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Abstract

We study the equilibrium conformations of a grafted polyelectrolyte (PE) in the presence of

explicit counterions (CI) using Monte Carlo simulations. The interplay between attractive Lennard-

Jones interactions (parametrized by ǫ), and electrostatics (parametrized by A = q2lB/a, where

q =counterion valency, lB = Bjerrum length and a = monomer diameter), results in a variety of

conformations, characterized as extended (E), pearls with m beads (Pm), sausage (S) and globular

(G). For large ǫ, we observe a transition from G → P2 → P3 → . . . → S → G with increasing

A, i.e., a change from poor to good, to reentrant poor solvent, whereas, at lower ǫ, the sequence

of transitions is, E → S → G. The conformation changes are directly related to the nature of

binding of CI onto the PE. The transition between S → G is continuous and associated with

critical fluctuations in the shape driven by fluctuations in the fraction of condensed CI.
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I. INTRODUCTION

The equilibrium properties of a polyelectrolyte (PE) are governed by an interplay between

long-range attractive forces between monomers, electrostatic interactions arising predomi-

nantly from mobile counterions (CI), and polymer elasticity. Of these forces, electrostatics

has been the most difficult to handle, both analytically and computationally, especially in

the regime where the strength of the electrostatic interaction, parametrized by the ratio of

the electrostatic condensation energy of the multivalent counterions and thermal energy, is

high. While the behaviour at high temperature or low electrostatic energy is well described

by the mean field Poisson-Boltzmann (PB) theory [1–3], several computer simulation studies

on PE, starting from [4], have reported qualitative deviations from PB at low temperatures

or high electrostatic energy [4–12].

These studies reveal that the main cause for the deviation, is that PB theory underes-

timates the extent of CI condensation at high electrostatic coupling and low temperatures,

and neglects spatial correlations. For instance, a study of the the equilibrium conformations

of a PE as a function of charge density and solvent quality (restricting to weak electrostat-

ics and poor solvent conditions) using a Debye-Huckel framework [7], demonstrated that

with increasing charge density, the PE globule splits into a string of pearls, in agreement

with scaling arguments [13]. Simulations with explicit CI [10] verified the above and further

showed a collapse of the PE at higher electrostatic coupling, due to attractive, dipolar inter-

actions arising from the condensation of CI onto the monomers. Apart from these studies

on free PE, the conformations of a constrained PE, such as a grafted PE, in the regime of

low electrostatic coupling were examined using molecular dynamics (MD) simulations [14].

In this paper, we study the equilibrium phase diagram of a grafted PE, across a range

of electrostatic couplings and solvent quality, using Monte Carlo (MC) simulations and

scaling arguments. Our study highlights the competition between the monomer-monomer,

monomer-counterion interactions and polymer elasticity. As a consequence, the PE exhibits

a variety of phases, which we characterize as extended (E), pearls with m beads (Pm),

sausage (S) and globular (G). With increasing electrostatic interaction, the PE exhibits the

following sequence of conformations : G → P2 → P3 → . . . → S → G. Thus, as a function

of increasing electrostatic interaction, we go from poor to good to reentrant poor solvent.

These conformation changes are intimately tied to the nature of binding of CI onto the PE.
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For weak electrostatic interactions, the CIs condense onto the PE and partially screen the

monomer charge. However when the electrostatic interactions are stronger, we find that

new composite degrees of freedom, such as dipoles comprising of monomer and CI charges,

emerge. In addition, we find that the transition between S to the reentrant G is continuous

and associated with critical fluctuations in the shape driven by fluctuations in the fraction

of condensed CI.

II. MODEL AND SIMULATION DETAILS

Our model PE is a linear chain of N spherical beads, of charge e and diameter a, con-

nected through harmonic springs. One end of the PE is anchored to the wall at x = 0.

To ensure charge neutrality, we introduce N oppositely charged counterions with the same

valency and diameter. We neglect hydrodynamic effects and treat the solvent as a dielectric

continuum with permittivity κ. The system is bounded within a cubic box of volume L3,

with impenetrable, non-polarizable walls at x = 0 and x = L > aN . We apply periodic

minimum image boundary conditions along the y and z directions [11]. We ignore any

contribution from image charges at the boundaries along the x−axis.

In our simulation, we model the non-electrostatic interactions by (i) a Lennard-Jones

(LJ) potential,

U(r) =



















ǫ1
∑

i<j
a12

(ri−rj)12
− 2 a6

(ri−rj)6
|ri − rj| < a,

ǫ2
∑

i<j
a12

(ri−rj)12
− 2 a6

(ri−rj)6
|ri − rj| ≥ a,

(1)

between all particles and (ii) a harmonic spring potential acting between connected beads

of the PE,

Us =
∑

i

k(|ri − ri+1| − a)2, (2)

where we take the spring constant, k = 800kBT/a
2, for the simulation. For monomer-

monomer interaction we choose ǫ = ǫ1 = ǫ2 and for the CI-CI and monomer-CI interactions

ǫ1 = 1 and ǫ2 = 0. The electrostatic potential between any pair of beads is,

Uc = A
∑

i<j

asisj
|ri − rj|

, (3)

where si gives the sign of the ion charge. The electrostatic coupling strength A = q2lB
a

measures the ratio of the coulomb to thermal energy when the distance of separation between
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two charges is a; here q is the valency of the monomer and lB = e2/4πκkBT , is the Bjerrum

length. From now on, we will write all distances in units of a and energy in units of kBT .

We determine the equilibrium conformations and phase diagram of this grafted, flexible

PE, with explicit counterions, over a wide range of values of the electrostatic coupling A and

LJ parameter ǫ, using the standard Monte Carlo Metropolis scheme. We use the well known

Umbrella sampling technique [15, 16] to obtain the free energy profile of the PE-CI system

as function of its radius of gyration, Rg. This method uses a weight function to bias the MC

sampling of configuration space in such a way that the less probable states of the system

are sampled frequently. In our simulation, we introduce the weight function by adding a

harmonic potential Uw = 1
2
C(Rg −R0)

2 to the total energy of the system. By varying R0,

we sample the whole configuration space and measure the distribution of Rg, from which we

calculate the free energy F (Rg) of the PE.

III. EQUILIBRIUM PHASE DIAGRAM

The equilibrium phase diagram of the grafted PE, determined by an interplay between

interactions (electrostatics and attractive LJ) and entropy (polymer and CI), is fairly subtle

and is shown in Fig. 1. We characterize the phases as Globular (G), Sausage (S), Pearls

with m-beads (Pm) and Extended (E), by the N -dependent scaling of conformational mea-

sures, such as the radius of gyration 〈Rg〉 and the anisotropy of the gyration tensor; typical

conformations are shown in Fig. 3. Let us remind ourselves of the polymer conformations

when A = 0. As a function of ǫ, the polymer goes from being a self-avoiding random coil in

good solvent conditions, characterized by the Flory behaviour, 〈Rg〉 ∼ N3/5, to a collapsed

globule (G) in a poor solvent, characterized by 〈Rg〉 ∼ N1/3, via a first-order transition at

ǫ = 1 [17].

As we turn on the electrostatic interaction, the PE undergoes a sequence of shape changes,

depending on the value of ǫ. In the range, ǫ < 1, the PE changes from a self-avoiding random

walk (SAW) to an extended conformation (E), as A varies between 0 and 1 [10, 11]. This is

because, while the electrostatic interaction increases, the CI entropy prevents condensation

onto the PE. The net electrostatic interaction between the monomers is repulsive resulting in

an extension of the PE, and an 〈Rg〉 ∼ N . When A > 1, a finite fraction of CIs condense on

the monomers; at A = 5, for instance, 80% of CI condense onto the PE (Fig. 2). This results
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in reducing the net monopole charge on each monomer, and pairing the monomeric charge

with the CI to form dipoles [10]. Such dipoles are the emergent degrees of freedom when

A ≫ 1; this leads to an effective attractive interaction, and the configuration resembles a

Sausage (S). As A is increased to 10, complete condensation of the CI takes place, resulting

in a collapse into a globule (G).

For larger values of the attractive LJ potential, a new set of phases intervene between the

globular phase (G) at A = 0, and the extended phase (E). These phases occur when ǫ & 1

(stronger short range attraction) and A < 1 (negligible CI condensation), and therefore arise

from a competition between short range attractive interactions, long range electrostatic re-

pulsion between monomers and polymer entropy, akin to the well-known Rayleigh instability.

The resulting conformation is a string of pearls with m-beads (Pm), with m increasing with

A [7, 13, 18, 19] (see Fig. 3 ). At large scales, the conformations in the Pm phase is domi-

nated by the electrostatic repulsion between the pearls, and the radius of gyration scales as

Rg(N) ∼ N , with a prefactor proportional to the bead size. The subsequent behaviour as

a function of A depends on the value of the attractive ǫ. In the range, 1 < ǫ < 3, the PE

changes from Pm (where m ≪ N is the maximal allowed by the finite size of the polymer)

to an extended (E) conformation, as A increases towards 1. This is because the attractive

interactions are not strong enough to compete with the increasing electrostatic (monomer-

monomer) repulsion as A increases. In this range of ǫ, the conformation then changes from

E → S → G, as described in Fig. 3. As we increase the attraction ǫ & 3, we lose the

extended phase entirely, and the PE goes from G → P2 → P3 → . . . S, and subsequently to

a reentrant G phase as we tune the electrostatic repulsion A as shown in Fig. 3.

The conformations at large A, namely, the S and the reentrant G phases, are a conse-

quence of the emergent dipole degrees of freedom. In the inset of Fig. 2 we plot the net dipole

moment and the fractional number of emergent dipoles (nd/N) of the PE as a function of A

for ǫ = 2. The dipole moment shows a maximum before the globular phase is reached – at

this stage, the number of dipoles is small. As we increase A, the number of dipoles increase,

but the net dipole moment starts to decrease, as the PE conformation gets more compact

in the G phase. The scaling of the radius of gyration in the two G-phases (at low and high

A) is the same — Rg(N) ∼ N1/3 (poor solvent !), as shown in Fig. 4.Thus, the reentrant

G-phase, while structurally similar to the initial G-phase at A = 0, is different only in its

electric dipole characterisitics.
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At larger values of the attractive potential ǫ & 4, the PE conformations go directly from

G → S → G or even from G → G at still higher values of ǫ & 5, where the latter G-phase

has a dipole moment. These direct transitions are consistent with the behaviour of the

fraction of condensed CI, which increases with ǫ, for a fixed A (Fig. 2). The enhancement of

CI condensation, which is a result of electrostatic correlations, results in a strong screening

of the monomer-monomer interactions.

Before we end this section, a word about finite size effects. In our simulations on finite

PEs, the scale for the maximum bead number in the Pm phase is set by system size, and in

the thermodynamic limit of N → ∞, there should be a finite fraction of beads. At this stage

we are unsure about how the phase boundaries discussed above would shift as we increase

N , or even whether the S phase exists in the thermodynamic limit.

IV. CONTINUOUS TRANSITION FROM S → G : ANOMALOUS FLUCTUA-

TIONS OF THE SAUSAGE

The phase diagram (Fig. 1) shows a transition from (reentrant) G → S, upon reducing

the electrostatic coupling A from a high value. This transition is a symmetry breaking tran-

sition; the appropriate order parameter characterizing the spontaneous breaking of spherical

symmetry is the asphericity parameter, 〈Y 〉 ≡ 2〈λ2
1〉/(〈λ

2
2〉 + 〈λ2

3〉) − 1 where {λ1, λ2, λ3},

are the eigenvalues of the gyration tensor of the PE, with λ1 as the largest. The asphericity

〈Y 〉 = 0 for a globule; Fig. 5 shows how this asphericity changes as a function of A. At

the G → S transition, this symmetry breaking order parameter changes continuously, sug-

gesting a 2nd-order phase transition. On the other hand the G → E transition at small

A seems abrupt, suggesting a first-order transition. We also plot the structural quantity

〈S〉 ≡ 〈R2〉/〈R2
g〉 − 2, where R is the squared end-to-end distance [20, 21], as a function of

A; this quantity is 〈S〉 = 4 for a gaussian chain and 〈S〉 = 10 for a rigid rod.

To understand the nature of the phase transitions better, we compute the free energy of

the PE with the CI, as a function of Rg, for different values of A. The smooth variation

of the free energy profile and its minimum with increasing A (Fig. 6), as one moves from

E → S → G, is consistent with the continuous transition described above. Indeed at around

A ∼ 5, when we are in the S-phase, the minima in the free energy profile is extremely shallow,

suggesting that the fluctuations of shape in this regime would be large, consistent with its
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proximity to a critical point.

We explicitly study the fluctuations in the configurations in the S-phase; snapshots of

the equilibrium configurations displayed in Fig. 7, show very strong shape fluctuations, with

significant sampling of both extended and collapsed conformations. These large fluctuations

of the PE shape in the S-phase are accompanied by strong fluctuations in the fraction of

condensed CI (Fig. 8). The dynamical interplay between the PE shape and condensed

CI , is shown in Fig. 8 – whenever there is a transient enhancement of the condensed

CI fraction, the PE chain gets more compact (owing to the effective dipolar attraction),

and whenever the condensed fraction is low, the chain gets stretched out (owing to strong

monomer-monomer repulsion) leading to a large negative value of the cross-correlator C(n) =

1
n

∑n
i=1(δNc(i)δRg(i))/(〈Rg〉N), where n is the number of Monte Carlo steps .

To quantify these fluctuations as a function of A we compute the second moment of

Rg, 〈δR
2
g〉 = 〈(Rg − 〈Rg〉)

2〉 , using the free energy F (Rg). This quantity shown in Fig. 9

exhibits a peak around A = 5 ( in the S regime), with its height increasing with system

size, indicating a critical point. The cross-correlator, 〈δRgδNc〉 shows a negative peak at

exactly where the peak in 〈δR2
g〉 appears reiterating the interplay between PE shape and

condensation of CI. Our preliminary study to determine the order of the phase transition

needs to be reinforced by a more detailed study of the scaling of fluctuations as a function

of chain length N ; we hope to return to this when we have better computational facilities

at our disposal. However, if we take our study as evidence of a continuous transition, then

this would imply that upon increasing ǫ, the critical line would necessarily terminate in a

critical end point.

V. CONCLUSION

Using extensive Monte Carlo simulations, we have explored the phase diagram of a grafted

PE with explicit CIs, as a function of the electrostatic coupling A and LJ interaction param-

eter ǫ. We have charaterized the phases in terms of the statistics of their conformations, and

electrostatic measures, such as fraction of condensed counterions. We have uncovered four

distinct phases : globular, string of pearls with m-beads, extended, sausage and reentrant

globule with nonzero dipole moment.

Our study, which treats the CI explicitly, highlights the strong correlation between col-
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lapse of the PE and the condensation of the CI. The dependence of CI condensation on ǫ (at

low values of A), the emergent formation of dipoles from condensation of CI onto the PE, the

anomalous fluctuations of the sausage, are all a consequence of these correlated ion effects.

The appearance of new degrees of freedom, viz., dipoles, when A > 1, makes it difficult to

construct an analytical theory valid for all values of A. One possible approach would be to

represent the CI by ‘two-species’, a monopole charge density and a dipole density, whose

relative fraction depends on A. We will explore these ideas in a future submission.
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FIG. 3: Snapshots of the equilibrium configurations of the grafted PE (red) with condensed CI (

green) , typical of the different phases. Top panel: For N = 100, ǫ = 2, the configurations from the

left are (i) G : Globular at A = 0.1, (ii) P2 : Pearls with 2 beads at A = 0.2, (iii) E: Extended

at A = 1, (iv)S : Sausage at A = 3.5, and (v) G : Globular at A = 4. Bottom panel: For

N = 120, ǫ = 3, the configurations from the left are (i) G : Globular at A = 0.1, (ii) P2 : Pearls

with 2 beads at A = 0.2, (iii) P4 : Pearls with 4 beads at A = 1, (iv)S : Sausage at A = 2.5 and

(v) G : Globular at A = 3.
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FIG. 7: Configuration snapshots of the Sausage (S) showing strong fluctuations at equilibrium, for

A = 5, ǫ = 1. The configurations change from being extended to collapsed.
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