
Physics Letters B 748 (2015) 67–69
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Entropy density of spacetime from the zero point length
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It is possible to obtain gravitational field equations in a large class of theories from a thermodynamic 
variational principle which uses the gravitational heat density Sg associated with null surfaces. This 
heat density is related to the structure of spacetime at Planck scale, L2

P = (Gh̄/c3), which assigns A⊥/L2
P

degrees of freedom to any area A⊥ . On the other hand, it is also known that the surface term K
√

h in the 
gravitational action correctly reproduces the heat density of the null surfaces. We provide a link between 
these ideas by obtaining Sg , used in emergent gravity paradigm, from the surface term in the Einstein–
Hilbert action. This is done using the notion of a nonlocal qmetric – introduced recently [arXiv:1307.5618, 
arXiv:1405.4967] – which allows us to study the effects of zero-point-length of spacetime at the transition 
scale between quantum and classical gravity. Computing K

√
h for the qmetric in the appropriate limit 

directly reproduces the entropy density Sg used in the emergent gravity paradigm.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Thermodynamic potentials like entropy density (s), the heat 
density (T s), the free energy density (ρ − T s), etc. provide a link 
between the microscopic dynamics of molecules and macroscopic 
dynamics described in terms of standard thermodynamic variables 
like pressure, temperature, etc. Recent work has shown that the 
field equations of gravity, describing the evolution of spacetime, 
are akin to the equations describing, say, gas dynamics [1,2]. These 
field equations, for a large class of theories of gravity, can be ob-
tained [3,4] by extremizing the total heat density S = Sg + Sm
where Sm and Sg[n] are the matter and gravitational heat densi-
ties respectively. The latter depends on a vector field ni of constant 
norm and is given by [2]

Sg[n] ∝
[
(∇in

i)2 − ∇in
j∇ jn

i
]

= Rabnanb + (tot. div.) (1)

in the case of Einstein’s gravity. Extremizing Sg with respect to 
all vector fields ni simultaneously, leads to a constraint on the 
background metric which turns out to be identical to the field 
equations. If the ideas of emergent gravity paradigm are correct, 
we should be able to obtain this expression from a more micro-
scopic approach. In this Letter, we will show how this can be done.

Amongst various key facts that can guide us in this task 
are, in particular, the possibility to describe time evolution of 
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3-geometry in terms of surface degrees of freedom Nsur = A⊥/L2
P

associated with a 2-surface with area A⊥ [2], and the fact that 
the surface term AE

sur in Euclidean gravitational action (given by 
(8π)−1

∫
K

√
h ) is closely related to the entropy density. Such facts 

suggest that one should be able to obtain the entropy density in 
Eq. (1), from K

√
h, in a suitable limit. The operational difficulty 

in this program, of course, is that L P is not an in-built feature 
of the classical description of geometry. What we need is a suit-
able prescription to incorporate quantum gravitational effects (in 
particular, existence of a zero point area L2

P ), at scales reasonably 
bigger than L2

P but not totally classical; that is, we need an “effec-
tive” metric qab which acknowledges the existence of a zero point 
length L P . We can then compute K

√
h for this effective metric. If 

our ideas are correct, the entropy density this gives should match, 
in the appropriate limit, the one in Eq. (1). Such an effective met-
ric qab with the necessary properties has recently been derived in 
Refs. [5,6]. The crucial point is to start with the geodesic interval 
σ 2(P , p) between any two events P and p [7], instead of the met-
ric tensor gab , as the key variable. The advantage in doing so is 
that, while we have no universal rule to understand how quantum 
gravity modifies the metric, there is considerable amount of evi-
dence (see e.g., [8]) which suggests that σ 2(P , p) is modified by

σ 2 → σ 2 + L2
0; L2

0 = μ2L2
P (2)

where μ is a factor of order unity [9]. That is, one can capture the 
lowest-order quantum gravitational effects by introducing a zero 
point length in spacetime along the lines suggested by Eq. (2). 
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With this as input, one can construct a second rank symmetric 
bitensor qab(p, P ) which will lead to σ 2 + L2

0 as the geodesic inter-
val; the result turns out to be [5,6]:

qab(p, P ; L2
0) = Agab −

(
A − 1

A

)
nanb (3)

where gab = gab(p) is the classical metric tensor, σ 2 = σ 2(p, P ) is 
the corresponding classical geodesic interval and

A [σ ; L0] = 1 + L2
0

σ 2
; na = ∇aσ

2

2
√

σ 2
(4)

Working with the qmetric we can capture some of the effects of 
quantum gravity — especially those arising from the existence of 
the zero point area — without leaving the comforts of the standard 
differential geometry.

There are several non-trivial effects arising from the nonlo-
cal description of geometry in terms of the qmetric, discussed 
at length in [6], with the key point being the following: Sup-
pose φ(P |g) is some scalar computed from the metric gab and 
its derivatives (for example, R , Rab Rab , etc.). When we carry out 
the corresponding algebra using qab(p, P ) (with all differentiations 
carried out at the event p) we will end up getting a nonlocal (bis-
calar) φ(p, P ; L2

0|q) which depends on two events (p, P ) and L2
0. 

To obtain a local result, we now take the limit of σ → 0 (that is, 
p → P ) keeping L2

0 finite. The resulting φ(P , P ; L2
0|q) will show 

quantum gravitational residual effects due to nonzero L2
0, essen-

tially arising from the non-commutativity of the limits:

lim
L2

0→0
lim

σ 2→0
φ(p, P ; L2

0|q) �= lim
σ 2→0

lim
L2

0→0
φ(p, P ; L2

0|q) (5)

Note that, when we take the limit of σ → 0 keeping L2
0 finite, the 

qmetric actually diverges. So we have no assurance that we will 
even get anything sensible when we take the limit; surprisingly, 
we do. This is what yields non-trivial effects. (We refer the reader 
to [6] for more details.)

After this preamble, we return to our main focus, the surface 
term K

√
h in the gravitational action. Given a fixed spacetime 

event P , the most natural surface � on which to evaluate this 
term is the one formed by events p at a constant geodesic interval √|σ 2(p, P )| = λ from P . The intrinsic as well as extrinsic geom-
etry of such a surface is completely determined by the geodesic 
structure of the background manifold, and hence is completely 
characterized by invariants built out of spacetime curvature. The 
mathematical expressions we shall need here can be found in [6], 
and additional geometrical aspects of equi-geodesic surfaces are 
discussed in [10].

We will use the qmetric and compute K
√

h and demonstrate 
that it does lead to the entropy density Sg in Eq. (1). This is a 
relatively straightforward (though somewhat lengthy) computation 
and we shall describe the key steps. For clarity, we will work in 
a D = 4 Euclidean space (the final result is same for Lorentzian 
signature), and use units with L P = 1 so that L0 = μ. In the local 
Rindler frame around P , the origin of tE −x plane will be the horizon and 
hence the limit of p → P corresponds to computing a quantity on the 
horizon. We want to compute K

√
h(p, P , μ2) for the qmetric and 

take the limit p → P (i.e., λ → 0) to obtain the quantum corrected 
entropy density.

The [K
√

h]q for the qmetric can be easily related to the cor-
responding quantity evaluated for the metric gab by the relation 
(where ∇n ≡ ni∇i )

[
K

√
h

]
q
= A2

{[
K

√
h

]
g
+ 3

2

√
h∇n ln A

}
(6)
Series expansion of the extrinsic curvature tensor in λ yields (see 
[6,10])

K = 3

λ
− 1

3
λ S(P ) +O(λ2) (7)

√
h = λ3

[
1 − 1

6
E(P )λ2 +O(λ3)

]
(8)

where S(P ) = Rabnanb|P , and the second series is obtained from 
the definition K = ∂(ln

√
h)/∂λ. In the units we are using 

√
h

incorporates the length dimensions and K
√

h has dimensions 
[length]2. We also have ∇n A = −2μ2/λ3. Substituting Eq. (7) and 
Eq. (8) in Eq. (6), we get the result[

K
√

h
]

q
= 3Aλ2 − 5

6
(Aλ4) Rabnanb

[
1 + 2

5

μ2

λ2

]
+O(λ) (9)

Using A = 1 + (μ2/λ2) and taking the coincidence limit λ → 0, we 
get the final result

lim
λ→0

[
K

√
h
]

q
= 3μ2 − μ4

3
Rabnanb

= S0 − μ4

3
Sg (10)

with all quantities on RHS now evaluated at P . The term S0 =
3μ2 can be thought of as the zero point entropy density of the 
spacetime which is a new feature. Its numerical value depends on 
the ratio μ = L0/L P which we expect to be of order unity and we 
will comment on it towards the end. The second term is exactly 
the heat density used in emergent gravity paradigm.

This result is significant in several ways which we shall now 
describe.

The most important feature of our result is that it reproduces 
correctly (except for an unimportant multiplicative constant) the 
entropy density Sg ∝ Rabnanb used in emergent gravity paradigm. 
This tells us that the entire program has a remarkable level of internal 
consistency. There is no way one could have guessed this result a 
priori and, in fact, there is no assurance that the result should even 
be finite in the coincidence limit of σ 2 → 0. The qmetric itself 
diverges when σ 2 → 0 and its derivatives diverge faster. It is a 
nice and a non-trivial feature that all the lethal divergences cancel 
in the final result.

Second, it is rather satisfying to obtain this result from K
√

h
part of the action rather than from the R

√−g part of the action. 
Several previous works [11] have shown that there is an intimate 
relationship between the surface and bulk parts of the gravitational 
action and hence we would have expected the correct entropy 
density Sg to emerge from either of them if it emerges from one 
of them. This expectation is correct and indeed we have shown 
earlier [6] that a similar analysis with the bulk part of the action 
does lead to the correct entropy density. The crucial difference is 
that the computation in Ref. [6] leads to an additional divergent 
term which, however, can be regularized to give the correct final 
result. The computation here, starting from the surface term, how-
ever does not lead to any divergences. This is a mathematically 
non-trivial fact which arises from a delicate cancellation of diver-
gences between the two terms on the right-hand side of Eq. (6). 
More specifically, the numerical factor and the structure of second 
of these terms depend on the (disformal) form of the qmetric, and 
an arbitrary, ad hoc deformation of geometry will not lead to sim-
ilar cancellation of divergences (see, however, [9]).

Further, as we argued earlier, K
√

h does have the natural inter-
pretation of (being proportional to) the heat density on the hori-
zon. Note that when we work in the Euclideanized local Rindler 
frame around an event P , the Rindler horizon gets mapped to the 
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origin of the (x, tE) plane. The coincidence limit of p → P is pre-
cisely the same as taking the horizon limit in the local Rindler 
frame. In this limit, K

√
h/8π gives the entropy density. So if we 

had taken the limit L0 → 0 first, we would have recovered this 
standard result.

Finally, the most intriguing feature of our result is the discovery 
of “zero point entropy density” represented by the first term S0 =
3μ2. Since this is an entropy density, it tells us that the total zero 
point entropy in a sphere of Planck radius is given by

S0 = 4π

3
× 3μ2 = 4πμ2 (11)

Recently, it has been shown that the cosmological constant prob-
lem can be solved within the emergent gravity paradigm if one 
could attribute a value 4π to the measure of degrees of freedom 
in the universe at Planck epoch, if the inflation took place at GUTs 
scale. This measure remains as a conserved quantity during the 
subsequent evolution and allows one to determine the numerical 
value of the cosmological constant (see, for details, Ref. [12]). On 
the other hand, if the inflation took place at Planck scale, we need 
μ2 ≈ 1.2 (see [13]) which is quite consistent with Eq. (11).

Unfortunately, the value of μ cannot be determined from the 
analysis of pure gravity sector for two reasons. First of all, there 
can be a numerical factor multiplying K

√
h to give the entropy 

density. In the standard approach, this term is (1/8π L2
P )K

√
h but 

it is not clear whether we should use the same expression in a 
microscopic theory. Second, the overall coupling between gravity 
and matter is undetermined until we have introduced the matter 
sector which we have not yet done. If we assume that the total 
heat density, maximized to get the field equations is the sum of 
gravitational and matter heat densities (with the latter being Sm =
Tabnanb; see e.g. [2,3]), then one can determine the value of μ. 
(Incidentally, the negative sign of the second term in Eq. (10) is 
important for the consistency of this result; the fact that it comes 
out right is another consistency check for this approach.) But it is 
possible for a microscopic approach to modify the matter sector 
term to Sm = λTabnanb where λ is a numerical factor. So, alto-
gether there is a possibility of yet another undetermined numerical 
factor in the theory. To see its effect, let us take the gravitational 
entropy term as just K

√
h and write the matter sector term as 

Sm = λTabnanb where λ is a numerical factor. Then simple algebra 
shows that, to reproduce Einstein’s equations Gab = 8π Tab with 
correct coefficient, we need (μ4/24πλ) = (1/8π) or μ2 = √

3λ. 
While this is in the right range to solve the cosmological con-
stant problem, the numerical factor cannot be fixed until we have 
obtained the heat density of the matter sector from a similar de-
scription. But it is clear that the result in Eq. (11), which brings 
in a zero-point-entropy density, could provide a more detailed and 
microscopic justification for this idea. This issue is under investi-
gation.
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