
Ensuring Privacy in Location-Based
Services: An Approach Based on Opacity

Enforcement ?

Yi-Chin Wu ∗ Karthik Abinav Sankararaman ∗∗

Stéphane Lafortune ∗

∗ Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor (e-mail: {ycwu;stephane}@umich.edu).

∗∗ Computer Science and Engineering, Indian Institute of Technology, Madras
(e-mail: kabinav@cse.iitm.ac.in).

Abstract: With the proliferation of mobile devices, Location-Based Services (LBS) that provide
networked services based on users’ locations have become increasingly popular. Such services,
providing personalized and timely information, have raised privacy concerns such as unwanted
revelation of users’ current locations to potential stalkers. Many prior studies have proposed to
address LBS privacy by sending “cloaking queries” that contain coarser location information.
However, this method has been shown to be insufficient and no formal methodology exists
for enforcing LBS privacy in mobile environments. In this work, we show that this problem
can be formally addressed using the notion of opacity in discrete event systems. We use non-
deterministic finite-state automata to capture the mobility patterns of users and label the
transitions by the location information in the queries. Using opacity verification techniques,
we show that the technique of sending cloaking queries to the server can still reveal the exact
location of the user. To enforce location privacy, we apply the opacity enforcement technique by
event insertion proposed in our prior work. Specifically, we synthesize suitable insertion functions
that insert fake queries into the cloaking query sequences. The generated fake queries are always
consistent with the mobility model of the user and provably ensure privacy of the user’s current
location. Finally, to minimize the overhead from fake queries, we design an optimal insertion
function that introduces minimum average number of fake queries.

Keywords: Discrete-event systems, Opacity, Location privacy

1. INTRODUCTION

The development of network and mobile devices has stim-
ulated the rapid growth of networked services based on
users’ locations. Such services, called Location-Based Ser-
vices (LBS), provide personalized and timely information
to users by exploiting their real-time location information.
Examples of LBS applications include searching for nearby
restaurants, recommending in-store coupons for nearby
shops, and providing turn-by-turn navigation instructions.

While LBS provide much convenience to users, they have
also raised security and privacy concerns. For example, an
application called “Creepy” can serve as a cyberstalker
that tracks a targeted individual’s most recent location by
monitoring his/her Twitter or Flickr activities. 1 Even if
the attacker sees only depersonalized queries, it may still
infer the senders by associating locations with individuals
who exclusively correspond to the locations. Beresford and
Stajano (2003) were able to correctly associate real-world
identities with depersonalized pseudonyms by examining
where each individual in the office building spends most

? This work was partially supported by the NSF Expeditions in
Computing project ExCAPE: Expeditions in Computer Augmented
Program Engineering (grant CCF-1138860).
1 http://creepy.en.softonic.com/

of its time and which pseudonym visits a given place
more often than others. The recent survey (Krumm, 2009)
also discusses other existing computational threats and
countermeasures.

In the attack model commonly used by the LBS privacy
research community, the LBS servers are regarded as ma-
licious observers. They use queries received from the users
to infer sensitive information about the query senders. The
LBS servers may have such malicious intent for commercial
purposes, or because they have been compromised. Two
privacy notions for LBS have been defined, depending on
what type of information is of concern: location privacy
and query privacy. Location privacy is the concealment
of the user’s real location. See, e.g., Kido et al. (2005);
Duckham and Kulik (2005); Chow and Mokbel (2007);
Shokri et al. (2010). Query privacy, on the other hand, is
to seclude the user’s private attributes such as his/her real
identity. See, e.g., Gruteser and Grunwald (2003); Bettini
et al. (2005); Mokbel et al. (2006); Chow and Mokbel
(2007); Xu and Cai (2008); Pingley et al. (2011).

To protect both query and location privacy, the pioneering
work of Gruteser and Grunwald (2003) proposed to use
location anonymizers. As shown in Figure 1, a location
anonymizer receives a query from the user and generalizes
the accurate location in the original query to a cloaking

region where k − 1 other potential or active users reside.
The use of location anonymizers has become the most
popular technique for protecting privacy in LBS. Most
anonymizers in the following work, such as (Duckham and
Kulik, 2005; Mokbel et al., 2006), are designed for pro-
tecting one-time queries. They are, however, insufficient
when users continuously make queries. The attackers, by
tracking the user’s continuous moving trajectory, can fig-
ure out the real user or real location in the given cloaking
query if other candidates have inconsistent trajectories
(Bettini et al., 2005). Some works such as (Xu and Cai,
2008; Pingley et al., 2011) have addressed privacy in such
dynamic settings. Finally, we refer to Shin et al. (2012)
for a comprehensive overview of the existing schemes for
protecting LBS users privacy.

AutomataLogical

Temporal

Stochastic

Timed Automata

Hybrid Automata

Stochastic Hybrid
Automata

Stochastic Automata
(Markov Chain)

G

S

Sensors

EoEc

Actuators

G DiagSensors Eo Yes/No/Uncertain

0

1

3

4

5

a
2

a

g

b

a

g

b

g

Deadlock

Livelock

P2

G

S

P1

Ec

I

OR

Ec,ur

Sensor2

Plant

Supervisory
Controller

Sensor1
Actuator1 Actuator2

Intrusion

P2

G

S

P1

Ec

I

OR

Ec,ur

ID

A2A1

GDSD GA
Eatt

LBS Server

Internet

User

Positioning
Systems

LBS Server

Internetanswer to
<loc>

<loc>

answers to
all queries

Location Insertion User

<loci><loc>
 fake query real query

Internet

<loc> real query

answer to
<loc>

<loci> fake query

<loc>

answers to
all queries

Location Insertion
Function

User

LBS Server

answer to
<loc>

<loc>

Location ObfuscatorUser

Internet

answers to
 and <L>

 <L>
 fake query real query

answer to
<loc>

<loc>
<L> = <loc1, …, lock>

cloaking query

answer to <L>

Location
 Anonymizer

Location Insertion
Function

User LBS Server

<L> = <loc1, …, lock>
cloaking query

answer to
<loc>

<loc>

answer to <L>

Location AnonymizerUser LBS Server

Fig. 1. The traditional anonymizer framework

In this paper, we focus on location privacy in LBS when
users make continuous queries. Without loss of generality,
we assume that the attacker is the LBS server. We also
assume that it has statistical mobility patterns of users
but is not aware of the users’ real-time locations. It aims
to infer a given user’s real location by utilizing the loca-
tion information received in the queries. Motivated by the
nature of event-driven dynamics in LBS, we propose to an-
alyze and enforce location privacy using a formal approach
based on opacity techniques from Discrete-Event Systems
(DES). Unlike many prior works, the approach we propose
is model-based; specifically, we construct an automaton
model that captures the moving patterns of users. To char-
acterize location privacy, we adapt the notion of current-
state opacity previously studied in the DES literature
and introduce a related new notion called current-state
anonymity that captures the observer’s inability to know
for sure the current state of the automaton. Because states
of the automaton are locations in the moving patterns,
location privacy is protected if and only if the constructed
automaton has current-state anonymity.

A set of users’ moving patterns on the Central Campus
of the University of Michigan serves as a running example
to demonstrate our methodology for privacy enforcement.
First, a nondeterministic automaton is built from the mov-
ing patterns. We consider the anonymizer framework and
label the transitions by the cloaking location information
received by the LBS server. We then use the current-state
estimator technique to verify current-state anonymity and
show that the anonymizer is insufficient for protecting
location privacy. To enforce location privacy, we propose
to add to the anonymizer an insertion function that in-
serts fictitious queries to the cloaking queries from the
anonymizer. As shown in Figure 2, the insertion function
is placed at the interface between the anonymizer and
the LBS server. It receives cloaking queries and inserts
fictitious queries if the cloaking query sequence is going
to reveal the user’s real location. The design of a suit-

able insertion function follows the procedure for designing
provably-correct insertion functions that we have recently
developed (Wu and Lafortune, 2014). With such an in-
sertion function, fictitious queries are inserted so that
the resulting query sequence is always consistent with an
existing moving pattern that does not reveal the user’s
real location. Finally, to minimize the overhead energy
consumption or time delay caused by inserted queries,
we follow the optimization procedure recently proposed
in (Wu and Lafortune, 2013b) to design an optimal in-
sertion function. Overall, the insertion mechanism of (Wu
and Lafortune, 2014) fits well in the framework of LBS
applications as insertion functions insert fictitious queries
and drop their replies without affecting the quality of the
LBS servers’ replies to real queries.

AutomataLogical

Temporal

Stochastic

Timed Automata

Hybrid Automata

Stochastic Hybrid
Automata

Stochastic Automata
(Markov Chain)

G

S

Sensors

EoEc

Actuators

G DiagSensors Eo Yes/No/Uncertain

0

1

3

4

5

a
2

a

g

b

a

g

b

g

Deadlock

Livelock

P2

G

S

P1

Ec

I

OR

Ec,ur

Sensor2

Plant

Supervisory
Controller

Sensor1
Actuator1 Actuator2

Intrusion

P2

G

S

P1

Ec

I

OR

Ec,ur

ID

A2A1

GDSD GA
Eatt

LBS Server

Internet

User

Positioning
Systems

LBS Server

Internetanswer to
<loc>

<loc>

answers to
all queries

Location Insertion User

<loci><loc>
 fake query real query

Internet

<loc> real query

answer to
<loc>

<loci> fake query

<loc>

answers to
all queries

Location Insertion
Function

User

LBS Server

answer to
<loc>

<loc>

Location ObfuscatorUser

Internet

answers to
 and <L>

 <L>
 fake query real query

answer to
<loc>

<loc>
<L> = <loc1, …, lock>

cloaking query

answer to <L>

Location
 Anonymizer

Location Insertion
Function

User LBS Server

<L> = <loc1, …, lock>
cloaking query

answer to
<loc>

<loc>

answer to <L>

Location AnonymizerUser LBS Server

Fig. 2. The proposed location insertion mechanism

Using fake queries for location obfuscation has been pro-
posed in the LBS privacy literature; see e.g., (Kido et al.,
2005; Pingley et al., 2011). The work in (Kido et al.,
2005) generates random fake queries without considering
the user’s mobility patterns, and this raises the question
of how convincing fake queries are. On the other hand,
the algorithm in (Pingley et al., 2011) relies on mobility
patterns. However, it differs from this paper in that it
considers query privacy instead of location privacy.

The contribution of this paper is two-fold. First, we
introduce a formal methodology to LBS privacy studies.
The method leverages theoretical results from the study of
opacity in DES to analyze and provably enforce location
privacy. Second, this paper provides a concrete application
of opacity techniques to a real-world problem.

The remaining sections of this paper are organized as
follows. Section 2 introduces the common LBS architecture
and the privacy concerns. Section 3 reviews the basics of
the opacity problem in DES. In Section 4, we construct
an automaton model from a set of mobility patterns
on the Central Campus of the University of Michigan;
this example is then used as a running example in the
remaining two sections. We show in Section 5 how to verify
location privacy using techniques for opacity verification.
Then, in Section 6, we present the construction of an
optimal insertion function for enforcement of location
privacy. Finally, Section 7 concludes the paper.

2. LOCATION-BASED SERVICES

A common LBS architecture, as illustrated in Figure
3, consists of four major components: mobile devices,
positioning systems, communication networks, and the
LBS server. The user makes queries from his/her mobile
devices. The location information in the queries is obtained
via positioning systems such as the Global Positioning
System (GPS). To protect privacy, the user identification
in the queries is replaced with an untraceable pseudonym.

The queries and their responses are transmitted between
the user and the LBS server via communication networks.

AutomataLogical

Temporal

Stochastic

Timed Automata

Hybrid Automata

Stochastic Hybrid
Automata

Stochastic Automata
(Markov Chain)

G

S

Sensors

EoEc

Actuators

G DiagSensors Eo Yes/No/Uncertain

0

1

3

4

5

a
2

a

g

b

a

g

b

g

Deadlock

Livelock

P2

G

S

P1

Ec

I

OR

Ec,ur

Sensor2

Plant

Supervisory
Controller

Sensor1
Actuator1 Actuator2

Intrusion

P2

G

S

P1

Ec

I

OR

Ec,ur

ID

A2A1

GDSD GA
Eatt

LBS Server

Internet

User

Positioning
Systems

LBS Server

Internetanswer to
<loc>

<loc>

answers to
all queries

Location Insertion User

<loci><loc>
 fake query real query

Internet

<loc> real query

answer to
<loc>

<loci> fake query

<loc>

answers to
all queries

Location Insertion
Function

User

LBS Server

answer to
<loc>

<loc>

Location ObfuscatorUser

Internet

<L> = <loc1, …, lock>
cloaking query

answer to
<loc>

<loc>

answer to <L>

Location Anonymizer

answers to
 and <L>

 <L>
 fake query real query

answer to
<loc>

<loc>
<L> = <loc1, …, lock>

cloaking query

answer to <L>

Location Anonymizer Location Insertion
Function

Fig. 3. The common LBS architecture

2.1 Privacy Concerns and the Attack Model

We assume the attack model that is commonly used in the
LBS community. The LBS server is a malicious observer
and other components are benign. Specifically, we consider
one attack scenario discussed in (Shokri et al., 2010) where
the server, i.e., the attacker in this paper, knows the
statistical information of users’ moving patterns but is not
aware of users’ real-time location. The attacker relies on
the location information it receives to perform attacks.

Two types of privacy notions have been defined: location
privacy and query privacy. Location privacy is to prevent
inferring the real locations where queries are made from
the queries themselves. Query privacy is to seclude the pri-
vate attributes, such as the user’s real identity, embedded
in the queries. In this work, we assume that the attacker
aims to associate a user query with its real location and
focus on location privacy only.

2.2 The Anonymizer Framework

The location anonymizer is the most popular technique
used in the literature that aims to solve both location
and query privacy. A location anonymizer, as shown in
Figure 1, generalizes the accurate location in a given user’s
original query to a cloaking region where k − 1 other
potential or active users reside. Implemented on a trusted
third party, the anonymizer receives queries from users and
forwards the cloaking queries to the LBS server.

This typical cloaking technique protects privacy for one-
time queries only, but may fail in a dynamic environment
where users continuously make queries (see, e.g., (Bettini
et al., 2005)). In this paper, we will show this result
by using opacity techniques from DES. We will also
show how to enforce location privacy using the opacity
enforcement technique developed in (Wu and Lafortune,
2014). Technical details will be presented in Sections 4, 5,
and 6.

3. OPACITY IN DISCRETE EVENT SYSTEMS

Opacity is an information flow property that was first
introduced in the computer science literature in (Mazaré,
2003). It has become an active research topic in DES,
as this class of dynamic systems provides suitable formal
models and analytical techniques for investigating such

properties. The existing research on opacity include the
verification and the enforcement of various opacity notions
such as current-state opacity, initial-state opacity, and
language-based opacity; see e.g., (Saboori and Hadjicostis,
2008; Lin, 2011; Cassez et al., 2012; Wu and Lafortune,
2013a).

3.1 Automata Models

In this paper, we use techniques from opacity problems
in DES modeled as finite-state automata. The automa-
ton, denoted by G, is nondeterministic in general. G =
(X,E, f,X0) has a set of states X, a set of events E,
a nondeterministic (potentially partial) state transition
function (extended to strings) f : X × E∗ → 2X , and
a set of initial-states X0. Define L(G,Xi) := {t ∈ E∗ :
(∃x ∈ Xi)[f(x, t) is defined]}. The language generated by
G is the system behavior that is defined by L(G,X0). For
simplicity, when Xi = {x}, we write L(G, x). In general,
the system is partially observable. Hence, the event set is
partitioned into an observable set Eo and an unobservable
set Euo. Given an event e ∈ E, its observation is the
output of the natural projection P : E → Eo such that
P (e) = e if e ∈ Eo and P (e) = ε if e ∈ Euo where ε is the
empty string. With this definition at hand, projection P
is extended from E → Eo to P : E∗ → E∗o in a recursive
manner: P (te) = P (t)P (e) where t ∈ E∗ and e ∈ E.

3.2 Opacity Problems

The settings of an opacity problem are: (1) G has a secret ;
(2) G is partially observable and/or nondeterministic; and
(3) the attacker is an observer of G that has full knowledge
of G but only observes G through projection P ; namely,
the attacker’s observations are strings in P [L(G,X0)].
With the knowledge of G and its observations, the attacker
infers the real behavior from the system by constructing
estimates. The secret is said to be opaque if no attacker’s
estimate reveals the occurrence of the secret. That is,
opacity holds if for any secret behavior, there exists at
least one other non-secret behavior that is observationally
equivalent to the attacker. Therefore, the attacker is not
sure whether the secret or the non-secret has occurred.

Different definitions of the secret yield different notions
of opacity. In current-state opacity (CSO), the secret is
defined in terms of the current state of the system. Below
we recall the formal definition of CSO:

Definition 1. (Current-State Opacity). Given system G =
(X,E, f,X0), projection P , and the set of secret states
XS ⊆ X, current-state opacity holds if ∀i ∈ X0 and
∀t ∈ L(G, i) such that f(i, t) ⊆ XS , ∃j ∈ X0, ∃t′ ∈ L(G, j)
such that: (i) f(j, t′)∩ (X \XS) 6= ∅ and (ii) P (t) = P (t′).

To fit the application of location privacy in LBS, we
adapt the CSO definition and propose a new notion called
Current-State Anonymity (CSA).

Definition 2. (Current-State Anonymity). Given system
G = (X,E, f,X0) and projection P , the system is current-
state anonymous if ∀i ∈ X0 and ∀t ∈ L(G, i) such that
f(i, t) = {x} ⊆ X, ∃j ∈ X0, ∃t′ ∈ L(G, j), ∃x′ 6= x such
that: (i) x′ ∈ f(j, t′) and (ii) P (t) = P (t′).

Current-state anonymity can be thought as CSO with
multiple pairs of secret and non-secret states. Specifically,

a given system is CSA if it is CSO with respect to
XS = {i}, XNS = X \ {i},∀i ∈ X. The similarity
between the two notions allows us to use the current-state
estimator of G, which is also the observer automaton of G
as defined in (Cassandras and Lafortune, 2008), to verify
CSA. Hereafter, we denote the current-state estimator of G
by EG. The following proposition then follows immediately.

Proposition 3. A given automaton G is current-state
anonymous if and only if no state in EG is a singleton.

4. AUTOMATA MODELS FOR LBS

We consider the framework where the anonymizer is used.
The attacker has statistical information about users’ mo-
bility patterns, but can only perform attacks using the
cloaking information sent to the server.

To map LBS privacy to opacity problems in DES, one key
element is to build a finite-state automaton model that
is consistent with the knowledge of the attacker (i.e., the
server). We discretize the physical map and capture users’
mobility patterns in a finite-state automaton. Specifically,
we show our modeling methodology using a set of walk-
ing paths on the Central Campus of the University of
Michigan. The constructed automaton will be our running
example that illustrates the use of opacity techniques for
location privacy. Shown in Figure 4 is the map of the Cen-
tral Campus. We select eight locations as states, marked
in red in the figure. Mobility patterns, as shown in blue
lines, define transitions between states. Regions A,B,C,D
are cloaking regions precomputed by the anonymizer. 2 We
omit the unobservable details and label transitions by the
cloaking information received by the server. Specifically,
transitions are labeled by the cloaking regions of their
source nodes, meaning that the user makes queries when
s/he is about to move to the next location. The users
can start their walking paths from any location and thus
X0 = X. The constructed model is the nondeterministic
finite-state automaton shown in Figure 5.

5. VERIFICATION OF LOCATION PRIVACY

To verify if the given moving patterns have location
privacy, we need to know the server’s location estimates
and check if any estimate contains only one single location.
Our methodology for constructing G from the moving
patterns allows us to formulate location privacy as current-
state anonymity. Location privacy holds if and only if
the constructed G is current-state anonymous. As stated
in Proposition 3, current-state anonymity can be verified
using the current-state estimator EG. The moving patterns
have location privacy if and only if no estimate state is a
singleton.

Let us go back to the Central Campus example in Figure
4. We construct the current-state estimator EG in Figure
6 to verify current-state anonymity. Before verifying, we
first look at all estimate states in EG that are reached by
single events from the initial state of EG, such as state
{4, 6, 7} reached by event d. It can be found that no such
state reveals the true location of the user. Because each
cloaking region covers two distinct point locations and
2 Shokri et al. (2010) has shown that computing cloaking regions in
real-time does not improve privacy.

Fig. 4. The University of Michigan Central Campus map

0

x

0

0

0

a1
2
a2

a5

a4
0

1

a3

4

0

1

c

a

3

e
6

2
b

d

5

di

(bi)(ci)(ci)

ci

X

0,1,2,3,0u,
1u,2u,3u

0,1,2,3,4,0u,
1u,2u,3u,4u

4,6,7,4u

3,4,5,6,3u,
4u,5u,6u

3,5,3u,5u

4,7,4u

4,6,4u,6u

6u

0,2,4,0u,
2u,4u

1,3,1u,3u 0,2,0u,2u

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a b

a

d

c

0u

1u

3u

2u

4u 5u

6u 7ud

d

d

c

c
c

c b b

b b
b

a

a

a
a

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c

0

3

4
7

5

8 1

6

11

10 9

2

d/d
c/c

b/b

a/a

a/a

a/a
b/b

c/c

b/b

c/c

c/c
d/d

b/b
b/b c/c

d/d

c/c

c/c

c/c

d/d

d/(ci)(ci)d

a/a

a/a
a/a

b/b
b/b

b/b

d/(ci)(ci)d

c

0

1

3

2

4
5

6

d

c

c
c

b b

b b
b

a

a

a
a

7

d

d

Fig. 5. The constructed automaton model G

no such two locations lead to only one single location,
location privacy for one-time queries can be guaranteed.
However, to perform full verification, we need to examine
the complete structure of EG. This corresponds to the
server’s knowledge in a dynamic environment where users
continuously make queries. The estimate state {6} shows
that the user will reveal his/her true location at state
6 (i.e., Cancer Center) after querying sequences such as
cdd. Hence, current-sate anonymity does not hold. This
revelation is because the server knows that consecutive
queries d’s can only be made between states 6 and 7 and
that the user came from region C from the first received
query. This also shows that the anonymizer’s cloaking
technique does not necessarily provide location privacy.

6. ENFORCEMENT OF LOCATION PRIVACY

6.1 I-Enforcing Insertion Functions

To resolve the location revelation identified in Section 5,
we propose to add to the anonymizer an insertion function
that inserts fake queries to the cloaking query sequence
from the anonymizer. An insertion function, as introduced
in (Wu and Lafortune, 2014) for opacity enforcement, is
placed between the system and the outside attacker; it
modifies the system behavior seen by the attacker. In the

0

x

0

0

0

a1
2
a2

a5

a4
0

1

a3

4

0

1

c

a

3

e
6

2
b

d

5

di

(bi)(ci)(ci)

ci

X

0,1,2,3,0u,
1u,2u,3u

0,1,2,3,4,0u,
1u,2u,3u,4u

4,6,7,4u

3,4,5,6,3u,
4u,5u,6u

3,5,3u,5u

4,7,4u

4,6,4u,6u

6u

0,2,4,0u,
2u,4u

1,3,1u,3u 0,2,0u,2u

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a b

a

d

c

0u

1u

3u

2u

4u 5u

6u 7ud

d

d

c

c
c

c b b

b b
b

a

a

a
a

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c

0

3

4
7

5

8 1

6

11

10 9

2

d/d
c/c

b/b

a/a

a/a

a/a
b/b

c/c

b/b

c/c

c/c
d/d

b/b
b/b c/c

d/d

c/c

c/c

c/c

d/d

d/(ci)(ci)d

a/a

a/a
a/a

b/b
b/b

b/b

d/(ci)(ci)d

c

0

1

3

2

4
5

6

d

c

c
c

b b

b b
b

a

a

a
a

7

d

d

Fig. 6. The current-state estimator EG of G

framework of LBS, we place the insertion function at the
output of the anonymizer, as shown in Figure 2. It inserts
fake queries and drops their replies without affecting the
quality of the server’s replies to real queries.

We have characterized in (Wu and Lafortune, 2014) a
property called i-enforceability that an insertion function
needs to satisfy in order to enforce opacity. We have
also constructed the so-called All Insertion Structure, or
AIS, that enumerates in a finite-state transition structure
all i-enforcing insertion functions. This AIS can then be
employed to synthesize one insertion function. Both the
i-enforceability property and the construction of the AIS
are based on the safe language, denoted by Lsafe, which
contains all observable strings that are “safe” for the
system to output (i.e., that do not lead to a violation
of opacity). Hence, by suitably defining Lsafe, we can
use the techniques from (Wu and Lafortune, 2014) to
develop insertion functions for current-state anonymity,
the property of interest in this paper.

The safe language in the LBS location privacy problem
consists of all observable strings that do not reveal the
current location of the user. That is, it contains all strings
in L(EG) that do not visit singleton states (i.e., state {6}
for EG in Figure 6). An insertion function fI is i-enforcing
if (1) every output behavior from fI is in Lsafe; and (2) fI
does not block or change any query from the anonymizer.
We construct the AIS of G by following the procedure
in (Wu and Lafortune, 2014), adapted for our Lsafe.
The AIS enumerates all i-enforcing insertion functions
using a game structure that describes the interaction of
the system (i.e., the user’s continuous queries from the
anonymizer) and the insertion function. The entire AIS
for the Central Campus example has 84 states; part of its
structure is shown in Figure 7. As can be seen in the figure,
the AIS is a bipartite graph with “square” states and
“round” states. The shapes of these states tell us whether
the anonymizer or the insertion function is acting in the
game. At square states, the anonymizer enumerates all
possible user queries according to the moving patterns. For
example, initially at state 0, the anonymizer can output
queries a, b, c, d. At round states, the insertion function
enumerates all i-enforcing insertion choices, determined
from the construction procedure of the AIS, that respond
to the queries from the anonymizer. For example, after the
anonymizer outputs d, at state 4, the insertion function
can insert ε, bi, ci, bicici. By listing all actions of the two
players in this manner, the AIS enumerates all i-enforcing

insertion functions. While the user continuously makes
queries, the stages of this game are classified into a finite
number of states in the AIS, thereby resulting in a finite
structure. To synthesize one i-enforcing insertion function,
one needs to select all edges from the square states (in
order to consider all user’s queries) and one insertion edge
for each round state that is reached. In the next section,
we will discuss how to select insertion edges and synthesize
one optimal insertion function from the AIS.

0

x

0

0

0

a1
2
a2

a5

a4
0

1

a3

4

0

1

c

a

3

e
6

2
b

d

5

di

bicici

ci

X

0,1,2,3,0u,
1u,2u,3u

0,1,2,3,4,0u,
1u,2u,3u,4u

4,6,7,4u

3,4,5,6,3u,
4u,5u,6u

3,5,3u,5u

4,7,4u

4,6,4u,6u

6u

0,2,4,0u,
2u,4u

1,3,1u,3u 0,2,0u,2u

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a b

a

d

c

0u

1u

3u

2u

4u 5u

6u 7ud

d

d

c

c
c

c b b

b b
b

a

a

a
a

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c

0

3

4
7

5

8 1

6

11

10 9

2

d/d
c/c

b/b

a/a

a/a

a/a
b/b

c/c

b/b

c/c

c/c
d/d

b/b
b/b c/c

d/d

c/c

c/c

c/c

d/d

a/a

a/a
a/a

b/b
b/b

b/b

d/cicid

c

0

1

3

2

4
5

6

d

c

c
c

b b

b b
b

a

a

a
a

7

d

d

d/cicid

Fig. 7. Partial representation of the AIS (7 out of 84 states)

6.2 Optimal Insertion Functions

One can synthesize an i-enforcing insertion function by
“randomly” selecting insertion edges at the round states in
the AIS. But as inserting fictitious queries introduces extra
delay and consumes energy, a more interesting problem is
how to minimize the overhead cost introduced by insertion,
i.e., how to synthesize an optimal insertion function.

In the LBS privacy problem, we assign the same unit
cost to each inserted query, for the sake of simplicity. We
then employ the optimization algorithms developed in (Wu
and Lafortune, 2013b) to synthesize an optimal insertion
function from the AIS. These algorithms are not reviewed
here because of space constraints. We first observe that no
i-enforcing insertion function has a finite worst-case total
cost for the case of G of Figure 5. That is, to enforce loca-
tion privacy in this example, an insertion function needs
to continuously add fictitious queries as the user makes
queries (note that there are many cyclic paths that return
to singleton state {6} in Figure 6.) Hence, we consider
the quantitative objective for optimization purposes to be
the long-run average insertion cost (i.e., per user query),
in the worst case. (See (Wu and Lafortune, 2013b) for
further technical details about this cost structure.) The
minimum value that we find in our example is 2, meaning
that at most two fake queries per user query need to be
inserted. Using this value, we then synthesize from the AIS
an insertion function fI that achieves this optimal value.
The result for our example is shown in Figure 8, where fI
is encoded as an I/O automaton where the input labels
are queries from the anonymizer and the output labels are
the modified queries with insertion. Events with subscript
i denote fake queries from the insertion function.

Let us now look at query sequence cdd, which is found
in Section 5 to reveal the true location of the user.
We can see from Figure 8 that the optimal insertion
function will modify cdd to cdcicid. The server does not
distinguish fictitious and genuine queries; i.e., c and ci
are indistinguishable by the LBS. Thus, when the server

receives cdcicid, it interprets the sequence as cdccd and
infers that the user is at {4, 7}, while the true location is
6. Hence, location privacy is enforced.

0

x

0

0

0

a1
2
a2

a5

a4

0

1

a3

X

0,1,2,3,0u,
1u,2u,3u

0,1,2,3,4,0u,
1u,2u,3u,4u

4,6,7,4u

3,4,5,6,3u,
4u,5u,6u

3,5,3u,5u

4,7,4u

4,6,4u,6u

6u

0,2,4,0u,
2u,4u

1,3,1u,3u 0,2,0u,2u

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a b

a

d

c

0u

1u

3u

2u

4u 5u

6u 7ud

d

d

c

c
c

c b b

b b
b

a

a

a
a

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c

0

3

4
7

5

8 1

6

11

10 9

2

d/d
c/c

b/b

a/a

a/a

a/a
b/b

c/c

b/b

c/c

c/c
d/d

b/b
b/b c/c

d/d

c/c

c/c

c/c

d/d

a/a

a/a
a/a

b/b
b/b

b/b

d/cicid

c

0

1

3

2

4
5

6

d

c

c
c

b b

b b
b

a

a

a
a

7

d

d

d/cicid

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d
d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c

4

0

1

c

a

3

e
6

2
b

d

5

di

bicici

ci

X
||d

X

0,1,2,3

0,1,2,3,4

4,6,7

3,4,5,6

3,5

4,7

4,6

6

0,2,4
1,3 0,2

a

b

d

c

c

c

d

b

c

d

d

d

c c

b
c

b
b

a

a
b

a

b
a

b
a

d

c a,b,c,d

 a,b,c,d

 a,b,c,d
 a,b,c,d a,b,c,d

 a,b,c,d

 a,b,c,d

 a,b,c,d

 a,b,c,d

 a,b,c,d

 a,b,c,d

 a,b,c,d

6

a b c d

System state

Insertion state

a b c d

di* (bicici)*ci*

X

System state

Insertion state

a b c d

di* (bicici)*ci*

System state

Insertion state

ai*ci di* (bicici)*ci*ai*ci

ci

0 0 0 0

0 00

2

1

2201

2 4 2 3

2 0 4 0

0 0 0 0

0 00

2

1

2201

2 4 2 3

2 0 4 0

0 0 0 0

0 00

2

1

2201

2 4 2 3

2 0 4 0

a/a
b/b c/c

d/cid

system output

insertion + system output

V

Fig. 8. The I/O automaton representation of the optimal
insertion function

Remark 4. While we have synthesized an insertion func-
tion in the anonymizer framework, the insertion mech-
anism does not require an anonymizer. To develop the
insertion mechanism without an anonymizer, one needs
to modify the automaton model by labeling transitions
using the original queries instead of the cloaking queries.
An i-enforcing insertion function can then be constructed
by following the same procedure. Note that each query is
made when the user is about to move and is labeled by
the region of the source location.

7. CONCLUSION

We have considered location privacy in Location-Based
Services in the context of opacity problems in DES
and presented a formal approach to solve location pri-
vacy problems. To characterize location privacy, we have
adapted the notion of current-state opacity and defined
current-state anonymity. We have developed a modeling
methodology that capture users’ mobility patterns using
an automaton model. By using the current-state estima-
tor to verify current-state anonymity, we have illustrated
that the traditional anonymizer framework is in general
insufficient to protect location privacy in a dynamic envi-
ronment. To enforce location privacy, we have proposed to
use the mechanism of insertion functions developed in our
prior work, that inserts fictitious queries in the cloaking
query sequences. Furthermore, we have shown how to
synthesize an optimal insertion function to minimize the
overhead costs caused by insertion. In the future, it would
be interesting to look into other privacy concerns, such as
query privacy.

REFERENCES

Beresford, A.R. and Stajano, F. (2003). Location privacy
in pervasive computing. Pervasive Computing, 2(1), 46–
55.

Bettini, C., Wang, X.S., and Jajodia, S. (2005). Protecting
privacy against location-based personal identification.
In Secure Data Management, 185–199. Springer.

Cassandras, C. and Lafortune, S. (2008). Introduction to
Discrete Event Systems, 2nd Edition. Springer.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 1–28.

Chow, C.Y. and Mokbel, M.F. (2007). Enabling pri-
vate continuous queries for revealed user locations. In
Advances in Spatial and Temporal Databases, 258–275.
Springer.

Duckham, M. and Kulik, L. (2005). A formal model of
obfuscation and negotiation for location privacy. In
Pervasive Computing, 152–170. Springer.

Gruteser, M. and Grunwald, D. (2003). Anonymous usage
of location-based services through spatial and temporal
cloaking. In Proc. of the 1st International Conference
on Mobile Systems, Applications and Services, 31–42.

Kido, H., Yanagisawa, Y., and Satoh, T. (2005). An
anonymous communication technique using dummies
for location-based services. In Proc. of International
Conference on Pervasive Services, 88–97.

Krumm, J. (2009). A survey of computational location
privacy. Personal and Ubiquitous Computing, 13(6),
391–399.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496–503.

Mazaré, L. (2003). Using unification for opacity properties.
Proc. of the 4th IFIP WG1, 7, 165–176.

Mokbel, M.F., Chow, C.Y., and Aref, W.G. (2006). The
new Casper: Query processing for location services with-
out compromising privacy. In Proc. of the 32nd Interna-
tional Conference on Very Large Data Bases, 763–774.

Pingley, A., Zhang, N., Fu, X., Choi, H.A., Subramaniam,
S., and Zhao, W. (2011). Protection of query privacy
for continuous location based services. In Proc. of the
IEEE INFOCOM, 1710–1718.

Saboori, A. and Hadjicostis, C.N. (2008). Verification
of initial-state opacity in security applications of DES.
Proc. of the 9th International Workshop on Discrete
Event Systems, 328–333.

Shin, K.G., Ju, X., Chen, Z., and Hu, X. (2012). Privacy
protection for users of location-based services. Wireless
Communications, IEEE, 19(1), 30–39.

Shokri, R., Troncoso, C., Diaz, C., Freudiger, J., and
Hubaux, J.P. (2010). Unraveling an old cloak: k-
anonymity for location privacy. In Proc. of the 9th ACM
Workshop on Privacy in the Electronic Society, 115–118.

Wu, Y.C. and Lafortune, S. (2013a). Comparative analysis
of related notions of opacity in centralized and coordi-
nated architectures. Discrete Event Dynamic Systems,
23(3), 307–339.

Wu, Y.C. and Lafortune, S. (2013b). Synthesis of optimal
insertion functions for opacity enforcement. Technical
report, University of Michigan.

Wu, Y.C. and Lafortune, S. (2014). Synthesis of insertion
functions for enforcement of opacity security properties.
Automatica.

Xu, T. and Cai, Y. (2008). Exploring historical location
data for anonymity preservation in location-based ser-
vices. In Proc. of the IEEE INFOCOM, 547–555.

