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ABSTRACT
Low density and high leakage power of SRAM are the major set-
backs for its scalability. Non-volatile memory (NVM) like spin-
transfer torque random access memory (STT-RAM) is a suitable
replacement for SRAM at the last level cache (LLC). NVM offers
high density, and near zero leakage, which are highly desired for
on-chip caches. A few drawbacks of STT-RAM such as high write
latency and limited endurance, have to be taken care before it can
replace SRAM at the LLC. Prior works have either tried to opti-
mize the write latency or endurance. In this paper, by considering
write-optimized STT-RAM, we propose endurance improvement
techniques by reducing the maximum number of writes, global
write variation, and the average number of writes. We take care of
low retention time of write-optimized STT-RAMs using a refresh
mechanism. We employ refresh-aware cache replacement policies
wherein the cache blocks that are about to expire are preferred
to the recently refreshed cache blocks. This refresh-aware policy,
when combined with the recency information of the cache blocks,
enhances both performance and endurance of STT-RAM LLC. We
show that our refresh-aware policy achieves the maximum life-
time improvement of 32.5% for single-core and 70.7% for muti-core
compared to STT-RAM with no wear leveling. When we combine
recency information with our refresh-aware policy, there is a slight
improvement in the performance.

CCS CONCEPTS
• Hardware → Non-volatile memory; Emerging architectures;
Memory and dense storage.

KEYWORDS
Emerging memory technologies, non-volatile memory, STT-RAM,
cache design and optimization

1 INTRODUCTION
With the current trend of technology scaling, we need large size
caches to fulfill the performance gap between processor and main
memory. The SRAM technology offers low access latency, but the
scalability of SRAM is limited due to its high leakage current and
low storage density. A typical SRAM cell requires six transistors to
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store one bit of information, which leads to its low storage density,
and continuous power supply is required to retain a bit in the
SRAM cell, which leads to high leakage current. There is a need
for an alternative like non-volatile memories (NVMs) due to the
limitations of SRAM. NVMs offer a much higher density than SRAM
and have near zero leakage. There are several NVMs like phase-
change random access memory (PCM), resistive random access
memory (ReRAM), spin-transfer torque random access memory
(STT-RAM). NVMs also have their drawbacks, such as high write
latency and limited endurance. Write endurance of ReRAM, PCM,
and STT-RAM are 1011[10], 108[14], and 4 × 1012[20], respectively.
Because of high endurance among different NVMs, STT-RAM is
the most suitable candidate to be deployed in the LLC.

The read operation in STT-RAM involves reading the resistance
value of the magnetic tunnel junction (MTJ) by passing a small
current across the bit and source line. Whereas, in the write op-
eration, the entire orientation of the magnetic layer may have to
be changed that requires much higher current as compared to the
read operation. Because of this, STT-RAM has low read latency and
high write latency. Techniques have been proposed to optimize the
write latency by changing the magnetic properties of the MTJ or by
changing the planar area of the free layer [6][18][19]. In optimizing
the write latency of STT-RAM, the data retention time of STT-RAM
is reduced [18], which forces the STT-RAM to get refreshed for
retaining the data. A refresh operation requires an additional write
operation to the cache blocks.

Even though STT-RAM has high write endurance among the
other NVMs, it is very less as compared to SRAM. The endurance
value of STT-RAM indicates the number of write operations that
can be performed on the MTJ. Endurance can further degrade due
to the non-uniform write accesses across the STT-RAM cache. In
the set-associative cache, write variation can be of two types: 1)
intra-set write variation, i.e., non-uniform write accesses within a
set, and 2) inter-set write variation, i.e., non-uniform write accesses
across sets. These variations can also be due to the skewed accesses
generated by the replacement policy. For example, the LRU replace-
ment policy maximizes accesses to few most recently used cache
block locations [12]. Write variation can cause a few cache blocks
to reach the endurance limit early as compared to the other blocks,
which in turn causes the STT-RAM cache to fail. The write latency
optimization of STT-RAM can further degrade the endurance by
generating additional writes due to refresh operation.

To improve the endurance of write-optimized STT-RAM caches,
we propose a technique to minimize write variation by disassoci-
ating cache sets from cache ways. We also propose a few cache
replacement policies that make use of the refresh and/or recency
information of cache blocks while minimizing the number of writes
to the blocks. Our main contributions are as follows:
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Table 1: Cache Block Level Minimum and Maximum Number of Writes, and the Mean and Standard Deviation of the Number
of Writes at the LLC of a Single-Core System for Baseline.

Single-core Workloads
Parameter As Bz Ca Cl Ga Gc Ge Gr H2 Hm Lb Le Li Mf Mi Na Om Sj So Xa Ze Ap Bc Bf Co Ss

Minimum (minblk ) 461 2238 3560 261 16 1515 8294 237 108 807 16847 8461 7908 21922 1083 101 342 1187 1288 315 4097 908 828 469 479 809
Maximum (maxblk ) 7017 10782 18175 80139 480171 30437 168437 35883 21428 32060 29174 46055 9933 80614 13859 102843 112958 186638 78132 981630 40505 8697 7720 20934 21674 21074

Mean (µblk ) 1478 3246 3993 986 1817 4351 9850 1034 1090 1446 22138 10346 7952 27657 2899 639 3950 1941 1777 12674 5467 1116 1130 2607 2593 2765
Std Dev (σblk ) 876 757 543 2945 9907 2895 6928 1124 947 2178 1448 2335 22 6118 2377 3247 2980 4804 2433 50990 2917 107 256 266 255 271

Table 2: Cache Block Level Minimum and Maximum Num-
ber of Writes, and the Mean and Standard Deviation of the
Number of Writes at the Multi-Core LLC for Baseline.

Multi-core Workload Mixes
Parameter Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9 Mix10

Minimum (minblk ) 10 128 77 1446 84 160 258 704 124 45
Maximum (maxblk ) 65144 76855 62706 181247 271787 203940 834310 20787 9619 38471

Mean (µblk ) 342 1440 893 2389 1539 1894 1806 2045 387 601
Std Dev (σblk ) 802 1668 1240 3918 7760 2587 7634 292 281 873

• We analyze that write latency optimization generates an
overhead of refresh writes that can further degrade the life-
time of STT-RAM cache.

• We propose that skewed cache organization, as compared
to set-associative cache organization, reduces the write vari-
ation across the cache, which in turn can enhance the en-
durance of STT-RAM cache.

• Our refresh and/or recency aware policies help minimize the
refresh writes without any major impact on the performance.

• Our techniques also reduce the average number of writes to
the STT-RAM cache, which in turn provide dynamic energy
savings compared to the state-of-the-art technique.

The rest of the paper is organized as follows: We provide back-
ground and related work in Section 2 and the motivation in Section
3. Our approach is discussed in Section 4. We provide experimental
setup in Section 5 and the result analysis in Section 6. Finally, we
conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 Overview of STT-RAM
STT-RAM is a type of magnetic RAM. It comprises an information
carrier magnetic tunnel junction (MTJ) and an access transistor.
MTJ consists of two ferromagnetic layers and one metal oxide layer.
One of the ferromagnetic layers can change its orientation with
respect to the other layer that has a fixed magnetic orientation. If
the magnetic orientation of layers is parallel, the STT-RAM cell is
in a low resistance state (storing bit 0), whereas, if the orientation
is anti-parallel, the cell is in high resistance state (storing bit 1).
The threshold current required for a write operation is higher than
that for a read operation as it may require to change the magnetic
orientation of the free layer.

2.2 Addressing Write Latency Issue
One can optimize the write latency of STT-RAM by changing sev-
eral parameters of MTJ. Smullen et al. [18] proposed a write latency
reduction technique by reducing the planar area of the cell. Sun et

al. [19] proposed multi retention level STT-RAM design by chang-
ing different parameters of STT-RAM. Jog et al. [6] optimized the
write latency by reducing the thickness of the free layer and lower-
ing the saturation magnetization of STT-RAM. In [21][22], authors
have proposed a hybrid cache architecture, where a cache is parti-
tioned into multiple regions, each of different memory technology.
The fast region is of SRAM type that offers low access latency, and
the slow region is of STT-RAM type that offers higher density. In
all the above techniques except the hybrid cache architecture, write
latency optimization reduces the retention time of a cache block.
Retention time is the duration for which the bit is retained without
a random bit-flip. Reducing the retention time may require a refresh
operation.

2.3 Addressing Endurance Issue
The write endurance of STT-RAM is the number of write opera-
tions that can be performed on the MTJ before the free layer stops
changing its magnetic orientation. The write endurance techniques
can be classified into write avoidance technique and wear leveling
techniques. We discuss both the techniques below:

2.3.1 Write Avoidance Techniques: Several techniques have been
proposed in the literature to reduce the number of writes. If the
value to be written is the same as the value present in the cache, the
write operation is terminated [24]. In addition to early termination
of writes [24], before storing the data, it can be inverted if stor-
ing inverted data achieves fewer bit flips [8]. Encoding frequently
written patterns to minimize the number of writes [2][9][23].

2.3.2 Write Leveling Techniques: Write leveling techniques try to
make the write accesses uniform across the cache so that all the
cache blocks wear out at the same rate. Inter-set write variation is
handled by changing the set mapping [20]. Intra-set write variation
is handled by flushing hot data probabilistically [20] or recording
the number of writes to a block and then changing the location
of a hot data item to a cold block location [13] or injecting ran-
dom replacement policy at regular interval of instructions [16].
Sequoia [7] is the state-of-art endurance improvement technique
that minimizes both intra-set and inter-set write variations. The
inter-set write variation is minimized by associating a hot set with
a cold set and then transferring the writes of the hot set to the
associated cold set. Writes between the hot sets and their corre-
sponding cold sets are called swap writes. For minimizing intra-set
write variation, it swaps a hot block with a cold block within a set.
Sequoia employs set level counters to measure if a block is hot. We
compare our work with Sequoia and show experimental analysis
in Section 6.
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(a) Single-core Workloads

(b) Multi-core Workload Mixes

Figure 1: Write Access Pattern Across Different Workloads.

3 MOTIVATION
In SRAM cache, having nonuniform write access patterns across
different cache blocks does not concern the endurance of the cache
as its endurance is more than 1015. But in the case of STT-RAM
cache, whose endurance is only 4x1012, nonuniform write access
pattern becomes a bottleneck. A few STT-RAM cells reach their
endurance limit faster than other cells leading to failure of the
STT-RAM cache in the absence of any fault tolerance capability.

To check the write access patterns of various benchmarks from
SPECCPU2006 [5] and CRONO [1], we first give a few vital statistics
about the write requests of single-core and multi-core workloads,
build using SPEC CPU2006 and CRONO benchmarks (details about

these workloads are given in Section 5), at the LLC for baseline. The
statistics are collected at the cache block level granularity. Tables 1-
2 show the workload-wise cache block level the minimum (minblk )
and the maximum (maxblk ) number of writes across all the cache
blocks, and the values of mean (µblk ) and standard deviation (σblk )
of the cache block level writes at the LLC of a single-core system
and a multi-core system, respectively, for baseline. There are a few
applications with very low σblk , which indicates that the number
of writes at the cache block level is almost uniform around µblk .
There are also a few applications withmaxblk is almost two orders
of magnitude higher than µblk , which gives a scope of balancing
the writes across cache blocks. Compared to single-core workloads,
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Figure 2: Representation of Retention State Based on the Retention Time.

almost all the multi-core workloads show high value of maxblk
µblk

,
and also the capacity of the multi-core LLC is four times that of
the single-core LLC (details of the experimental setup is given
in Section 5), the writes can be balanced efficiently and achieve
a significant reduction in the maximum number of writes at the
multi-core LLC.

Figures 1a-1b show the cache block-wise write count, normal-
ized to the maximum write count (maxblk ) for single-core and
multi-core workloads, respectively, where X-axis represents bench-
marks/mixes, and Y-axis represents cache blocks. The cache blocks
having higher write access count are represented by colors towards
value 1 in the color bar, and the cache blocks with lower write
access count are represented by colors towards value 0 in the color
bar. Benchmarks such as libquantum and lbm show uniformly high
write count across all the cache blocks, while benchmarks such as
hmmer and xalancbmk show very high count for a few cache blocks
and uniformly low write count for the remaining cache blocks.
Similar trends are observed across multi-core workload mixes also.
Overall, in both single-core and multi-core workloads, we can see
that a few cache blocks are getting a very high number of write
accesses as compared to other cache blocks. This access pattern
motivates us to change the address mapping to distribute the write
accesses across the cache evenly.

4 DEALINGWITHWRITE-OPTIMIZED
STT-RAM LLC

We first optimize the write latency of STT-RAM by reducing the cell
area. Write latency optimization may increase the number of write
operations due to refresh overhead. Furthermore, due to workload
access patterns, there will be variations in intra-set and inter-set
writes. For removing the intra-set and inter-set write variation, we
disassociate the cache sets from the cache ways by changing the
address mapping of the cache blocks. We then combine the address
mapping technique with an efficient replacement policies to achieve
uniform write accesses but without any performance degradation.

4.1 Write Optimization
One of the drawbacks of STT-RAM is its high write latency. The
write latency of STT-RAM depends on the thermal barrier. A ther-
mal barrier is a measure defined based on different properties of
Magnetic Tunnel Junction (MTJ). Higher the thermal barrier, higher
will be the switching current. The current required to flip the bit
in an STT-RAM cell is switching current and the time duration
for which switching current is applied is known as the write pulse
width. Reducing the thermal barrier also reduces the retention time,
which is the duration for which the bit is retained without a ran-
dom bit-flip. So, the write latency can be optimized by reducing the
thermal barrier, but in turn, it also reduces the retention time. The
thermal barrier of MTJ is reduced by reducing the planar area of

MTJ, changing the magnetic parameter, or reducing the thickness
of the free layer [6][18][19]. Considering ten years of retention
time leads to 10.2 ns of write latency whereas for 10ms retention
time, the write latency is narrowed down to 2.5 ns . For the latter
case, if a block is there in the STT-RAM cache for more than 10
ms , a refresh operation has to be performed. A refresh operation
performs an additional write operation to the block. We can con-
clude that optimizing the write latency may increase the number of
write operations that can further affect the endurance of STT-RAM.
We perform an empirical study on SPEC CPU2006 benchmarks and
identify duration between consecutive reference to a block. On av-
erage, almost 97% of the blocks in the LLC get referenced within 10
ms . Based on this observation, we consider a write-optimized STT-
RAM with a retention time of 10ms , and hence the write latency
of STT-RAM is considered as 2.5 ns .

4.2 Refresh Mechanism
Figure 2 shows the retention states, which are defined by partition-
ing the retention time. In our implementation, 10ms is partitioned
into four different intervals, where the last interval (represented by
state 00) is for retention time greater than 5ms , and the first three
intervals (represented by 11, 10, and 01, respectively) are equally
divided between 0 and 5 ms . We keep the fourth interval larger
as compared to the first three intervals as a low fraction of cache
blocks is retained in the STT-RAM LLC for more than 5ms . We
associate a 2-bit retention state with each cache block in the SRAM
tag array. To refresh the cache blocks, we make use of the dynamic
counter-controlled refreshing policy proposed by Sun et al. [19].
The state of every cache block is changed at the end of each interval.
Only the cache blocks in state 00 are refreshed.

4.3 Disassociating Cache Sets from Cache Ways
Set-associative caches with skewed write accesses generate intra-
set and inter-set write variations. The two write variations arise as
a cache block that is mapped to one set cannot be mapped to a dif-
ferent set in the set-associative cache design; we can only map it to
a different way within the same set. To reduce the write variations,
we plan to disassociate cache sets from the cache ways so that a
cache block can be mapped to different sets. While this idea was
earlier proposed in SRAM-based skewed caches [17] to improve
performance, ours is the first proposal that uses the idea for en-
durance improvement in STT-RAM LLC. In our cache architecture,
we consider a cache way i (where i is from 0 to associativity) across
all the sets collectively as way-bank i . As shown in Figure 3, for a
4-way set-associative cache, there will be four way-banks. A hash
function is associated with each way-bank to identify a location for
a given cache block. For a cache block, there are four locations after
hashing its physical address with four different hash functions, all
of which may lie across different sets. This address mapping may
reduce variation in the number of writes across cache blocks as
different hash functions are used for each way-bank.

4.4 Finding an Efficient Replacement Policy
In a set-associative cache, the LRU replacement policy is imple-
mented by maintaining recency information among cache blocks
within a set. The same cannot be implemented in our case as cache
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Figure 3: Address Mapping using Hash Functions.

ways are disassociated from cache sets unless we consider a global
timestamp for each cache block, but maintaining the global times-
tamp incurs significant overhead. So, we need to come up with a
replacement policy that should neither skew writes to a subset of
cache blocks nor hurt performance. We now explore a few replace-
ment policies with this objective.

4.4.1 Recency-Aware Replacement (RCR) Policy: Wepropose recency-
aware replacement (RCR) policy, wherein, to account for the recency
of the cache blocks, we introduce recently accessed (RA) bit with
each cache block. Whenever a cache block is accessed, we set its RA
bit. From among the set of potential victim cache blocks identified
using the hash functions, RCR policy selects one cache block with
RA bit reset as the victim cache block. If more than one cache block
with RA bit reset is present, the policy randomly selects a block
among them. If none of the blocks with RA bit reset, the policy
randomly selects a block with its RA bit set. The policy prefers the
eviction of a clean block over a dirty block.

Once the RA bit of a cache block is set, there is no possible way
to reset it. It may so happen that for all the cache blocks, the RA bits
are set after some time. To deal with such scenarios, we reset RA
bit of all the cache blocks after a certain number of accesses to LLC.
We perform an empirical study to find an optimal reset interval
that provides better values for the maximum number of writes and
instructions-per-cycle (IPC). Figure 5 shows the reduction in the
maximum number of writes and IPC improvement for different
reset intervals, normalized to baseline. Reset interval of 2K accesses
to the LLC shows the highest reduction in the maximum number of
writes, and it also improves IPC compared to other reset intervals.
Thus, we consider 2K reset interval for our evaluations.

4.4.2 Refresh-Aware Replacement (RFR) Policy: RCR policy prefers
performance enhancement to endurance improvement. If a few
blocks in a set are repeatedly written, RCR policy will not select
them as victim blocks, and hence the write count for those blocks
increases, which can potentially limit the endurance. We now pro-
pose a new replacement policy, wherein we prefer endurance to
performance.
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Figure 5: Reduction in the Maximum Number of Writes at the LLC Vs IPC
Improvement for Various Reset Intervals (Normalized to Baseline).

In the refresh mechanism discussed earlier (refer to Section 4.2),
we maintain retention state for selectively refreshing the cache
blocks that are about to expire soon. We make use of the same
information for selecting victim cache blocks in our refresh-aware
replacement (RFR) policy. While selecting a victim from the set of
cache blocks identified by hashing the physical address, the policy
selects the cache block that is nearest to its expiry. If more than one
block is in 00 retention state, the policy selects the victim randomly
among these blocks. If none of the blocks is in retention state 00,
the policy selects the block with the lowest retention state value.
This replacement policy tries to minimize refresh writes. Figure 4
shows an example using RFR policy. Each cache block maintains a
2-bit retention state information. Cache blocks A, B,C , and D, with
retention states as 00, 10, 10, and 11, respectively, are identified as
the four possible victim candidates, from which the policy selects
block A as the victim candidate.

A block will expire if it has not been written for approximately
the retention time duration, i.e., 10ms . But the retention states do
not capture any information about the read accesses. Hence, this
replacement policy may enhance the endurance of STT-RAM LLC,
by minimizing the number of writes, but may not decrease the miss
rate (and improve the performance) as it does not capture recency
information of the blocks.

4.4.3 Refresh and Recency-Aware Replacement (FCR) Policy: In the
above two replacement policies, RCR policy prefers performance to
endurance, while RFR policy prefers endurance to performance. To
capture the benefits offered from both the replacement policies, we
propose a new replacement policy, i.e., reFresh and reCency-aware
Replacement (FCR) policy.

FCR policy maintains a three-bit information per cache block
where the first bit represents the RA bit, and the other two bits
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Figure 6: Order in Which Cache Blocks Get Evicted in FCR Policy. 000 is
the Most Suitable Candidate while 111 is the Least Suitable Candidate.

represent the retention state. A cache block with its RA bit set indi-
cates that it is recently accessed, while its RA bit reset indicates that
it is not recently accessed. The most recently refreshed cache block
will have its refresh bits as 11 while the least recently refreshed
cache block will have its refresh bits as 00. FCR policy prefers "not
recently accessed blocks" to "not recently refreshed blocks" as vic-
tim blocks to avoid any performance degradation. Figure 6 shows
the order in which cache blocks get evicted based on the three-bit
information. When there are multiple potential victim cache blocks
with the same state, FCR policy selects one of them randomly as a
victim by preferring clean blocks to dirty blocks. We observe that
selecting victim blocks based on the recency and retention infor-
mation reduces the number of maximum writes without degrading
performance.

4.5 Lifetime Improvement
In an ideal case, all the cache blocks in the cache should get an equal
number of write accesses so that the lifetime of each cache block
degrades at the same pace. But in the actual scenario, caches exhibit
non-uniformwrite accesses that creates write variation in the cache.
In the set-association cache, due to the set and way organization,
there can be intra and inter-set variation [20], but in our technique,
as there is no notion of set and way, we consider the write variation
of a cache block concerning all the remaining cache blocks. We
compute this write variation by measuring the coefficient of write
variation. We term this coefficient of write variation as global write
variation (GlobalV ).

GlobalV =
1

Wavд

√∑N
i=1(Wi −Wavд)2

N − 1

where N is the number of cache blocks in the LLC,Wi is the total
number of writes to a cache block i , andWavд is the average number
of writes across all the cache blocks.

GlobalV computes how far the write count of a cache block
variate with respect to the average number of writes to all the
cache blocks. For an ideal case, where all the cache blocks have
an equal number of writes, GlobalV will be 0. GlobalV is inversely
proportional to the endurance of STT-RAM LLC. Lower theGlobalV,
higher the endurance of STT-RAM LLC. The maximum number of
writes to a cache block may not give the correct information about
the endurance enhancement of STT-RAM LLC as write variation
information is not captured by it. There can be a scenario where
a technique that reduces the maximum number of writes may in-
crease the average number of writes, which indirectly affects the
endurance of STT-RAM LLC. Wang et al., [20] proposed a lifetime
improvement (LI) parameter for set-associative cache based on the
average number of writes, intra- and inter-set write variations. We

Table 3: Simulation Parameters and Workloads.

Simulation Parameters
Core(s) 4GHz, x86, out-of-order, 8-wide issue
SRAM private: L1-I cache, 32KB, 4-way, 2 cycles

L1 Cache private: L1-D cache, 32KB, 4-way, 2 cycles
STT-RAM single-core: 1MB, 8-way, 6 cycles (Read),

10 cycles (Write)
LLC 4-core: 4MB (shared), 8-way, 12 cycles (Read),

13 cycles (Write)
Workloads

SPEC CPU2006
As (astar), Bz (bzip2), Ca (cactusADM),
Cl (calculix), Ga (gamess), Gc (gcc),
Ge (GemsFDTD), Gr (gromacs), H2 (h264ref),
Hm (hmmer), Lb (lbm), Le (leslie3d),

1-core Li (libquantum), Mf (mcf), Mi (milc), Na (namd),
Om (omnetpp), Sj (sjeng), So (soplex),
Xa (xalancbmk), Ze (zeusmp)

CRONO
Ap (apsp), Bc (bc), Bf (bfs), Co (community),
Ss (sssp)
Mix1: namd-hmmer-h264ref-gamess
Mix2: gromacs-milc-omnetpp-soplex
Mix3: libquantum-h264ref-lbm-omnetpp
Mix4: astar-bzip2-cactusADM-GemsFDTD

4-core Mix5: astar-bzip2-soplex-xalancbmk
Mix6: namd-hmmer-bzip2-mcf
Mix7: leslie3d-gamess-astar-sjeng
Mix8: cactusADM-sssp-apsp-bzip2
Mix9: astar-bc-apsp-h264ref
Mix10: omnetpp-sssp-apsp-hmmer

propose a similar parameter using GlobalV write variations.

LI =
Wavд_base (1 +GlobalVbase )
Wavд_imp (1 +GlobalVimp )

− 1

whereWavд_base is the average number of writes for the baseline,
Wavд_imp is the average number of writes for the technique for
whichwe compute the lifetime improvement. Similarly,GlobalVbase
and GlobalVimp are the coefficient of write variation for the base-
line and the technique to be compared with, respectively.

To improve the lifetime of STT-RAM LLC, one has to reduce
the average number of writes to the LLC and/or the maximum
number of writes, which in turn reduces global write variation. We
evaluate our techniques with baseline and Sequoia, a state-of-the-
art endurance enhancement technique, in terms of reduction in the
maximum number of writes, the average number of writes, and the
lifetime improvement.

5 EXPERIMENTAL SETUP
We use GEM5 simulator [4] to model and evaluate the proposed
techniques. We use CACTI [3] to calculate the L1 SRAM cache
latencies and NVSim [11] simulator to calculate STT-RAM LLC
latency. We consider the tag array of the LLC designed using SRAM
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Figure 7: Percentage of Cache Blocks Belong to Different Write-Count Bins for Baseline (1st Bar), RCR (2nd Bar), RFR (3rd
Bar), FCR (4th Bar), and Sequoia (5th Bar).

(a) Baseline (b) Sequoia (c) RFR Policy

Figure 8: Write Access Pattern for Four Different Benchmarks.

and the data array of the LLC designed using STT-RAM. Caches are
miss allocate and mostly inclusive. Table 3 provides the simulation
parameters used in our experiments. For optimized STT-RAMwrite
latency of 2.5 ns , we consider the retention time of STT-RAM as
10ms . We warm up the system for 1 billion instructions and then
simulate 5 billion instructions for the single-core applications and 1
billion per workload for the multi-core applications. For multi-core
workloads, if an application finishes its 1 billion instruction, then it
will keep on running until all the other applications finish their 1
billion instructions.

We consider 21 benchmarks from SPEC CPU2006 [5] and five
fromCRONO [1], as shown in Table 3, for our experimental analysis.
We use acronyms to represent each workload for the simplicity of
presenting it in the graphs. We also create 4-core mixes out of these
workloads for multi-core simulations.

In our baseline setup, we consider SRAM L1 cache and STT-
RAM LLC and use set-associative mapping at both the levels with
LRU replacement policy. In our technique, we consider the address
mapping technique as given in Skewed Cache [17] for the STT-RAM
LLC and use three different replacement policies for the evaluations.
In this work, we consider only two levels of cache because the
endurance of STT-RAM is not much of a concern at L3 cache as

most of thewrites are filtered by L1 and L2 caches. But our technique
is applicable for any levels of the cache hierarchy.

6 RESULT ANALYSIS
We discuss the results for single-core systems followed by multi-
core systems. For our analysis, we consider the following parame-
ters: the maximum number of writes, the average number of writes,
endurance enhancement, misses per kilo instructions (MPKI) at
the LLC, and instruction per cycle (IPC). For multi-core workloads,
IPC value for an application is recorded when it completes its 1
billion instructions. We compare our techniques with baseline and
Sequoia [7] based on these parameters.

6.1 Write-Count Distribution at the LLC
To get an insight into the number of writes at the LLC, we con-
sider six write-count bins with each bin having a specific write-
count interval, B1:≤ (µblk − 2σblk ); B2:(µblk − 2σblk , µblk −σblk ];
B3:(µblk−σblk , µblk ]; B4:(µblk , µblk+σblk ]; B5:(µblk+σblk , µblk+
2σblk ]; and B6:> (µblk +2σblk ), where µblk and σblk are the mean
and standard deviation of the cache block level writes at the LLC
for baseline, respectively. A cache block blk is said to belong to a
write-count bin X , if the total number of writes to blk is within the
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Figure 9: Normalized Maximum Number of Writes at the LLC with respect to Baseline (Lower is Better).

interval of X . The write-count also includes refresh writes for all
the techniques with additional swap writes for Sequoia.

Figure 7 shows the percentage of cache blocks belong to different
write-count bins for single-core and multi-core workloads across
five different techniques. For each workload in the figure, there
are five bars, where the first and the last bars represent baseline
and Sequoia, and the middle three are for our policies, RCR, RFR,
and FCR, respectively. As different policies handle victim selection
differently, from the figure, we see the different write-count dis-
tribution for each of these policies. A higher percentage of cache
blocks belong to small write-count bins will be beneficial for reduc-
ing the maximum write-count and average write-count. Because
of skewed cache organization considered in our techniques, our
techniques spread writes across different blocks, and as seen from
the figure, our techniques achieve a higher percentage of cache
blocks belong to low write-count bins compared to Sequoia and
baseline. On the other hand, due to swap writes, Sequoia increases
the percentage of cache blocks belong to large write-count bins.
Compared to single-core workloads, multi-core workloads show a
meager percentage of cache blocks belong to B5 and B6 for all the
techniques except Sequoia.

By considering four benchmarks, hmmer, lbm, leslie3d and milc,
we show the write access patterns for baseline, RFR policy and Se-
quoia in Figure 8. The block-wise write count of all the benchmarks
is normalized with respect to the maximum write count of a block
of the baseline.

In hmmer, most of the blocks have a uniform write access pattern
except a few blocks; we can see green color peaks in Figure 8a. As
there are a very few peaks (refer to Figure 8a) and the mean number
of writes to a block at the LLC is close to the minimum number of
writes (refer to Table 1), both RFR policy and Sequoia can make the
write accesses uniform, as shown in Figures 8c and 8b, respectively.

For lbm, in Figure 8a, we can observe that the majority of the
blocks have a very high write count, in turn, making the write
access pattern uniform. In Figure 8c, RFR technique can redirect
those yellow peaks to the block having less write count and make
the write accesses uniform. Whereas, if we observe Sequoia in
Figure 8b, due to a high number of swap writes, the write count of
each block increases uniformly across all the blocks. Furthermore,
in Sequoia, for blocks numbered between 6032 and 6047, the write
count is greater than the maximum write count of a block in the

baseline. As these high write count values are represented in white
color, and since there are more than 16k blocks in the heatmap,
hence the color is not visible.

For leslie3d and milc, the write access patterns of baseline and
Sequoia are shown in Figure 8a and 8b, respectively. We can observe
the same write access pattern for both the techniques as they both
use the set-associative cache organization. But due to associating
multiple sets, Sequoia reduces the write intensity for the maximum
number of writes. On the other hand, due to the skewed cache
organization in RFR policy, we can observe that not only peaks are
neutralized (refer to Figure 8c) but also the write access pattern is
quite different from baseline and Sequoia. From the above analy-
sis, we can conclude that the skewed cache organization coupled
with our replacement policies perform much better in reducing the
maximum number of writes.

6.2 Maximum Number of Writes at the LLC
If the total number of writes to a cache block reaches the write en-
durance limit of STT-RAM, it may fail the entire cache. By reducing
the maximum number of writes to cache blocks, we can enhance the
endurance of STT-RAM LLC. Figure 9a shows the maximum num-
ber of writes, normalized to baseline, for different techniques on
a single-core system. Among all the benchmarks, hmmer achieves
a significant reduction in the maximum number of writes across
all the techniques compared to baseline. This can also be seen in
Figure 7a for hmmer, where cache blocks from write-count bins
B5 and B6 are missing for all the techniques except baseline. All
the CRONO benchmarks as well as xalancbmk also show a very
high reduction in the maximum number of writes across all the
techniques compared to baseline.

The benchmarks that show high write variation in baseline
achieve better write leveling using our techniques. Overall, for
19 out of 26 benchmarks, at least one of our three techniques (i.e.,
RFR, RCR, and FCR) outperforms baseline and Sequoia [7]. We also
observe from the figure that for 7 out of 26 benchmarks, Sequoia
outperforms our techniques. The reason for this behavior is the
way Sequoia is leveling the writes. Sequoia uses counters to track
the total number of write accesses to a set, and it swaps blocks
between hot and cold sets using these counter values, whereas our
techniques level writes only while finding a victim block. So if a
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benchmark has a low miss rate, our techniques cannot get enough
opportunity to write leveling.

On the other hand, for some benchmarks, both Sequoia and our
techniques incur higher maximum number of writes compared to
that of baseline: Sequoia for cactusADM, lbm, and soplex; RFR policy
for GemsFDTD; RCR policy for bzip2 and mcf; and FCR policy for
cactusADM and mcf. After analyzing the write access patterns of
cactusADM and soplex, we observe that there are a few blocks that
are highly written compared to the other blocks (refer to Figure 1a),
and Sequoia cannot handle such behavior efficiently. In the case of
lbm, asminblk andmaxblk at the LLC is very close (refer to Table 1),
Sequoia is not able to find a suitable cold set for each hot set, as a
result, it increases the number of writes (and all the cache blocks
fall into B6 bin, refer to Figure 7a) when a set is associated and
disassociated again and again. Both RCR and FCR policies consider
recency information when selecting victim candidates. But as some
of the cache blocks in mcf and bzip2 are repeatedly accessed, they
will not be selected as victim candidates by these two replacement
policies, which in turn increases the number writes to these cache
blocks. GemsFDTD has a high number of writes compared to reads
with few blocks frequently written, RFR policy tries to retain these
block, and hence, it increases the number of writes to these cache
blocks.

If we consider geometric mean across all single-core workloads,
all the techniques, including Sequoia, achieve a significant reduc-
tion in the maximum number of writes over baseline. As RFR policy
exploits refresh-awareness in selecting victim candidates, it outper-
forms all the other techniques and achieves 56.64% reduction in the
maximum number of writes, followed by Sequoia, which achieves
52.6% reduction. Lack of refresh awareness costs RCR policy losing
out in the competition, while recency and refresh awareness ensure
FCR policy performs better than RCR policy.

Both Sequoia and our techniques can efficiently utilize large
cache sizes for balancing the writes by spreading the writes across
different cache blocks. This is evident from the multi-core workload
results shown in Figure 9b. Because of balancing the writes, we
see that all the techniques achieve a significant reduction in the
maximum number of writes at the LLC with RFR being the most
efficient one. Here also, RFR policy achieves the highest reduction
of 78.4%, whereas Sequoia achieves a reduction of 75%.

6.3 Average Number of Writes at the LLC
While enhancing the endurance of STT-RAM LLC by reducing the
maximum number of writes, Sequoia drastically increases the aver-
age number of writes at the LLC. We can observe from Figure 7 that
Sequoia increases the number of cache blocks in write-count bins
B4, B5, and B6, as compared to baseline and our techniques, which
in turn increases the total number of writes, and thus the average
number of writes also increases. The average number of writes at
the LLC affect the dynamic write energy of the LLC. Figure 10 shows
workload-wise the average number of writes on single-core and
multi-core systems for different techniques normalized to baseline.
Due to a large number of swap operations that Sequoia performs
for write leveling, it increases the average number of writes signifi-
cantly compared to baseline. But, our techniques perform almost
the same as that of baseline in most of the benchmarks (a slight

variation in the average number of writes compared to baseline
is due to the skewed cache organization considered in our tech-
niques). In the case of hmmer and omnetpp, due to the skewed cache
organization considered in our techniques, the writes are spread
across different cache blocks, due to which we see a reduction in
the miss rate (refer to Figure 12a), the average number of writes
(refer to Figure 10a), and the maximum number of writes (refer to
Figure 9a) at the LLC. Reduction in the number of writes can also
be observed from Figure 7a.

We observe the similar behavior for multi-core mixes also (refer
to Figure 10b). On average (geometric mean), compared to baseline,
RFR policy achieves a reduction in the average number of writes
by 4.18% for single-core and 7.17% for multi-core, while Sequoia
increases the average number of writes by 27% for single-core and
37.1% for multi-core systems.

6.4 Endurance Enhancement
Endurance of the STT-RAM LLC is enhanced by increasing Life-
time Improvement (LI) parameter (refer to Section 4.5). Endurance
enhancement signifies that if a cache lasts for x years withw writes
performed on the cache, after applying the endurance enhancement
technique the same cache may last for x +δ years withw +γ writes
performed on the cache, where δ and γ are some positive values.

Unlike the endurance enhancement that is captured by a reduc-
tion in the maximum number of writes, LI captures endurance
enhancement based on the maximum number of writes, coefficient
of write variation and the average number of writes. Figure 11
shows the LI of our policies and Sequoia with respect to baseline.
Our techniques outperform Sequoia across different workloads, ex-
cept for calculix and gamess. For these two benchmarks, as theMPKI
(misses per kilo instructions) values are low (refer to Figure 12a),
our techniques are less effective in balancing writes across cache
blocks compared to Sequoia. We can also observe from Figures 9a
and 10a that the gap between the maximum and the average num-
ber of writes is higher for our techniques compared to Sequoia, due
to which variation in the write counts across cache blocks will be
high. As GlobalV is affected by an inefficient balancing of writes,
our techniques incur lifetime degradation compared to Sequoia.

We observe that there is a huge improvement in the lifetime of
hmmer, milc, namd, omnetpp, sjeng, and xalancbmk for our tech-
niques. The reason for such a huge improvement is the reduction
in the maximum number of writes, which reduces the GlobalV
parameter.

There are a few benchmarks where the lifetime degrades for our
techniques compared to baseline. In the case of libquantum, even
though the average number of writes for our techniques is equal
to that of baseline (refer to Figure 10a), due to the skewed cache
organization considered in our techniques, a large number of cache
blocks are present in write-count bins B1 and B6 (refer to Figure 7a).
Whereas in the case of baseline, a large number of cache blocks
belong to B3 and B4, which in turn increases the GlobalV parameter
for our techniques, and hence the degradation in the lifetime. In the
case of GemsFDTD, due to a considerable increase in the maximum
number of writes for RFR policy (refer to Figure 9a), the GlobalV
parameter value increases, which in turn degrades the lifetime.
In the case of mcf, both the maximum number of writes (refer to
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Figure 10: Normalized Average Number of Writes at the LLC with respect to Baseline (Lower is Better).
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Figure 11: Lifetime Improvement with respect to Baseline (Higher is Better).
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Figure 12: Misses per Kilo Instruction (MPKI) at the LLC (Lower is Better).

Figure 9a) and the average number of writes (refer to Figure 10a) for
FCR policy are higher than that of baseline. Furthermore, around
45% of the cache blocks each belong to write-count bins B3 and B4
for FCR policy while it is 85% and 5% for baseline (refer to Figure 7a),
which effects the GlobalV parameter. Because of these reasons, the
lifetime is degraded for FCR policy compared to baseline. On the
other hand, for Sequoia, the lifetime degrades for 17 out of 26 single-
core workloads and 3 out of 10 multi-core mixes.

On average (arithmetic mean), RFR technique achieves the maxi-
mum LI of 32.58% and 70.76% for single-core and multi-core work-
loads, respectively, while, Sequoia achieves only 3.55% and 22.05%,
respectively.

6.5 Misses per Kilo Instructions at the LLC
Miss rate depends on two factors: cache organization and replace-
ment policy. Baseline and Sequoia use the set-associative cache
organization with LRU replacement policy. In our techniques, we
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Figure 13: Normalized Performance with respect to Baseline (Higher is Better).
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Figure 14: Refresh Writes at the LLC (Lower is Better).

consider the skewed cache organization. RFR policy selects a victim
candidate based on the retention state information of the block,
RCR policy selects a victim candidate based on the recency infor-
mation of the block provided by RA bit of the block, and FCR policy
finds the most suitable replacement block using the retention and
recency state information. Figure 12a shows the comparison of
misses per kilo instructions (MPKI) for all the techniques. A few
benchmarks such as omnetpp,GemsFDTD, hmmer, lbm, leslie3d, bzip,
and xalancbmk show a different MPKI values compared to base-
line and Sequoia, primary reason for this behavior is the skewed
cache organization in our techniques, where data mapping in our
techniques can be different from that of baseline and Sequoia. On
average (geometric mean), our techniques achieve negligible re-
duction (less than 1.2%) in the miss rate compared to baseline for
single-core systems. Sequoia associates and disassociates a set with
another set to reduce the maximum number of writes, and during
association of two sets, sometimes it may not be possible to apply
the LRU policy for victim selection [7], due to which Sequoia incurs
12.8% higher miss rate compared to baseline.

In the case of multi-core scenario, as shown in Figure 12b, on
average (geometric mean) our techniques incur around 10%-14%
higher miss rate compared to baseline, while Sequoia incurs around
20% higher miss rate compared to baseline.

6.6 Instructions per Cycle
While enhancing the write endurance of STT-RAM LLC, the per-
formance of the system should not be affected significantly. As
both RFR and FCR policies consider refresh state information while
selecting a victim, there is a possibility of evicting a block that
is going to be required shortly. In the case of Sequoia, there is a
situation where it is not possible to apply the LRU replacement
policy because of which the performance may degrade. Figure 13a
shows single-core performance comparison with respect to base-
line. Our techniques achieve almost the same performance (−0.14%
to 0.25%) as that of baseline, while Sequoia incurs 1% performance
degradation compared to baseline.

For multi-core workloads, we consider weighted speedup (WS)
values [15] for comparing our techniques with baseline for 4-core
configuration. The weighted speedup is defined as follows:

WS =
N∑
i=1

IPCsharedi

IPCalone
i

where N is number of benchmarks per mix, IPCsharedi is the IPC
value of a benchmark i , when it completes 1 billion instructions
while executing along with other benchmarks in the mix. IPCalone

i
is the IPC value of a benchmark i when it executes in isolation.

Due to a higher miss rate as reported in Figure 12b, Sequoia in-
curs a penalty of 19.93%, while it is around 1.25% for our techniques
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as compared to baseline (refer to Figure 13b). The reason for the
high degradation in the performance of Sequoia is because of the
extra latency spent on finding a cold set among 64 different sets.

6.7 Refresh Writes at LLC
We need to perform a write on a block that is going to be expired to
retain the validity of the block, and this comes at the cost of a refresh
write. Figure 14a shows the number of refresh writes for different
techniques in single-core systems, here we have not counted the
refresh writes for a block which is not accessed after its allocation
at LLC. Since baseline and RCR are refresh unaware, hence they will
be less efficient in reducing the refresh writes. RFR and FCR policies
aim at minimizing the refresh writes at the time of victim selection.
Benchmarks that have high MPKI give more room for minimizing
the number of refresh writes. On the other hand, if a benchmark
has a low MPKI, it becomes difficult to minimize the refresh writes;
benchmarks that show this trend are calculix, gamess, gromacs,
h264ref, hmmer, namd, sjeng, soplex, and bfs. In RFR policy, if all the
victim candidates are about to expire, i.e., they are in retention state
00, then a victim is selected randomly. As FCR policy has additional
information in terms of refresh awareness for selecting the most
suitable candidate, it performs slightly better than RFR policy in
reducing the refresh writes for some benchmarks. In the case of
Sequoia, whenever the counter of a set saturates, the next accessed
block is written to its associated set. Due to the regular shifting
of the block from a set to its associated set, the number of refresh
writes is minimized.

Figure 14b shows the number of refresh writes for different tech-
niques on multi-core systems. In the case ofMix1, which comprises
of namd, hmmer, h264ref, gamess, as all the benchmarks show a
very low MPKI, there is not enough opportunity for minimizing
the refresh writes for both RFR and FCR policies. Sequoia incurs
a large number of refresh writes in Mix2 as the number of read
hits in Mix2 is the highest among all mixes; therefore, most of the
blocks are repeatedly shifted to MRU position, and these blocks
will require a refresh write. On average (arithmetic mean), for FCR
policy, we observe a reduction of 67.19% and 92.75% for single-core
and multi-core workloads, respectively.

7 CONCLUSION AND FUTUREWORK
We observed that optimizing write latency may adversely affect
the endurance of STT-RAM cache. The endurance enhancement of
write-optimized STT-RAM is more challenging as it comes with the
overhead of refresh writes, which further impact the endurance of
STT-RAM. To improve the endurance of STT-RAM last level cache
(LLC), we focussed on reducing the write variation across cache
blocks. Instead of conventional set-associative cache architecture,
we considered the skewed cache architecture and proposed a family
of replacement policies that are refresh and recency aware. We
showed through experimental analysis that without considering
refresh awareness, the recency-aware replacement policy is effec-
tive in improving the endurance. The refresh-aware replacement
policy is effective in reducing the average number of writes, reduc-
ing the maximum number of writes, and enhancing the lifetime
of STT-RAM LLC, which in turn improve the endurance. As the
refresh-aware policy reduces the average number of writes, it also

results in the reduction of the dynamic energy consumption. While
lowering the maximum number of writes, Sequoia, the state-of-art
endurance improvement technique, significantly increases the av-
erage number of writes, which can affect the lifetime of STT-RAM
LLC, and increases the dynamic energy consumption. Our refresh-
aware policy improves the lifetime of STT-RAM LLC by 32.5% for
single-core and 70.7% for muti-core compared to STT-RAM LLC
without wear-leveling. To the best of our knowledge, ours is the
first technique to study the effect of write optimization on the write
endurance of STT-RAM.

Reducing the retention time reduces the write efforts in terms of
latency and write energy, but it introduces the overhead of refresh
writes. This aspect can be explored as a future work where one can
analyze the trade-off between the write effort and cost of refresh
writes.
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