, it was found that all the factors under study had a significant effect (p<0.05) on the hold-

ing power of a pedicle screw. Of the various machine-learning techniques, the random forest regression model performed well in 

predicting the pullout strength and in creating a decision tree. Performance was evaluated, and a correlation coefficient of 0.99 was 

obtained between the observed and predicted values. The mean and standard deviation of the normalized predicted pullout strength 

for the confirmation experiment using the current model was 1.01±0.04.

Conclusions: The random forest regression model was used to build a pullout-strength predictor and decision tree. The model was 

able to predict the holding power of a pedicle screw for any combination of density, insertion depth, and insertion angle for the cho-

sen range. The decision-tree model can be applied in patient-specific surgical planning and a decision-support system for spine-fusion 

surgery.
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Introduction

Pullout strength is an important index used by surgeons 

and design engineers to understand the holding power 

of pedicle screws. It is dependent on several factors such 

as bone density, insertion angle, screw geometry, and 

insertion technique [1-5]. A surgeon’s understanding of 

the stability of fusion construct is based on the periopera-
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tive intuition while inserting the screw, which is similar 

to insertion torque [6]. This is a subjective feeling and 

is dependent on the level of skill and experience of the 

surgeon. Studies have reported conflicting results regard-

ing the correlation between insertion torque and pullout 

strength of pedicle screws [5-9]. Several experimental 

studies have reported a positive correlation between in-

sertion torque and pull out strength in biomechanical 

tests [5-7]; however, some studies found no correlation 

[5,8,9]. Since insertion torque is measured during screw 

placement, this seldom alters screw selection in clinical 

practice [6]. The referenced studies were carried out on 

cadaver models or rigid polyurethane foam. Therefore, 

extrapolating the results is case dependent.

To improve the holding power of a pedicle screw, a 

design engineer modifies its thread parameters and mate-

rial type. Pullout strength is used to compare the effect 

of design parameters and to develop better screw models 

[10-13]. Once the screw type is selected, the major factors 

affecting holding power of pedicle screws are bone den-

sity, insertion angle, and insertion depth. Although tradi-

tional statistical methods, including regressions, provide 

insight into the variables affecting pullout strength, these 

methods are of limited use in developing patient-specific 

predictive models. The authors of the current study have 

developed a pullout-strength calculator using an ensemble 

approach that is capable of predicting the pullout strength 

of a pedicle screw [10]. However, this model cannot be 

used to perform a decision analysis, which is crucial for 

developing a decision-support system.

In the clinical setting , a surgeon must make a judg-

ment regarding the angle of the pedicle and insertion 

length for screw instrumentation. Currently, informa-

tion regarding pedicle-screw insertion path in manual 

hand-guided insertion is based on the experience of the 

surgeon. With the advent of robot-assisted surgery, there 

is a need to develop a technique that will help decide the 

optimal pedicle-screw insertion path, which will lead to 

maximum bone-screw engagement and prevent misplace-

ment of instrumentation [14]. Therefore, developing a 

decision-support system has received considerable atten-

tion from information systems researchers and practitio-

ners [15]. Machine learning is a branch of computer sci-

ence that helps computers learn without being explicitly 

programmed. It uses a data analysis method to come up 

with a pattern and automatically build analytical models 

that are used to for predictions of future events. Currently, 

these techniques are widely used in modern clinical 

decision-making, such as predicting the length of hospital 

stay [16], surgical planning for choledocholithiasis [17], 

strabismus [18], and other aspects of medical care. In the 

machine-learning approach, the data are fed to a meta-

model, which finds the function of input variable to an 

output value, where the meta-model is capable of generat-

ing output for new inputs. This learning can be enhanced 

to make predictions about the future. A specific type of 

machine learning, namely a decision tree, learns the data 

patterns and helps in classification and decision analysis 

by explicitly providing visual representation of the deci-

sion-making process. The advantage of the decision-tree 

method is that it is easy to understand, it can be used for 

mixed data types (numerical or categorical values), and it 

is not influenced by outliers or missing values. Decision 

trees outperform linear regression-based classifier models 

in cases where the relationship between input and output 

variables is a nonlinear and/or a complex relationship [19].

A patient-specific surgical planning technique is pro-

posed based on the pullout strength predictor and deci-

sion tree, which can act as a decision-support system for 

spine surgery. The assumption in the current model is that 

the success of fusion is defined as a biomechanically stable 

fusion construct, which is achieved immediately postop-

eration until fusion is achieved. Pullout strength predicts 

the initial stability of the fusion construct postoperation. 

Failure of fusion is defined as biomechanical failure due to 

loosening of the screw, which is seen in cases of osteopo-

rotic bones.

Materials and Methods

The overall framework required to build the meta-model 

of decision analysis for patient-specific planning is shown 

in Fig. 1. Full factorial experimental studies were imple-

mented to find the factors affecting the holding power of 

pedicle screws. The results of experimental studies were 

used to build a pullout-strength predictor and a decision 

tree using machine-learning tools available in Waikato 

Environment for Knowledge Analysis (WEKA) data min-

ing software for Windows (ver. 3.8.1; University of Waika-

to, Hamilton, New Zealand) [20]. The pullout-strength 

predictor was used to create a decision tree that could act 

as a decision-support system for patient-specific surgical 

planning.
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1.   Experimental pullout studies: synthetic bone models 

for screw pullout

Studies using rigid polyurethane foam have helped to de-

velop a biomechanical model of the vertebra and to study 

the pullout-strength phenomenon. The results of these 

studies have been widely reported in literature [21-23]. 

Studies have shown that certain densities of rigid poly-

urethane foam can mimic the microstructure of human 

trabecular bone. The compressive strength of the vertebral 

trabecular structure, 0.7–0.33 MPa, is comparable to poly-

urethane foam with a density of 80–240 kg/m3 [24,25]. 

The various types of foam (Polynate foam; Polynate Foams 

Pvt. Ltd., Bangalore, India) and their corresponding den-

sities according to the standards of the American Society 

of Testing Materials (ASTM) (F-1839) are shown in Table 

1 [26].

2. Pedicle-screw instrumentation

A commercial self-tapping, cylindrical, polyaxial pedicle 

screw has been represented in Fig. 2. This screw (Globus 

pedicle screw; Globus Medical, Audubon, PA, USA), had 

the following dimensions: outer diameter, 6.5 mm; inner 

diameter, 4.2 mm; thread length, 45 mm; and pitch, 2.7 

mm.

Pilot holes were created on foam blocks with a 3.2-mm 

drill bit, using a swivel-and-tilt vise at different angles 

along the screw axis. Pre-tapping was not done on the pi-

lot hole, and the pedicle screw was manually inserted into 

the foam block at varying depths and angles as shown in 

Fig. 3A.

A 5.5-mm high tensile steel rod was connected to the 

pedicle screw using a set screw. The instrumented foam 

block was loaded on a test jig as shown in Fig. 3B. The test 

jig was fixed on a BiSS Nano-25 universal testing machine 

with 15 kN force actuator, acquiring data at 50 Hz. A 5 

mm/min tensile load was applied to the test specimen 

until the maximum load was reached. The load versus 

displacement graph is shown in Fig. 3C according to the 

ASTM protocol (F543–07) [27].

3. Design of experiment

A full factorial experimental design was implemented 

based on the factors and levels described in Table 2. 

The design consisted of 27 experimental combinations. 

Density represented the quality of human bone from ex-

tremely osteoporotic to the normal range of bone density. 

Insertion angle represented the medial–lateral angle of the 

pedicle in the sagittal plane, as shown in Fig. 3D. Based on 

Table 1. Material properties of foam used in the study

No. Bone type
Density 

(kg/m3)

Experimental measurement American Society of Testing Materials standards

Density 

(kg/m3)

Compression 

Modulus (MPa)

Density 

(kg/m3)

Compression Modulus 

(MPa)

1 Extremely osteoporotic   80 84±5 19±8 72–88 12–20

2 Osteoporotic 160 162±15   63±14 144–176 45–71

3 Normal 240 233±10 125±10 216–264 98–151

Values are presented as number, mean±standard deviation, or range.

Experimental studies on factor effect:

- Density

- Insertion depth

- Insertion angle 

Meta modelling: 

parameters 

selection

Pullout strength 

predictor

Decision tree 

classifier

Patient specific 

surgery planning

Fig. 1. Overall framework for the study.

Fig. 2. 6.5×45 mm Globus pedicle screw (Globus Medical, Audubon, 

PA, USA).
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the anatomical studies [28,29], it was found that the angle 

of the pedicle changed at an increment of 5° at each level 

from L1–L5; therefore, the angle ranged from 0° to 30° 

in the mediolateral region of the lumbar spine. Insertion 

depth represented the length to which the screw had been 

inserted. A 45-mm long screw was chosen because the 

anatomical range of pedicle chord length along the pedi-

cle axis in the lumbar region ranged from 35–45 mm, as 

described in the literature [28,29]. A 100% inserted depth 

signified that the screw was inserted to its complete length 

of 45 mm without bicortical purchase. A 70% insertion 

depth represented of 70% of the 45 mm screw length, 

which is a 31.5-mm long screw. The screws were marked 

at different lengths to reduce the inter-sample variations 

while using screws of different lengths. However, this 

could have introduced a small moment component due to 

Table 2. Experimental design

No. Factor Levels

1 Density (kg/m
3
), ρ 80 160 240

2 Insertion angle (°), ϴ   0   15   30

3 Insertion depth (%), ι 70   85 100

small extension (exposed length) at the point of applica-

tion of the load, but this was found to be negligible com-

pared to the pullout strength load.

4. Meta-modeling

Different meta-modeling techniques were tested to build 

the pullout-strength predictor. The performance of the 

meta model was tested based on error matrix of mean 

ab solute error, root mean square error, rel ative absolute 

error, and root relative squared error. The random for-

est regression model performed the best in building the 

model. It was a type of ensemble learning that is used for 

regression and classification. A ten-fold cross-validation 

was used for the evaluation of predictive models. The pa-

rameter that produced the least amount of error was cho-

sen to develop the pullout predictor. A flow chart of the 

parameter selection method is shown in Fig. 4.

The different meta-models which were tested for model 

building were: random forest regression, radial basis 

function (RBF) regressors, additive regression, and linear 

regression. Detailed descriptions of the algorithms are 

available in WEKA documentation [20].

Fig. 3. (A) Schematic representation of instrumented foam block, (B) test setup for pullout-strength studies, (C) 
force vs. displacement graph from pullout-strength studies, and (D) anatomy of pedicle screw instrumentation. 

PU, polyurethane.

A B

C D
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5. Classifier modeling

Various classifier models were tested for building the deci-

sion tree. The pullout-strength value for successful fusion 

was assumed to be 650 N, based on the 40th percentile 

value of pullout-strength value, which was obtained in 

the osteoporotic bone model in the current set of experi-

ments. Pullout-strength values above 650 N indicated suc-

cessful fusion and below 650 N indicated pullout-strength 

failure. Different decision-tree-based classifiers were eval-

uated by area under the receiver operating characteristic 

(ROC) curve. An area of one represented a perfect clas-

sification. The different WEKA classifiers were as follows: 

random forest, logistic model trees, J48 class, and decision 

stump. Detailed descriptions of the decision trees and al-

gorithms are available in WEKA documentation [20].

Fig. 5. Effect of factors on pullout strength of pedicle screw. (A) 
Density, (B) insertion depth, and (C) insertion angle. To plot the fac-

tor effect, the factor under observation was kept at a constant level 

while varying the other two factors, according to the experimental 

design. The spread of data is represented as the mean and standard 

deviation in the plot. SD, standard deviation.
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Results

1. Factor analysis

The results of full-factor analysis have been presented in 

Fig. 5A–C. Based on analysis of variance analysis, it was 

found that all the factors under study had a significant 

effect (p<0.05) on the holding power of pedicle screws. 

Hence, all the factors were chosen to build a model for 

the pullout-strength predictor. In the case of density, the 

pullout strength increased with an increase in density. 

Furthermore, pullout strength increased with an increase 

in insertion depth. The greatest pullout strength (1,638 N) 

was achieved in the normal bone model (240 kg/m3), with 

100% screw engagement inserted at a 15° angle.

2. Meta-modeling

The random forest regression model performed best in 

model fitting, as the value of the correlation coefficient 

between the predicted and experimental value was high, 

and values of the error matrix were low. The correlation 

Table 3. Performance matrix of models used to develop pullout-strength predictor

No. Meta-models
Correlation 

coefficient

Error

Mean absolute 

error

Root mean square 

error

Relative absolute 

error (%)

Root relative 

squared error (%)

1 Random forest 0.99   51.27 65.78 15.02 16.62

2 Radial basis function regressor 0.98   66.09 80.18 19.37 20.26

3 Additive regression 0.94 108.31 132.27 31.74 33.42

4 Linear regression 0.94 104.3 137.29 30.57 34.69

Table 4. Prediction results based on confirmation experiment

No. Density (kg/m3) Insertion depth (%) Insertion angle (°)
Experimental 

value (N)

Predicted value 

(N)

Normalized 

prediction

1 80 80 10 318 310 1.02

2 80 90 20 308 303 1.02

3 160 80 10 532 552 0.96

4 160 90 20 545 532 1.02

5 240 70 10 907 890 1.02

6 240 80 0 1,193 1,112 1.07

7 300 70 10 907 950 0.95

8 300 90 30 1,034 1,040 0.99

Table 5. Performance matrix of models used to develop decision tree for pedicle-screw instrumentation

No. Classifier
Kappa 

statistics

Mean 

absolute 

error

Root mean 

square 

error

Relative 

absolute error 

(%)

Root relative 

squared error 

(%)

F 

measure

Receiver 

operating 

characteristic area

1 Random forest 1.00 0.06 0.10 12.38 19.55 1.00 1.00

2 Logistic model tree 0.93 0.14 0.21 28.76 41.77 0.96 1.00

3 J48 0.93 0.06 0.18 12.36 35.16 0.96 0.99

4 Decision stump 0.70 0.23 0.34 46.14 67.93 0.85 0.85
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coefficient was 0.99; whereas, for linear regression model-

ing it was 0.94. Based on the values of the error matrix 

presented in Table 3, the random forest model performed 

better than the linear regression model, and better than 

the other meta-models like additive regression and RBF 

regressors. Hence, the random forest model was used for 

the creation of the decision tree and analysis.

3. Confirmation experiment

Confirmation experiments were carried out to verify 

the performance of the pullout predictor. Additional 

pullout-strength tests were carried out for eight different 

combinations of factors (density, insertion depth, and 

insertion angle), and the results of experimental values 

were compared with the predicted values. Table 4 shows 

the additional confirmation experiments which were used 

for testing the pullout-strength predictor. The normalized 

value was obtained by dividing the experimental value by 

the predicted value. A value of 1 indicated that the pre-

dicted values matched the experimental results. Most of 

the values were close to 1, indicating that the model was 

well matched to the experimental values. Based on the 

confirmation experiment, the mean and standard devia-

tion of the normalized prediction using the random forest 

meta-model was 1.01±0.04.

Fig. 6. Decision tree for success and failure of fusion construct based 

on the pullout strength.

1. Density

3. Depth

4. Density

5. Angle

9. Success

8. Success

6. Success

<120 kg/m
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3
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3
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- Screw turn back

Screw design

- Screw size
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- Material

Bone cement

- Types of cement

   - Polymethylmethacrylate

   - Calcium phosphate

   - Other biocompatible bone cement

- Injection technique

- Optimum volume

Other techniques

- Triangulation

- Double pedicle screws

- Hooks

Novel pedicle screw

- Expandable screws

- Expandable anchors

Fig. 7. (A) Flowchart for decision-support system and (B) alternate techniques to increase pullout strength. DEXA, dual-energy X-ray absorptiom-

etry; qCT, quantitative computed tomography; MRI, magnetic resonance imaging.
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4. Classifier modeling

Table 5 shows the performance matrix of the various clas-

sifiers used for building the decision tree. The random 

forest model performed the best, as seen from area under 

the ROC and kappa value of 1. Decision stump performed 

the worst among the classifiers, with a kappa value of 0.70 

and area under the ROC value of 0.85.

Hence, the decision tree was built based on the random 

forest regression model. Fig. 6 represents the decision 

tree that was built using this classifier for a pullout-failure 

value of 650 N. This was based on the 40th percentile 

value of pullout strength, which was obtained in the os-

teoporotic bone model in the current set of experiments. 

A case study has been presented in the discussion section 

for a better understanding of how to use the decision tree 

in a clinical scenario.

Discussion

Despite published reports about the potential benefits of 

machine-learning approaches for developing decision-

support systems, there is a shortage of research that em-

pirically examines the use of these meta-modeling tech-

niques in pre-surgical planning. Clinical decision-making 

is an important, yet complicated, process which needs to 

be accurate and efficient, and automation of this system 

would be extremely advantageous. It is difficult to identify 

prior to surgery whether a patient undergoing lumbar 

spine-fusion surgery, especially osteoporotic patients, will 

have a successful outcome. Undoubtedly, there is a need 

to develop a patient-specific model that can be used by a 

surgeon for pre-surgical planning.

The methodology for creating and using a decision-sup-

port system for pedicle-screw instrumentation is depicted 

in Fig. 7A and B. This model sets the framework to create 

a website or other mobile (i.e., tablet) application for cal-

culating the pullout strength in real time. In the current 

study, the prediction of pullout strength is based on the 

important factors of density, insertion depth, and inser-

tion angle. The values for bone density are obtained from 

quantitative computed tomography (qCT) and dual-en-

ergy X-ray absorptiometry (DEXA scan). Insertion angle 

and depth can be obtained using computed tomography 

(CT) or magnetic resonance imaging (MRI) scans of the 

patient. Once a surgeon gets the predicted value, it can be 

verified that it is within the acceptable range. If it is not, a 

surgeon can vary the factors and see which combination 

will provide the optimum pullout strength. The resulting 

decision-support can be integrated with computer-aided 

surgery, by incorporating the data from medical imaging 

technologies such as X-ray, CT, or MRI.

Here, we describe a case study to explain the process of 

patient-specific surgical planning. To arrive at a bench-

mark value for pullout strength, the patient database of 

fusion surgery is reviewed and classified as a successful or 

failed surgery based on the post-operative follow-up data. 

By analyzing the data in terms of bone density, insertion 

angle, and insertion depth, an area of failure and success 

can be determined. A pullout-strength value correspond-

ing to the success and failure area can then be defined to 

provide the corresponding benchmark value.

In the clinical scenario, the pedicle angle and chord 

length are measured using CT and MRI scans as shown 

in Fig. 3D, and DEXA scan can be used for measuring 

bone mineral density (BMD). Consider patient P1 with 

a T-score >−1 and BMD of 180 kg/m3. The patient is 

scheduled for fusion surgery at level L4–L5 with a pedicle 

chord length of 42 mm and mediolateral angle of 30°. The 

predicted pullout strength is 898 N, which is above the 

threshold for successful fusion (650 N). The surgeon can 

follow the algorithm, which predicts that the fusion will 

be successful. Consider patient P2 with a T-score <−2.5 

and BMD of 130 kg/m3. P2 is scheduled for fusion surgery 

at level L1–L2 with a pedicle chord length of 35 mm and 

mediolateral angle of 10°. The predicted pullout strength 

is 530 N, which is below the threshold for successful fu-

sion surgery (650 N). To plan the surgery, a surgeon 

chooses an alternate insertion path in such a way that 

the insertion angle will be below 7.5°, and a screw length 

more than 35 mm can be used. Conventionally, a cement 

augmentation or higher level of fusion would have been 

recommended based on the experience of the surgeon. 

The current decision-support system helps to provide 

quantitative insight toward a qualitative phenomenon of 

success or failure of fusion surgery.

In the current study, the pullout-strength value for suc-

cessful fusion is assumed to be 650 N based on the 40th 

percentile value of the pullout-strength value which is 

obtained in the osteoporotic bone model in the experi-

ments. Better values can be determined by using cadaver 

samples, which will closely resemble the in vivo condi-

tion. For clinical scenarios, additional data such as pedicle 

width, height, cortical thickness, and screw thread pa-
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rameters can be incorporated during the model building 

stage. Based on published studies and experience, it is rec-

ognized that there is no single meta-model that will work 

best for all datasets, although given a particular problem, 

some methods can significantly outperform others [19]. 

Similar studies can be carried out using other meta-mod-

els to develop better predictors. Meta-models such as ran-

dom forest regression can perform well in cases of mixed 

variable types and co-linearity of data. In clinical practice, 

black box predictions are the least desirable. A random 

forest model helps to better understand the phenomenon 

of model building. In the current study, a simpler model 

is developed based on three variables to employ it readily 

in a clinical situation. Based on the validity and accep-

tance of the methodology, complex models can be built 

based on the given framework. DEXA and qCT are not 

routinely used for younger patients due to radiation risk; 

hence, better non-ionizing imaging modalities need to 

be developed that will extract the geometric details of the 

bone and material properties.

One main limitation of the current study is that the ex-

periments use foam models to mimic extremely osteopo-

rotic to normal bone. Implementing a similar experiment 

with a cadaver model will require a large sample size to 

obtain a statistically significant conclusion. A correction 

factor can be introduced into the model to compensate 

for the non-homogeneous property of bone. Simple axial 

loading is applied to represent the initial period after 

spine-fusion surgery. It is difficult to mimic the complex 

loading of the in vitro condition. For future studies, cyclic 

loading can be applied during the pre-processing stage 

before applying the axial load [30]. Physiologically, this 

type of loading causes bone remodeling around the screw; 

however, this phenomenon is difficult to mimic in foam 

and cadaver models. The current model is applicable for 

the same screw type with thread geometry as described 

in the methodology section. Extrapolation to other screw 

types should be done with caution. Verification, valida-

tion, and sensitivity analysis provide considerable confi-

dence that these limitations in the model of the pullout-

strength predictor have been adequately addressed. In 

the current study, it is difficult to explore the interaction 

effect between the different factors computationally, as it 

requires larger sample size and variables. Although this is 

a limitation, we feel this model provides the initial ground 

work into the area of advanced predictive modeling in 

instrumented spine-fusion surgery outcomes. The model 

can still be used clinically, and as more data is collected, 

the model can be continuously updated.

Conclusions

A predictive model was built using machine-learning 

techniques of meta-modeling and experimental pullout-

strength values. This model can be used for patient-specif-

ic surgical planning, and it can act as a decision-support 

system to assist spine surgeons performing fusion surgery.
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