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Enumerating all possible biosynthetic 
pathways in metabolic networks
Aarthi Ravikrishnan1,2,3, Meghana Nasre4 & Karthik Raman   1,2,3

Exhaustive identification of all possible alternate pathways that exist in metabolic networks 
can provide valuable insights into cellular metabolism. With the growing number of metabolic 
reconstructions, there is a need for an efficient method to enumerate pathways, which can also scale 
well to large metabolic networks, such as those corresponding to microbial communities. We developed 
MetQuest, an efficient graph-theoretic algorithm to enumerate all possible pathways of a particular 
size between a given set of source and target molecules. Our algorithm employs a guided breadth-first 
search to identify all feasible reactions based on the availability of the precursor molecules, followed by 
a novel dynamic-programming based enumeration, which assembles these reactions into pathways of 
a specified size producing the target from the source. We demonstrate several interesting applications 
of our algorithm, ranging from identifying amino acid biosynthesis pathways to identifying the most 
diverse pathways involved in degradation of complex molecules. We also illustrate the scalability of our 
algorithm, by studying large graphs such as those corresponding to microbial communities, and identify 
several metabolic interactions happening therein. MetQuest is available as a Python package, and the 
source codes can be found at https://github.com/RamanLab/metquest.

Genome-scale metabolic networks are very useful to understand the complex network of metabolic reactions 
happening inside cells1–3. Typically, a genome-scale metabolic network consists of thousands of reactions and 
metabolites, which capture vital metabolic pathways such as the biosynthesis of amino acids and lipids, ATP 
synthesis, as well as transport of molecules inside the cells. Over the recent years, the construction of such net-
works has increased tremendously, in part also due to the growing number of genomes sequenced4. There are sev-
eral well-established constraint-based methods to analyse metabolic networks5; however, these methods require 
well-curated genome-scale metabolic models for making reliable predictions. The number of such well-curated 
models are very few4,6,7, in comparison to the genome sequences available. Alternative approaches to analyse 
genome-scale models are based on network “topology”8–10 or Boolean rules11,12. In the former, the metabolic 
networks are abstracted as networks or graphs, and graph-theoretic algorithms are employed to predict or infer 
metabolic pathways. The latter set of methods are based on definitions of Boolean functions for identifying if 
particular reactions can proceed or not. Both methods generate qualitative predictions and do not entail the 
requirement of well-curated genome-scale models.

Several graph-based methods, using naïve network expansion8,13, atom–atom mapping, subgraph matching or 
stoichiometry9,14–16 have been developed previously. These methods, regardless of the approach, aim to determine 
the route(s) of conversion between sets of source and target molecules. The algorithms based on network expan-
sion traverse the graph depending on the availability of precursor compounds and determine different routes 
of conversions from the metabolic network. The input graph to these algorithms can be represented in different 
ways, such as a substrate graph17 or a hypergraph18, each of which captures information at different levels of com-
plexity. Substrate graphs are one of the simplest forms of representation, where all metabolites participating in a 
reaction are connected to each other. Traversing these graphs using breadth-first or depth-first search to identify 
different routes of conversion often leads to erroneous paths such as a 2-step glycolysis, converting glucose to 
pyruvate (via ADP), since these could proceed using the connections between “side” metabolites. To avoid such 
spurious results, several tools, such as FMM (From Metabolite to Metabolite19); and Metabolic Tinker20 use sub-
strate graphs after excluding the connections from (high degree) “currency metabolites”17 such as H+, Water and 
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NADPH. However, the substrate graph representation fails to capture the fact that more than one reactant may 
be required for a reaction to occur.

To overcome these problems, algorithms were developed to operate on more informative bi-partite and hyper-
graph representations of metabolic networks8,13,18,21,22. These representations consider the participation of mul-
tiple compounds in a reaction to produce product(s), which is crucial while depicting metabolic networks. One 
such hypergraph-based algorithm, Rahnuma18, performs a depth-first search to identify pathways that lead to the 
target metabolite from the source. In a few other studies8,13, the metabolic networks are represented as bipartite 
graphs to first determine the scope of the starting seed metabolites. The synthesis pathways were then assembled 
by backtracking from the target to the source, which becomes computationally challenging due to the presence of 
branched and cyclic pathways in metabolic networks.

The problem with determining branched-pathways has been addressed in a few studies, which seek to use 
atom tracing. In one such method23 BPAT-S (Branched Pathfinding using Atom Tracking and Seed pathways), 
seed pathways (linear) are first identified between the source and target compounds, based on the atom loss/gain. 
The branched pathways are then identified by finding the linear pathways between the metabolites contributing 
to this atom loss/gain. These pathways are then ranked based on the total number of reactions and the number of 
conserved atoms. ReTrace24, another algorithm to find branched pathways, tries to combine linear shortest paths 
based on the transfer of a high fraction of atoms from source to target, thereby finding only the k-shortest paths.

Another class of methods use either information from atom-mapping, thermodynamics or structural trans-
formation. For instance, the algorithm developed9 defines a set of atom-mapping rules based on the possible 
chemical conversions and seeks to identify paths where the atom loss is minimum. The predictions of this algo-
rithm are restricted to the first k-shortest paths. PathPred14, another tool to predict metabolic pathways, performs 
subgraph matching on the graph generated from the KEGG RPAIR database. Similarly, RouteSearch25, another 
algorithm based on branch-and-bound search, finds paths based on the mapped network generated from the 
atom mappings.

Another set of methods to study alternate pathways in metabolic networks are based on Elementary Flux 
Modes (EFMs), which are minimal sets of enzymes, operating in the correct direction, and are required for a given  
system to carry a steady-state flux26,27. EFMs have been widely used to study metabolic networks28–31; there are 
many tools that have been developed to study and evaluate EFMs, in different contexts31–33. However, the meth-
ods to enumerate EFMs, not only entail the requirement of well-curated genome-scale metabolic networks but 
also identify only the pathways at steady state. Such steady-state identification of pathways can limit the scope of 
analyses to in vitro experiments34.

Despite the availability of several types of methods to understand and analyse metabolic networks, a simple 
and efficient method with minimum input for performing large-scale analyses is still lacking. Also, the current 
methods to identify pathways between the source and target molecules are restricted to smaller networks and 
do not enumerate long pathways, thereby restricting the scope of analyses. Although a few of these algorithms 
handle cyclic and branched pathways, they require additional information such as atom transfer, which may 
not be readily available from the semi-curated metabolic networks. Further, we find that many of these tools are 
web-based, and do not lend easily to large-scale analyses; a large fraction of these tools are also currently inacces-
sible (Supplementary Table S1).

Thus, there is a need for a method to find pathways, which (a) requires only the topology of the reaction net-
work (rather than stoichiometry and atom mapping), (b) is simple and scalable to metabolic networks (especially 
those comprising more than one organism), (c) efficiently handles cyclic and branched pathways, and (d) exam-
ines multiple alternate routes of conversion. An important application of identifying and understanding such 
multiple alternate pathways is in metabolic engineering, where organisms are routinely engineered to produce a 
given molecule. To this end, we developed MetQuest, an efficient and scalable graph-theoretic algorithm, which 
exhaustively identifies all the pathways, or “sub-networks” between a given set of source and target metabolites 
using the input reaction network. In contrast to constraint-based approaches, our algorithm requires only the 
reaction network topologies which are readily available from draft reconstructions and does not necessitate the 
requirement of well-curated genome-scale models. Due to the nature of the implementation, we are able to suc-
cessfully identify branched and cyclic pathways. In comparison to other graph-based algorithms, we observe 
better results, in terms of the completeness of the output pathways. Since we perform exhaustive enumeration, 
we not only recover the well-known pathways such as glycolysis and amino acid biosynthesis but also identify 
several diverse pathways such as those involved in biodegradation of pollutants such as catechol. Further, because 
of the scalability of our algorithm to operate on large metabolic networks, we are also able to demonstrate several 
metabolic exchanges happening in known natural and synthetic microbial communities.

Methods
In this section, we present a detailed overview of our algorithm MetQuest, broadly divided into two phases. The 
first phase involves a guided breadth-first search (BFS) of the metabolic network, to identify all the metabolites 
that can be reached from a given set of “seed” metabolites. In the second phase, we design a dynamic program-
ming algorithm, which solves the non-trivial problem of assembling reactions into pathways to produce the 
metabolite of interest.

We begin by describing the input representation of the metabolic network. Any given metabolic network can 
be represented as a directed bipartite graph G M R E( , , ), where M is the set of metabolites in the metabolic net-
work, R is the set of reactions and E is the set of edges. Directed edges connect metabolites ∈m M( )i  to a reaction 
node ∈r R( )j  or a reaction node to product metabolites. The reversible reactions in the metabolic networks are 
denoted by two separate reaction identifiers, representing the forward and the reverse reactions, respectively. We 
construct the directed bipartite graph G of microbial communities (consisting of more than one metabolic 
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network) by connecting the graphs of individual organisms through a common extracellular medium, based on 
the overlapping set of exchange reactions, as described elsewhere35. The non-common exchange reactions are 
connected only to the extracellular environment. Such a bipartite representation disallows invalid conversions as 
may be interpreted from substrate graphs and helps in generating valid paths with biologically meaningful con-
versions36. The input to MetQuest is a directed bipartite graph G derived from a given metabolic network, a set S 
of seed metabolites, a set T of target metabolites and an integer β which bounds the size of any pathway generated 
by MetQuest. Note that the set S of seed metabolites includes the source metabolite(s) as well as molecules such 
as co-factors and co-enzymes that are commonly present in any cell. Supplementary Tables S2–S5 enumerate the 
seed metabolites we have used in our analyses. Below we define formally a pathway and the size of a pathway, 
which are crucial to our algorithm:

Definition 1 (Reachable metabolite m): A metabolite m is reachable from a set S if either m is in the set S or 
there is a reaction r in the reaction network whose output is m and every input of r is producible.

Definition 2 (Branched pathway producing m): An S-to-m pathway ′R  is a set of reactions such that m is the 
output of at least one reaction in ′R  and every input of every reaction in ′R  is producible from S. Throughout the 
paper, we will use the term pathway or sub-network interchangeably.

Definition 3 (Cyclic pathway producing m): A cyclic pathway ′R , from S to m is a set of reactions where m, 
which is the output of at least one reaction in ′R  is used in its own production by another reaction in ′R .

Definition 4 (Size of a pathway): The size of a pathway ′R  is the cardinality of the set ′R , i.e. the number of 
reactions in the set ′R .

The goal of MetQuest is to identify all pathways of size at most β that produce the target metabolites from the 
seed metabolites. We now describe the two phases of our algorithm.

Phase 1: Guided BFS.  BFS is a classic graph traversal technique that visits all the nodes of a given graph, 
starting at a source node, in a breadth-first fashion. BFS employs a queue of vertices, where newly discovered 
vertices are enqueued, to be processed at a later stage. A complete description of the BFS algorithm can be found 
elsewhere37,38. We modify the standard BFS by guiding it, based on the availability of precursor metabolites. 
Starting with the set of seed metabolites S, the algorithm first finds all the reactions from the set R, whose precur-
sor metabolites are in S. Such reactions are marked “visited” and added to the visited reaction set Rv. The metab-
olites produced by these reactions, mc, are then added to S. The traversal continues in a breadth-first manner, 
incrementally adding triggerable reactions to the BFS queue. The expansion stops when there are no further 
reactions that can be visited. During the expansion, a reaction node is labelled as stuck, if it does not (yet) have the 
necessary precursors in S. Such reactions are automatically triggered if the precursor metabolites are produced at 
any later stage. A formal description of this phase of the algorithm can be found in Supplementary Algorithm S1. 
The traversed graph consists of all reactions that can be visited.

At the end of the traversal, we obtain the scope ⊇M Ss  and the set of visited reaction nodes, Rv. The scope 
Ms comprises all metabolites that can be produced from the seed set S, in the given metabolic network. We also 
obtain the minimum number of steps to reach any metabolite m and reaction r, starting at the seed metabolite 
set S, denoted as m and r, respectively. We note that the value m for a metabolite m (analogously r  for a reac-
tion r) is the shortest path distance in terms of the number of edges from the seed set S to the metabolite m 
(reaction r  respectively). Thus, the number m does not necessarily indicate the exact number of reactions 
required to produce the metabolite m. Instead, we only leverage it for algorithm optimisation (see Supplementary 
Methods § 4.1).

This process of graph traversal resembles the ideas of network expansion8, and forward propagation39 reported 
earlier. The former method seeks to identify the synthesising capacity of the metabolic network using the input 
seed set of metabolites. The latter aims to identify the minimal precursor sets of seed metabolites that are required 
to produce a given set of target metabolites. This step in our algorithm also derives the information about the 
scope of metabolites from the given metabolic network; it, however, distinguishes itself by making a systematic 
note of the visited and stuck reaction nodes, which are exploited at a later stage for efficient and exhaustive enu-
meration of biosynthetic pathways.

Phase 2: Generation of pathways.  MetQuest uses a recursive dynamic programming formulation for 
computation of sub-networks. However, it avoids repeated recursive calls by memoising the precomputed values. 
The algorithm steps are listed below and the pseudo-code can be found in Algorithm 1 and Algorithm 2. Our 
algorithm maintains a table of size β| | ×Ms  and initialises all the entries to ⊥, indicating that we do not (yet) know 
about the pathways for every metabolite. Recall that Ms and β denote the scope of seed metabolites and the maxi-
mum number of reactions we allow in a pathway (the “size cut-off ”) respectively. We start filling the table entries 
by first considering the seed metabolite set S. For every seed metabolite ∈m S, the entry in corresponding cell 

= ∅Table m( , 0) , indicating that no reaction is required to produce it; for every metabolite ∈m M S\s , the entry 
Table m[ ][0] remains as ⊥ (Lines 1–5). The goal of MetQuest is to populate the entries of the Table. At the end of 
the algorithm, for any metabolite ∈m Ms and an integer k (where β≤ ≤k0 ), the entry Table m k[ ][ ] is a set of 
pathways or ⊥. If the entry is not ⊥, each pathway in the set Table m k[ ][ ] is of size k and produces the metabolite 
m starting from the seed metabolite set. Further, = ⊥Table m k[ ][ ]  implies that m cannot be produced starting 
from the seed metabolite set S using exactly k reactions.
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Algorithm Steps. 

	 1.	 In the first iteration, we find all the reactions ∈r Rv, whose inputs are only seed metabolites. For every 
output metabolite m produced by r, we fill Table m( , 1) with the reaction that produced m (Algorithm 1, 
Lines 6–8).

	 2.	 Our algorithm fills Table column-wise and the for loop (Algorithm 1, Line 9) iterates over the columns 
ranging from 2 to β. For any fixed column value k, the for loop (Algorithm 1, Line 10) considers every 
reaction r in the set Rv. We now propose that a pathway of size k, consisting of a reaction ∈r Rv, can be 
constructed by merging the pathways that generated the input metabolites of r.

	 3.	 Let …m m m, , , n1 2  denote the n inputs to reaction r. Since our goal is to construct a pathway of size k 
containing the reaction r, we note that the sum of the sizes of the pathways that generate inputs to r must 
be at most −k 1 (adding one for the reaction r to this merged pathway will make the size k). Thus, a 
straightforward strategy would be to consider all possible ways of achieving the sum −k 1 using exactly n 
non-negative integers. The permissible values for each of these n integers range from 0 to −k 1. For 
example if =n 2 and =k 3, then all possible ways to generate a sum of 2 are (0, 2), (1, 1), (2, 0). We call 
any single such possible way (for example (1, 1)) as a partition of the integer k.

Algorithm 1.  MetQuest

Algorithm 2.  populateTable(p)
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	 4.	 Now, assume that we have fixed a set of n non-negative integers …p p p( , , , )n1 2 , which sum up to −k 1. 
Note that for any i, the value pi denotes the size of the pathway for the ith input mi that will be used in this 
combination. A possible way to generate one pathway of size k is to pick a pathway from Table m p[ ][ ]i i  for 

≤ ≤i n1 , merge these pathways (that is take a union of the reactions in these pathways) and finally add 
the reaction r to this set. However, we show a simple example illustrating why such an approach is not 
guaranteed to generate a pathway of size k. Consider a two-input reaction r, where the inputs are m1 and 
m2. Say, the value of =k 3. The above listed approach will consider all possible partitions of the integer 2, 
which are (0, 2), (1, 1) and (2, 0). Let us assume that our metabolic network has a reaction ′r , which 
produces both m1 and m2 using only the seed metabolites. In such a case, Table m[ ][1]1  and Table m[ ][1]2  
both contain the pathway ′r{ }. Now note that merging these “two” pathways and adding the reaction r 
creates a pathway ′r r{ , } has size 2 instead of the intended size 3 (see Supplementary Methods § 4.3).

	 5.	 To address the above issue, our algorithm not only generates the sum −k 1 using all possible partitions, 
but also generates all sum values all the way up to × −n k( 1). This is achieved in the for loop of Line 13 
of our algorithm. Note that although the sum-value is larger than −k 1, the integers used in any partition 
can take values only up to −k 1. This is because when our algorithm is at a particular column k, all entries 
in the Table up to the columns −k 1 are fully generated. However, for a fixed value of k, our algorithm may 
update Table entries in the column values larger than k.

	 6.	 The for loop from Line 13–21 (Algorithm 1) generates a set of partitions  . As mentioned earlier, a 
partition ∈p  is an n-tuple and the ith entry pi in the tuple denotes the size of the pathway to be used for 
the ith input of the reaction r. We defer the details of the generation of the set   to Supplementary Methods 
§ 4.2 and 4.3.

	 7.	 For every ∈p  , we invoke the function populateTable (Algorithm 1, Lines 22–23) for the reaction r and 
the partition p. Let y be any output of the reaction r. The goal of populateTable is to populate the entries of 
the form Table y j[ ][ ] for values of j ranging from k to × − +n k( ( 1)) 1.

	 8.	 For a particular partition = …p p p p( , , , )n1 2  and a reaction r, we fetch the entries Table m p[ ][ ]i i  for 
= …i n1 . Note that Table m p[ ][ ]i i  itself is a set of pathways each of size pi. We now compute the set SRS  by 

taking a cross product of these table entries (Algorithm 2, Line 5).
	 9.	 Our algorithm iterates over every pathway or reaction sub-network RS SRS∈  (Algorithm 2, Line 6). 

Next, we add the reaction r to the set RS  (Algorithm 2, Line 7). We denote by j, the size of the new 
pathway thus produced. Finally, we add the newly generated pathway to the appropriate table entry 
Table y j[ ][ ] and complete the call to Algorithm populateTable.

We note that the output pathways for every metabolite are generated by considering the sub-networks of all the 
input metabolites of a reaction. Due to this, any pathway generated by our algorithm is complete, i.e. the reactants 
required by the reactions constituting the pathway are all producible. Further, since for any metabolite, we perform 
a union of sets of reactions, we avoid repeated generation of the same reaction sets. Due to this, we automatically 
report only the first occurrence of cyclic pathways. The demonstration of our algorithm on a toy-network and a 
cyclic pathway can be found in Supplementary Methods § 4.4 and § 4.5 respectively. Further implementation details 
and the formal proof of correctness for our algorithm can be found in Supplementary Methods § 4.6 and §4.7, 
respectively. MetQuest is available as a Python package at PyPI, and the source codes are available at https://github.
com/RamanLab/MetQuest. Supplementary Methods § 4.6 also illustrates various analyses that can be performed 
with MetQuest such as identifying the most commonly occurring exchange metabolites in a microbial community 
and finding the most different pathways by calculating the Jaccard index40 using the constituent reactions.

Results
In this section, we show that our algorithm can recover sub-networks of different types, including the well-known 
glycolysis and amino acid synthesis pathways. We also compare our output sub-networks with those generated 
by other algorithms and demonstrate that MetQuest produces better results since it generates complete path-
ways. Further, we showcase the ability of MetQuest to identify diverse pathways involved in biodegradation of an 
important industrial pollutant. Finally, we show that MetQuest scales well to large networks, and is, therefore, a 
powerful tool to predict and understand metabolic exchanges in microbial communities.

MetQuest exhaustively identifies multiple pathways in metabolic networks.  Genome-scale met-
abolic networks catalogue numerous metabolic pathways happening inside a cell. Identifying these pathways helps 
us to better understand the level of redundancy in the cells for producing key metabolites. To this end, we applied 
MetQuest on well-curated networks to identify and understand pathways between different reactants and products.

Central carbon metabolism.  We identify well-known biochemical pathways such as glycolysis using the 
genome-scale metabolic model of E. coli iJO136641. We constructed the corresponding directed bipartite graph, 
consisting of 12,974 edges and 5,659 nodes, and specified pyruvate as the target node. We included glucose from 
extracellular environment (“glc-D_e”), co-factors, co-enzymes and the energy currencies in the seed metabolite 
set S (Supplementary Table S2) and found all the sub-networks within a size cut-off β of 15.

We successfully recovered the well-known glycolysis pathway and, in addition, due to the exhaustive enumer-
ation, we could also identify 4,787 paths from the seed set of metabolites S to the target of varying sizes. Of all 
these paths, 1007 of them (of β ≤ 15) use glucose (“glc-D_e”) as the starting metabolite, while the rest of the paths 
comprise compounds formed by seed metabolites reacting amongst themselves.

https://github.com/RamanLab/MetQuest
https://github.com/RamanLab/MetQuest
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Figure 1.  Sub-network with a size cut-off β of 28 between D-glucose and L-phenylalanine in S. cerevisiae 
iMM904. Dark gray rectangles represent reactions, light gray circles represent metabolites. The nomenclature of 
reaction and metabolite names are consistent with iMM904 genome-scale metabolic model. The source and the 
target metabolite is glc-D_c and phe-L_c respectively (shown in boldface and italics). We note that the synthesis 
of L-phenylalanine involves several metabolites from different compartments. The reactions in this pathway and 
the seed metabolites can be found in Supplementary Results § 5.1 and Supplementary Table S3 respectively.

Figure 2.  Overlap of the two most different pathways that degrade catechols in Pseudomonas putida. The two 
ovals represent reactions present in the two most different sub-networks identified. The intersection of the 
reactions found in the two sub-networks (shaded dark grey) pertains to the uptake of catechol. All the reaction 
identifiers follow the nomenclature from46. These reactions can be found in Supplementary Results § 5.2.
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These observations raise an important question: “Why should so many pathways potentially exist inside the 
cell in addition to glycolysis, which is the most preferred pathway?” To answer this question and understand the 
differences between each of these pathways, we studied the similarity between the obtained sub-networks, using 
the Jaccard index. Of ( )1007

2
 ≈  ×5 105 combinations of sub-networks analysed, we find only 202 (0.03%) 

sub-networks are similar with Jaccard values between 0.93 and 0.98, while 1,08,388 (21.4%) sub-networks are 
much different with Jaccard values between 0.03 and 0.13 (Supplementary Figure S1).

The former set of sub-network pairs, with higher Jaccard values, can be understood in light of the presence 
of multiple transporters, which are either used to transport compounds from the environment or between dif-
ferent compartments of the cells. These transporters function under varied environmental conditions, where 
they employ different mechanisms to transport glucose inside the cell42. The latter set, with lower Jaccard val-
ues, point towards the existence of alternate pathways that produce identical precursor metabolites to synthe-
sise pyruvate. These predominantly include the methylglyoxal pathway, the Entner-Doudoroff pathway and the 
pentose-phosphate pathway. The existence of many alternate pathways points towards the extent of redundancy 
in metabolic networks, which helps the organism salvage gene losses43. Further, some of these alternate path-
ways were also shown to outperform the canonical pathways under different sets of physiological conditions44. 
Identification of such alternate pathways by MetQuest through an exhaustive enumeration not only showcases its 
ability to correctly identify pathways on well-studied networks, but also renders MetQuest a viable tool to identify 
pathways from metabolic networks about which very little is known.

Source Target Size Output sub-network Comments

L-Arginine (C00062) L-Citrulline (C00327) 2 R00551, R00665 Matches with ATLAS and FMM

Pyruvate (C00022) Itaconate (C00490) 4 R02491, R00209, R00237, 
R02405

Matches with FMM, FMM does not report R00209 
which produces C00024 – required by R02405†

Pyruvate (C00022) Itaconate (C00490) 5 R00351, R02243, R00209, 
R00217, R01325

Matches with FMM, FMM does not report R00351 
which produces C00036 – required by R00351†

L-Tyrosine (C00082) Naringenin (C00509) 5 R02446, R00737, R01616, 
R01613, R06641 Matches with FMM, FMM does not report R06641†

L-Phenylalanine (C00079) Resveratrol (C03582) 5 R01616, R00697, R02253, 
R06641, R01614

Matches with FMM, FMM does not report R06641 
which produces malonyl-CoA required by R01614†

Mevalonic acid (C00418) Amorpha-4,11-diene (C16028) 7
R01658, R03245, R02245, 
R01121, R01123, R07630, 
R02003

No paths found by FMM, ATLAS, however it is 
natively found in S. cerevisiae51.

D-Erythrose 4-phosphate (C00279) 3-Amino-5-hydroxy-benzoate (C12107) 7 — No paths reported by ATLAS, FMM and our algorithm

Table 1.  The sub-networks produced between different source and target molecules for a given size. These 
results were obtained on the graph constructed using reactions in the KEGG database. We denote reactions and 
compounds using their respective KEGG IDs. It is interesting to note that our algorithm is able to recover the 
well-known pathway reported in S. cerevisiae, while the other algorithms fail to do so. Also, there exists no 
pathways of size 7 between C00279 and C12107, which is being consistently reported by all the methods. More 
details about the sub-networks can be found in Supplementary Results § 5.3. Note that the source metabolites 
are included in the seed metabolite set. †Note that we did not find any pathways in ATLAS, when queried for 
pathways using no novel reactions. These novel reactions, integrate KEGG metabolites into novel enzymatic steps 
and are present only in the ATLAS database.

Pyruvate

Pathway size

E. coli core model58 L. lactis59 P. stipitis iBB80460
S. cerevisiae 
iMM90445

Branched Cyclic Branched Cyclic Branched Cyclic Branched Cyclic

≤10 4 5 1 — — — 1 —

≤15 4 7 3 4 17 3 54 5

≤20 4 7 4 9 39 8 418 10

≤25 4 7 4 9 56 13 1783 15

Oxaloacetate

Pathway size

E. coli core model58 L. lactis59 P. stipitis iBB80460 S. cerevisiae 
iMM90445

Branched Cyclic Branched Cyclic Branched Cyclic Branched Cyclic

≤10 1 3 — — — — — —

≤15 1 5 3 — 9 1 26 3

≤20 1 5 4 — 43 6 238 8

≤25 1 5 4 — 165 11 1475 13

Table 2.  Number of pathways found for each target within the given cut-off β from the seed metabolite set S 
(which also includes the seed metabolite D - Glucose). We observe many pathways of size 20 for pyruvate in all 
the models but there are no pathways of size 10 that produce oxaloacetate in most of the models.
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We also determined sub-networks between different metabolites in a compartmentalised model of S. cerevi-
siae iMM90445. As there are additional transport reactions between the compartments, we used a higher cut-off 
β = 30 and found the sub-networks between cytosolic D-Glucose (“glc-D_c”) and amino acids such as 
L-phenylalanine. We assumed a seed metabolite set with 29 metabolites (Supplementary Table S3), consisting of 
the co-factors and co-enzymes in different compartments, and searched for sub-networks to 638 metabolites (| |Ms  
was 681). Specifically, we identified 56 sub-networks from “glc-D_c” to target, whose size is less than 30. From the 
sub-networks, we find that many of these amino acids are derived from the intermediates of the central carbon 
metabolism. Also, the sub-networks producing aromatic amino acids involve metabolites produced in different 
compartments of the cell, thereby requiring longer steps for conversion(Fig. 1). Sub-networks of size β = 28 can 
be found in Supplementary Results § 5.1.

Identifying diverse paths for catechol biodegradation.  Phenols and catechols are among the primary pollutants in 
the effluent from several industries, such as the chemical, textile and steel. So far, many studies have used 
Pseudomonas putida for bioremediation of such pollutants47. We sought to identify the pathways that render 
P. putida unique and tailored for this application. To this end, we investigated pathways involved in the metabolism 
of such compounds, which are otherwise harmful to many other micro-organisms. Further, we explored if the 
breakdown of catechols could directly lead to energy producing pathways. Hence, we identified all the pathways that 
start from catechols and lead to the intermediates of the tricarboxylic acid (TCA) cycle. Since catechols require 
complex mechanisms to be degraded to smaller intermediates, we used a higher cut-off β of 25. Using this, we found 
1387 different paths of sizes up to 25 that degrade catechols to fumarate. Interestingly, our algorithm could identify 
the two most different mechanisms of ortho- and meta-cleavage used by P. putida to degrade catechols to the inter-
mediates of the TCA cycle (Fig. 2), as reported48. These sub-networks can be found in Supplementary Results § 5.2.

MetQuest excels in comparison with other algorithms.  To benchmark our algorithm, we compared 
our results with those obtained from some of the already existing path-finding methods such as FMM19, ReTrace24 
and the pathways generated in ATLAS database49. Specifically, we determined paths/pathways between different 
source and target molecules, for multiple size cut-offs β. We constructed the bipartite graph corresponding to all 
reactions in the KEGG database50. For all the test-cases, we used the previously listed restricted compounds20 as 
the seed set of metabolites.

We find that MetQuest performs better, in terms of the number and the completeness of the pathways gener-
ated, i.e. the output sub-networks are complete, in that they have all the reactions necessary to produce every 
reactant in that pathway. From the sub-networks (Table 1), we observe that the smaller pathways of size 2 com-
pletely match with those generated by the other algorithms. However, in many cases, we identify longer pathways, 
since these involve metabolites generated by branched pathways. It is interesting to note that our algorithm was 
able to correctly identify the already reported pathway between C00418 (Mevalonic acid) and C16028 (Amorpha-
4,11-diene)51, which was not identified by the other algorithms. All the sub-networks reported in Table 1 can be 
found in Supplementary Results § 5.3.

MetQuest scales well to large genome-scale and community metabolic networks.  We exam-
ined the performance of MetQuest by finding sub-networks of varying size cut-offs (β = 10, 15, 20, 25) between 
glucose and other key metabolites involved in the central carbon metabolism on four genome-scale metabolic 
networks of different sizes (Table 2). We used a uniform set of seed metabolites consisting of essential co-enzymes 
and co-factors for all the simulations (Supplementary Table S4) and determined the sub-networks of sizes 10, 15, 
20 and 25. During each simulation, we measured the time taken and the number of sub-networks generated for 
the target metabolites pertaining to the given size cut-off β. We carried out all the simulations on an Intel Core 
i7-2600 Desktop with 24GB RAM, running Ubuntu 16.04 LTS. Although the running time of the algorithm is 
exponential with the size of the model (Supplementary Figure S3), MetQuest does not fail to generate pathways, 
even at higher values of β.

Beyond individual networks, it is also interesting to identify sub-networks in communities of organisms and 
understand their metabolic interactions, which are known to play a critical role in determining the stability of 
microbial communities52. However, community metabolic networks are much larger in size, presenting many more 
challenges for path-finding. Analysing such large graphs of microbial communities demands a scalable and effi-
cient algorithm, which requires only minimum information such as network topology. Further, the algorithm 
should be capable of identifying longer pathways to capture many metabolic exchanges happening within a com-
munity. The existing algorithms, such as OptCom53 and cFBA54, are based on constraint-based techniques and 
require well-curated metabolic models. Also, they do not directly lend themselves to identify metabolic inter-
actions in draft network reconstructions. To this end, we use MetQuest on joint graphs (metabolic networks) of 
multiple organisms and identify sub-networks between different metabolites. Specifically, we construct the com-
munity bipartite graph of a microbial community by considering a common extracellular space through which 
metabolite exchanges can happen. Further, we analyse the sub-networks generated by MetQuest and show that it 
can correctly recover previously reported metabolic interactions.

MetQuest correctly predicts metabolic exchanges in a synthetic E. coli community.  To study the metabolic interac-
tions in Escherichia coli, computational analyses were performed on genetically modified E. coli strains55. 
Specifically, two different E. coli strains with knockouts of b2276 and b3708 genes were modelled together, and the 
metabolic interactions were predicted. We simulated these gene knockouts by removing the reactions catalysed 
by these genes from the genome-scale metabolic model2, after considering the Gene-Protein-Reaction 
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relationships. We then constructed the community bipartite graph and applied MetQuest to predict the metabolic 
exchanges between these two strains. We assumed seed metabolites, including glycolate (as given55) and applied 
MetQuest to find all sets of sub-networks to every metabolite within the scope of glycolate, pyruvate and both 
these sources independently, with a size cut-off β = 20. For this metabolic network with the number of nodes 
(metabolite | |M  and reactions | |R ) = 10113 and the number of edges | | =E 23492, MetQuest took 119.62 seconds to 
generate all possible sub-networks of size β = 20 from the given set of seed metabolites | | =S( 49).

From the sub-networks generated, we determined the metabolites that can be potentially exchanged between 
the strains. We were able to recover the reported acetate and formate exchanges happening between the two 
strains. In addition, we observe that acetate (from ∆b2276) participates in the production of several important 
target metabolites in ∆b3708 such as L-glutamine, inosine and several other co-enzymes of central carbon metab-
olism. We also found other metabolites such as alpha-ketoglutarate, ethanol, acetaldehyde exchanged between the 
organisms, which can be potential candidates for experimental verification (Supplementary Results § 5.4).

Predicting novel interactions in community metabolic networks.  To illustrate the performance of MetQuest on a 
larger network, we computed multiple sub-networks in an experimentally demonstrated three-member microbial 
consortium56, and determined the metabolic interactions. Towards this, we used the genome-scale metabolic 
models of Clostridium cellulolyticum (cc), Desulfovibrio vulgaris (dv), and Geobacter sulfurreducens (gs) from the 
Path2Models database57, which hosts metabolic networks generated through automatic pipelines. We constructed 
the three-member community bipartite graph by connecting the genome-scale metabolic models through their 
common exchange reactions. We defined the seed metabolite set S, consisting of essential salts, co-factors, 
co-enzymes and a set of tRNA molecules. We also added cellobiose to this set (as reported56) and chose to deter-
mine sub-networks with a size cut-off β = 20, to all metabolites within the scope Ms of seed metabolites. For this 
metabolic network with number of nodes (metabolite | |M  and reactions | |R ) = 14521, | | =E 29939, MetQuest took 
≈10 minutes to generate all possible sub-networks of size β = 20 from the given set of seed metabolites 
(| | =S 373). To determine the metabolic exchanges, we analysed every sub-network of 1,599 metabolites (Ms) 
with a special focus on sub-networks involving exchange metabolites. From this analysis, we found many 
sub-networks having at least one exchange reaction between the organisms. We observed that the proposed ace-
tate and ethanol exchanges56 predominantly led to the production of amino acids such as L-serine, L-leucine, 
L-aspartate and L-valine (in gs) and L-threonine and L-glycine (in dv) respectively, which contribute to the bio-
mass, thereby enabling a stable microbial consortium.

Discussion
With the increasing number of draft genome-scale metabolic reconstructions, there is a pressing need for efficient 
algorithms to analyse these metabolic networks and generate useful predictions. It is particularly important that 
these algorithms perform efficiently with minimum information such as the reaction topology, and also identify 
pathways in large (multi-)genome-scale metabolic networks.

To this end, we propose MetQuest, a scalable and efficient graph-based algorithm for identifying all possible 
metabolic pathways in genome-scale metabolic models. Specifically, we focus on exhaustively determining all 
alternate pathways (of a particular size) between a set of seed and target metabolites. We also demonstrate the 
application of our algorithm by identifying multiple pathways involved in several important parts of metabo-
lisms such as the central carbon metabolism and the amino acid metabolism. Further, we show its usefulness in 
determining several diverse pathways, which take part in catechol degradation. Besides its applications on the 
metabolic networks of individual organisms, MetQuest, due to its scalability, can be applied to study larger and 
more complex networks.

A number of graph-based methods to find pathways in metabolic networks have been developed so far. These 
methods convert the metabolic networks either into substrate graphs, bipartite graphs or hypergraphs. However, 
these methods are well-suited only for smaller networks and lower cut-offs. For instance, MetaPath13 tries to 
backtrace the pathway from the target to the source based on the information obtained from the scope calcula-
tion. Since the metabolic networks contain many branched pathways, identifying the routes of conversion by back 
tracing becomes computationally expensive, and can break down rapidly at higher cut-offs. Another method, 
Rahnuma18, tries to solve the problem of path prediction on genome-scale metabolic networks by abstracting 
these networks into hypergraphs. Rahnuma, based on depth-first search on hypergraphs, seeks to obtain path-
ways between two metabolites. However, the performance of Rahnuma on metabolic networks was demonstrated 
only for shorter path-lengths of 6, and it may not be applicable for identifying longer pathways, such as those 
involved in the biosynthesis of aromatic amino acids from simple sugars. Moreover, the pathways are computed 
based on a condition that the metabolite can be used only once in any pathway, which inherently fails to capture 
cyclic pathways. MetQuest, on the other hand, can identify branched and cyclic pathways, and can perform well 
on larger metabolic networks for much longer cut-offs, thereby extending its application to analysing microbial 
communities. Further, MetQuest does not entail the necessity of well-curated metabolic networks, as demanded 
by enumeration methods based on elementary modes. This renders MetQuest a useful tool to identify pathways 
and perform large-scale analyses using draft reconstructions. The identified pathways can be further analysed 
through elementary mode based techniques.

We have also demonstrated the major strengths of MetQuest: in multiple examples we considered, of individual 
metabolic networks and real-world microbial communities, MetQuest was able to identify multiple pathways and 
correctly predict the metabolic exchanges/interactions taking place. MetQuest was able to correctly predict the 
acetate exchange happening between the two genetically modified E. coli strains. Further, MetQuest also predicted 
novel interactions involving amino acids such as L-cysteine in the previously reported microbial community56.
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However, as with any modelling technique, MetQuest also has its limitations. Firstly, the predictions from 
MetQuest rely heavily on the quality of the underlying metabolic network. Specifically, a few of the metabolic 
interactions predicted by MetQuest could be due to model artefacts. There may be other metabolic interactions 
happening between microbes, which could be absent in the metabolic network (gaps in the metabolic network). 
Due to this reason, such interactions may not be predicted by MetQuest. Further, our algorithm does not assign 
any weights to metabolites/paths. Although there are other methods like cFBA and OptCom, which make more 
quantitative predictions, they also demand better curated metabolic networks. Moreover, as with any graph-based 
technique, MetQuest also generates a large number of pathways between a given set of seed and target metabo-
lites. All these pathways may not be active at a given time or in a given environment. We primarily see the use of 
MetQuest as a first-line investigatory tool, to cull down from a very large set of possible communities to a more 
tractable set, which may be studied further using EFM analyses, constraint-based techniques or through wet lab 
experiments.

In sum, we report a novel and efficient algorithm MetQuest, which (i) rapidly enumerates all possible biosyn-
thetic pathways from a given metabolic network, (ii) efficiently handles branched and cyclic pathways, and most 
importantly, (iii) scales well to very large networks such as those representing microbial communities. Further, 
our algorithm requires only the genome-scale metabolic networks, a set of seed and target metabolites and a size 
cut-off, as against thermodynamic or atom-mapping information, thereby rendering it a very potent tool to per-
form large-scale analyses. Overall, we believe that MetQuest is a very useful tool for exploring and understanding 
metabolic pathways in large-scale networks, to generate testable hypotheses for further experiments.
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