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Abstract: Identification of network structure and quantifying the connectivity strengths in
multivariate systems is an important problem in many scientific areas. Data-driven approach
to network reconstruction based on causality measures is an emerging field of research in this
respect. Among several recently introduced data-driven causality measures, the partial directed
coherence (PDC) and direct power transfer (DPT) have been shown to be very effective for
linear systems. While the PDC is useful in reconstructing the network, DPT has been proved
to be effective in both identifying the network structure as well as quantifying the strength
of connectivity. In this work, we study the problem of obtaining efficient estimates of network
connectivity strengths, which has hitherto not been addressed in the literature. To this end,
we study two different estimation methods for network connectivity strengths and demonstrate
that the goodness of estimates depends on nature of the data generating process (DGP). In
order to characterize the multivariate DGP, we introduce two statistics, namely, the vector-
valued autocorrelation function (VACF) and the vector-valued partial autocorrelation function
(VPACF), and estimators of the same. Our studies show that the parametric models used in
estimating connectivity strengths should be commensurate with the dynamics of the process
as characterized by the newly introduced VACF and VPACF. Simulation studies are presented
under different scenarios to support our findings and the newly introduced measures.
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1. INTRODUCTION

Identification of network structures in multivariate sys-
tems from measurements is an important problem in many
areas such as engineering, systems biology, econometrics,
statistics, sociology and climatology etc (Granger, 1969;
Baccala and Sameshima, 2001; Gigi and Tangirala, 2012).
The main objective in network reconstruction is to identify
causal interactions between the variables from given time
series data. The problem of identifying the causal relation-
ships from the measurements was initially addressed by
Wiener (1956). Granger (1969) proposed the definition of
causality, based on Wiener’s ideas, which is known today
as Granger causality. The concept of Granger causality
is based on prediction. A variety of data-driven causal-
ity measures that work either in the time- or frequency-
domain have been proposed for over four decades now
(Hlavackova-Schindler et al., 2007; Winterhalder et al.,
2005). A majority of these measures rely on the concept
of Granger causality. Among the frequency-domain mea-
sures, the partial directed coherence (PDC) and direct
power transfer (DPT) are well-suited for structure deter-
mination as they measure direct influences between the
variables (Baccala and Sameshima, 2001; Gigi and Tangi-
rala, 2010). Both the methods use parametric time-series
models, namely, the vector auto-regressive (VAR) models
(see Appendix A) as the primary vehicles, regardless of the
underlying process. The choice of this structure is moti-
vated primarily by the ease of estimation. VAR models give
rise to linear predictors thereby admitting least squares

estimators to provide unique solutions. On the other hand,
vector moving average (VMA) models yield predictors that
are non-linear functions of parameters and are therefore,
more complicated to estimate (Lutkepohl, 2005).

An additional problem of interest in network reconstruc-
tion is the determination of connectivity strengths. The
knowledge of network connectivity strengths is valuable
in several applications. A common use of the connectivity
strength is in determining the strongest and weakest links,
which finds applications in fault diagnosis, control of net-
works, etc. Despite its importance, relatively little effort
has gone into defining and estimating strengths of connec-
tivities. An ad hoc definition and computation is provided
by Baccala and Sameshima (2001) based on the PDC.
The definition therein lacks a transparent connection with
any statistical relationship between the variables. On the
other hand, the DPT-based definition introduced by Gigi
and Tangirala (2010) directly quantifies the “amount” of
transfer of power (or variability) from the source to the
sink variable. The key step is the decomposition of the
total power into direct, indirect and interference terms at
each frequency (Gigi and Tangirala, 2010). Subsequently,
the connectivity strength is derived as the normalized DPT
between two variables (see §2.2). However, obtaining effi-
cient estimates of this strength of connectivity has neither
been addressed nor studied in the literature.

The objective of this work is to develop / identify a suitable
method for obtaining unbiased and efficient estimates of
connectivity strengths in linear, causal dynamical systems,
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or jointly stationary linear processes, based on the def-
inition given in Gigi and Tangirala (2010). The specific
questions of interest are:

(1) Does blindly adapting a VAR structure, without
paying attention to the process characteristics, lead
to inefficient estimates of connectivity strengths?

(2) Is it possible to devise practically useful measures
that provide insights into the underlying multivariate
data generating process?

(3) Does estimation of strength of connectivity by fitting
a model that is commensurate with the process char-
acteristics always give rise to efficient estimates in all
the cases?

The first question assumes prominence in light of the
fact that VAR models are widely used in the network
reconstruction of linear causal dynamical systems. While
this choice of model structure might serve the purpose of
reconstruction, it may not be appropriate for obtaining
efficient estimates of connectivity strengths, particularly
when the underlying mechanism of the DGP is in sig-
nificant deviation from the VAR structure. The second
issue of interest is a natural follow-up of the first one.
Since it is suspected that VAR model structures can lead
to biased and / or inefficient estimates of strengths, it
is necessary to be equipped with measures that provide
insights into the nature of the DGP. The measures that
exist in the multivariate time-series literature, namely, the
matrix auto-correlation function (ACF) and its partial
counterpart (Wei, 2005) do not, unfortunately, present
sufficient insights into the collective characteristics of the
multivariate process (see Appendix B). They are, however,
ideally suited for obtaining a knowledge of the individual
channel characteristics. Finally, the third issue of interest,
perhaps being the practically most relevant one, is also a
question that demands broader and comprehensive study.
Therefore, for present, we restrict our scope of study to
the first two issues.

The connectivity strength, as defined in (3), is a non-linear
rational function of the model coefficients. Therefore, they
do not lend themselves easily to a theoretical analysis of
the bias and variance, i.e., it is difficult to theoretically
derive the distributional characteristics of the estimates.
Therefore, we adopt a Monte-Carlo simulation approach
in this work. In addition, we introduce two new statis-
tics, namely, the vector-valued ACF and partial ACF, for
characterizing the correlation structure in multivariate sta-
tionary processes. These measures are useful in providing
a collective picture of the correlation and can be thought
of as multivariate analogues of the ACF and partial ACF
(PACF) for the univariate process (Shumway and Stoffer,
2000; Tangirala, 2014). They possess similar properties
as that of the univariate versions and aid in determining
the order of VMA and VAR models, respectively. Further,
we provide expressions for estimating these functions and
study their distributional characteristics through Monte-
Carlo simulations.

One of the main findings of this work is that VAR models
are only suited for efficient estimation of connectivity
strengths when the DGP is also of the VAR type. Any
deviation, for e.g., when the DGP is VMA type, the use of
VAR models result in biased and / or inefficient estimates,

even when the VAR model order is chosen appropriately,
i.e., the resulting model passes all necessary diagnostic
tests. This finding, while prima facie, may be unsurprising,
is also interesting since the connectivity strengths are
defined in terms of the VAR model. On the other hand,
when the model structure is chosen in accordance with
the process characteristics, as determined by the vector-
valued ACF / PACF, one obtains unbiased and relatively
efficient estimates. A broader message of this work is that
it is advisable to choose a model that is commensurate
with the data generating mechanism rather than always
choosing a VAR model for network reconstruction, which
is the general practice. Further, the vector-valued ACF
and PACF is potentially useful in developing multivariate
time-series models for other applications as well.

The paper is organized as follows. Section 2 reviews vec-
tor time series models and quantification of connectivity
strengths along with the estimation techniques. In Section
3, we introduce the vector-valued ACF and PACF and
their sample versions with three illustrative examples.
Simulation case studies are presented in Section 4. The
paper ends with a few concluding remarks in Section 5.

2. PRELIMINARIES

This section reviews the quantification of connectivity
strengths and their estimation methods based on paramet-
ric vector time-series modeling, a brief overview of which
is provided in Appendix A.

2.1 Quantification of power transfers

The quantification of direct and indirect influences in
terms of power transfer is obtained by developing di-
rect and indirect transfer functions based on the signal
flow graph representation of the process (Gigi and Tangi-
rala, 2010). The mathematical expression for direct power
transfer function (hp;j(w))from source z; to sink xz; is
given as,
—ai;(w) det(M;;)

det(A(w)) 1 7&]
R G o (1)
det(A(w))’ t=17J

where 1\_/Iij(w) is the minor matrix of the matrix A(w),
which is obtained from A (w) by eliminating both *" and

4t row and column.

The squared magnitudes of direct power transfer (DPT)
from source x; to sink z; is,

955(w)* = |hp,ij(w)? (2)
The DPT gives both the structural information and the
strength of connectivities of the process.

2.2 Strength of connectivities

The strength of connectivity is quantified based on the
direct power transfer between the variables (Gigi and
Tangirala, 2010). For a link connecting source x; to sink
x;, the normalized connectivity strength is defined as (Gigi
and Tangirala, 2012),

Jo 1% (w)]dw
Bij =

= 00y (@) P ®)
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It is also possible to use other normalization factors (for
example, see Garg and Tangirala (2014)).

2.8 Estimation techniques

In this work, the strength of connectivity is obtained using
parametric models based on the expression given in (3).
Here, we study the use of three different approaches (i)
VAR approximation, (ii) VMA approximation, and (iii)
fitting a model that is commensurate with the process
characteristics.

VAR approzimation: The primary way of obtaining the
network connectivity strengths is fitting a VAR model
without paying attention to the process characteristics.

VMA approzimation: Another alternative way to model
VAR/VARMA process is by fitting a pure VMA model.
The VMA model is estimated based on the method of
maximum likelihood (Gémez, 2015).

Fitting a model that is commensurate with the process
characteristics: In this technique, the network connectivity
strengths are obtained by fitting the model that is com-
mensurate with the process structure.

The estimated strength is always positive and it is zero
when the connection does not exist between the variables.
A statistical test of significance limit on connectivity
strengths is beyond the scope of this work.

3. VACF AND VPACF

In this section, we introduce VACF and VPACF, which are
useful for determining the characteristics of the multivari-
ate process. Theoretical background on ACF and PACF
for multivariate process is given in Appendix B.

3.1 Vector correlation functions

The autocorrelation and partial correlation matrices for
multivariate processes give the nature of the DGP. We use
graphical representation of auto- and cross-correlations to
get the characteristics of the process. For example, Fig. 1
shows the sample auto- and cross-correlations for the data
simulated from a 3-dimensional VMA (1) process. From the
plots, it is observed that both auto- and cross-correlations
are zero after the lags [ > 1, which gives the nature of the
process as VMA(1). However, the graphical representation
of auto- and cross-correlations become increasingly cum-
bersome as the dimension of the process increases. Further,
it is an admissibly difficult task to get the nature of the
DGP from the listing of correlation matrices at different
lags, particularly when the order of the process is high.

To overcome this difficulty and also to get the collective
picture of the correlation, we introduce an equivalent
scalar-valued representation of correlation matrices at each
lag which we call as vector-valued ACF (VACF) and
vector-valued PACF (VPACF).

The VACEF is obtained by solving the following optimiza-
tion problem

M M

J=minY N (ol —e)? )

i=1 j=1
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Fig. 2. Histograms of VACF(a — d) and VPACF (e — h) estimates
for VWN process

the solution of which is
LA
o = Vel Z Z Pij (5)
=1 j=1
where M is the dimension of the process. Therefore, the
VACF at any lag [ is defined as
i
plll = — (6)
o
The VPACF is obtained by a similar procedure. Both
these measures have the similar properties as that of
univariate versions. Hence, VACF and VPACF are useful
in determining the order of VMA and VAR models,
respectively.

Remark: Ideally it is required to show theoretically that
the measure is bounded. However, the theoretical proof is
not given here and the work on the same is in progress.

8.2 Sample VACF and VPACF

The sample autocorrelation matrix function at lag [ is
Do (x[k] — p)(x[k — 1] — p)’
> (x[k] = p)(x[k] — )’
where i is the vector of the sample mean and p;;[l] is
the sample cross correlations when i # j, and sample
autocorrelations when i = j. Sample partial correlation
matrices are obtained using the recursive procedure (Wei,
2005) by estimation of ¥, i.e. using Y, in place of X.
Sample VACF and sample VPACF are obtained, as defined
in (6), from the sample autocorrelation and sample partial
correlation matrices, respectively. Due to the effect of
noise, these sampled versions will have non-zero values
even when the true values are zero. It is therefore necessary

I = =pylll, ,i=1,2,..M (7)
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(a) VACF of VAR(3)  (b) VACF of VMA(2) (c) VACF of VARMA(1,1)

(d) VPACF of VAR(3) (e) VPACF of VMA(2) (f) VPACF of VARMA(1,1)

Fig. 3. Sample VACF and VPACT for various multivariate processes

to determine significance levels. These are obtained using
Monte Carlo simulations. The histograms of VACF and
VPACF estimates for VWN process at different lags are
shown in Fig. 2. It is observed that estimates are normally
distributed with mean 0 and the variance 1/N (N =
Number of samples). Therefore, the 95% significance levels
for the estimates are

where o) is the standard deviation of the estimates at I.

For example, Fig. 3(a) and Fig. 3(d) shows the sample
VACF and VPACF obtained for the data simulated from
a 3-dimensional VAR(3) process. From the plots it is
observed that the VPACF is zero after the lags [ >
3. Similarly the sample VACF and VPACF for a 4-
dimensional VMA (2) are shown in Fig. 3(b) and Fig.
3(e), respectively. Fig. 3(c) and Fig. 3(f) shows the sample
VACF and VPACF of VARMA(1,1) process. Therefore,
the VACF and VPACF are useful for determining the
overall characteristics of multivariate process.

4. SIMULATION RESULTS

Three case studies pertaining to different scenarios are
presented to demonstrate the determination of network
structure of the causal dynamical processes and quantifi-
cation of strengths.

4.1 Case study 1

Consider a 3-dimensional VAR(3) process as
X[k] = (8:% o Ogl)x[k 1+ (8(:)5 &) §)x[k _9

0.2 0 0
+(0(.)1 91 OQQ)X[k—S] + e[k] (9)
where e[k] is an uncorrelated VWN process with zero mean
and unit variance. The process is simulated to obtain 1000
samples of the vector of x. The true network along with

connectivity strengths is shown in Fig. 5.

The sample VACF and VPACF shown in Fig. 3(a) and Fig.
3(d) suggest a VAR(3) DGP. This order is identical to the
one suggested by the Akaike Information Criteria(AIC).
The connectivity strengths are estimated from the direct
power transfers by fitting a VAR(3) model. The plots

(a) No model-DGP mismatch (b) Using VMA approximation

Fig. 4. Estimated magnitude squares of DPT for case study 1.
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Fig. 5. True network structure for case study 1
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Fig. 6. Estimated network structure with strength of connectivities
using different techniques for case study 1

of direct power transfers and the corresponding recon-
structed network with connectivity strengths are shown
in Fig.4(a) and Fig.6(a) respectively. The diagonal blocks
represent the self-connectivity while the off-diagonal block
(i,4)™" represents the direct influence from source z; to
sink x;. In the network connectivity diagram, variables are
represented by nodes and the edge with an arrow between
two nodes indicates the existence of a directed connection.
The cyclic arrow on the node represents the influence of its
own variable, if it exists. The value within the parenthesis
represents the standard error in the estimates.

For comparison purpose, the connectivity strengths are
also estimated by using VMA approximation. The esti-
mated direct power transfers and reconstructed network
along with connectivity strengths are shown in Fig. 4(b)
and Fig. 6(b), respectively.

4.2 Case study 2

Consider a 4-dimensional VMA(2) process as
0.4 0 0 O 0.2 0 0.3 0
i = (805t S § Yot (8557 § Yot maisem a0
0O 0 0 0.4 0.5 0 0 0.1
where e[k] is an VWN process with zero mean and unit
variance. The sample VACF and VPACF shown in Fig.
3(b) and Fig. 3(e) indicates that the DGP has the charac-
teristics of VMA(2) process. The true network along with
connectivity strengths is shown in Fig. 8. The estimated
direct power transfers and the network structure with
connectivity strengths obtained by fitting a model with
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Fig. 7. Estimated squared magnitudes of DPT for case study 2
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Fig. 9. Estimated network structures with strength of connectivities
ussing different techniques for case study 2

identical structure are shown in Fig.7(a) and Fig. 9(a),
respectively.

The direct power transfers and connectivity strengths
obtained using VAR approximation are shown in Fig.
7(b) and Fig. 9(b), respectively. From these results, it is
observed that estimation of connectivity strengths using
VAR approximation leads to biased and inefficient esti-
mates when the DGP is VMA.

4.8 Case study 3

Consider a 3-dimensional VARMA (1,1) process as
x[K] = ( 03 0% gif)x[k 1+ (8:? K 8:5)e[k 1 +ek] (11)
—0.1 0.2 0.4 0 0.10.4

where e[k] is the VWN with zero mean and unit variance.
The sample VPACF in Fig. 3(f) suggests a VAR (6)
approximation while the sample VACF shown in Fig. 3(c)
indicates a VMA(3) approximation. The network structure
along with connectivity strengths obtained by fitting a
model with identical structure is shown in 11(b). Also,
the estimated network connectivity strengths using VAR
and VMA approximation are shown in Fig. 10(b) and
Fig. 11(a) respectively. The true network connectivity
strengths are shown in Fig. 10(a). From these results, it is

(b) VAR approximation

(a) True network

Fig. 10. True and esitmated network structures for case study 3
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Fig. 11. Estimated network structures with connectivity strengths
using different techiques for case study 3

observed that fitting a model that is commensurate with
the process characteristics results in unbiased estimates
when the underlying DGP is VARMA.

A comparison of bias and standard errors of different
estimation techniques for network connectivity strengths
obtained using 100 Monte-Carlo simulations is shown in
Table 1. It is observed that adapting a VAR structure
without paying attention to the process characteristics,
results in biased and / or inefficient estimates.

5. CONCLUSIONS

In this work we studied the impact of different estima-
tion techniques on the bias and variance of network con-
nectivity strengths in linear causal dynamical systems.
One of the main objectives was to carefully investigate
the suitability of VAR models for estimating connectiv-
ity strengths given that it is a general practice to use
VAR models for network reconstruction. The approach
was based on the use of two newly introduced vector mea-
sures for characterizing the auto-correlation and partial
auto-correlation functions and Monte-Carlo simulations.
We have also provided expressions for sample VACF and
VPACF, while establishing significance levels for the same
through Monte-Carlo simulations.

Simulation results demonstrated a comparison of estima-
tion techniques and determination of network connectivity
strengths under different scenarios. The main finding of
this work is that fitting a model that is commensurate
with the process characteristics results in unbiased and /
or, efficient estimates of the connectivity strengths. Use
of VAR models should be restricted to the case where
DGP is also of VAR type. The statistical properties of
the estimates are not investigated in present work and is a
subject of future work. FInally, it is also believed that the
vector measures introduced for obtaining a consolidated
picture of the correlation in the multivariate process can
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Table 1. Comparison of bias and standard errors for different estimation techniques

Estimated strength using

Bias Standard error

Case study True strength i p yMA  VARMA VAR VMA VARMA VAR VMA VARMA
0.376 0.360  0.401 - 0.001  -0.012 B 0.053  0.060 -

1 (DGP: VAR) 0.116 0.125  0.185 : 0.004  0.015 . 0.022  0.031 B
0.149 0.112  0.147 - 20.024  0.007 - 0.023  0.010 -
0.043 0.020  0.053 : 20.010  0.003 . 0.015  0.012 B

2 (DGP: VMA) 0.087 0.054  0.092 - 20.010  0.003 . 0.019  0.008 B
0.230 0.210  0.241 : 20.043  0.003 B, 0.028  0.023 B
0.054 0.046  0.075 0.059  -0.012  0.006 0.005  0.015  0.023 0.020
0.131 0.131  0.098 0.012  -0.012 -0.009 0.0l  0.024  0.030 0.025

3 (DGP: VARMA) 0.106 0.138  0.118 0.010  -0.039  0.001 0.001  0.016  0.028 0.027
0.126 0.062  0.103 0.119  -0.033  0.002 0.005  0.026  0.031 0.030

be used in other applications of multivariate time-series
modeling.
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Appendix A. VAR, VMA AND VARMA MODELS

Consider an M —dimensional jointly stationary multivariate process
is denoted by the vector x = ( z1 =2 xzar )T, Vector
autoregressive (VAR) representations are commonly used to express
linear relationships among the variables. Mathematically, a VAR
model of order P is represented as (Lutkepohl, 2005),

P
x[k] = ZArx[k —r] + e[k]
r=1

where A, is the AR coefficient matrix at lag r and e[k] is an M-
dimensional vector white noise (VWN) process.

(A1)

Vector moving average (VMA) models express the variables purely
in terms of past and present white noise sequences. Mathematically,
VMA (Q) is represented as (Shumway and Stoffer, 2000; Priestley,

1981),
Q
x[k] = Z H,elk — r] + e[k]
r=1

where H, is the MA coefficient matrix at lag r. The relationship
between VAR and VMA models in frequency domain is given by

(A.2)

H(w) = A7l (w)
where A(w) = I — A(w) and A(w) is the Fourier transform of the
AR coefficient matrix, A,, which is given by

P
A(w) = Z A eiwr
r=1

Inversion of finite order stationary VAR process results in an infinite
order VMA process, and vice versa. However, after certain lags the
coefficients become insignificant and can be neglected.

The VARMA(P,Q) model has a mix of both VAR and VMA
representations. Mathematically (Tiao and Box, 1981),

P Q
x[k] = Z A, x[k —r] + Z H,e[k — r] + elk] (A.5)

r=1

(A.3)

(A4)

r=1
where A, and H, are the autoregressive and the moving average
coefficient matrices at lag r, respectively.

Appendix B. CORRELATION FUNCTIONS

The matrix ACF of a M —dimensional jointly stationary multivariate
time series {x[k]} with mean vector u at lag [ is (Lutkepohl, 2005)

-1 —1 ..
r, =D 'sD ' =p,;0l, i,ji=1,2...M (B.1)

where 3; = E((x[k] — p)(x[k — ] — p)’) is the autocovariance matrix
function at lag I, p;;[l] is cross correlation between x; and x; when
i # j and is the autocorrelation when ¢ = j, and D is a diagonal
matrix whose elements are the square root of the diagonal elements
of ¥g. The autocorrelation matrices for a stationary VMA(Q) process
are zero after the lag I > Q. On the other hand, for VAR(P) model
these decays exponentially with lag. Hence, the ACF is useful for
identifying the VMA models (Tiao and Box, 1981).

The matrix PACF of a jointly stationary process x[k] at any lag
l is the correlation between x[k] and x[k — [] after removing their
, x[k — L+ 1] (Wei, 2005).
It is a useful tool for identifying the order of the VAR process. The

linear dependence on x[k — 1], x[k — 2],....

normalization used in computing the partial correlation is similar
to the one used for multivariate ACF in (B.1). This is also termed
as the partial lag correlation matrix function. Unlike, the partial
autoregression matrix function (Tiao and Box, 1981), this matrix
can be interpreted as a correlation matrix since the elements are
appropriately normalized. A recursive procedure for computing the
PACEF is given in Wei (2005). The partial autocorrelation matrices
for a stationary VAR(P) model are zero after the lags [ > P. On the
other hand for VMA(Q) model, these matrices exponentially decay
with the lag.



