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1 Department of Physics, Indian Institute of Technology Madras, Chennai
600036, India
2 Department of Physics & Astronomy, University of Missouri, Columbia,
MO 65211, USA
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Figure 12. LDOS at the impurity site ρ0A (top), the NN site ρ0B (middle) and the
next-NN site ρ1A (bottom) obtained from equations (13) and (14) for different
strengths of the impurity potential U0/t = 0, 2 and 5, denoted by black dashed,
black solid and red dashed lines, respectively. As U0 → ∞, the top LDOS goes
to zero (except for the bound state beyond the top of the band whose energy goes
to ∞), and the zero-mode state lives only on the B sublattice, as indicated from
the middle and the bottom panels. The prominent zero-mode peak in the middle
panel for U0/t = 5 will develop into a δ-function peak at E = 0 as the impurity
potential U0 → ∞.
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Abstract. We study the electronic structure of graphene with a single substi-
tutional vacancy using a combination of the density-functional, tight-binding
and impurity Green’s function approaches. Density-functional studies are
performed with the all-electron spin-polarized linear augmented plane wave
(LAPW) method. The three sp2σ dangling bonds adjacent to the vacancy
introduce localized states (Vσ ) in the mid-gap region, which split due to
the crystal field and a Jahn–Teller distortion, while the pzπ states introduce
a sharp resonance state (Vπ ) in the band structure. For a planar structure,
symmetry strictly forbids hybridization between the σ and the π states, so that
these bands are clearly identifiable in the calculated band structure. As to the
magnetic moment of the vacancy, the Hund’s rule coupling aligns the spins
of the four localized Vσ1 ↑↓, Vσ2 ↑ and Vπ ↑ electrons, resulting in an S = 1
state, with a magnetic moment of 2µB, which is reduced by about 0.3µB due
to the anti-ferromagnetic spin polarization of the π band itinerant states in
the vicinity of the vacancy. This results in the net magnetic moment of 1.7µB.
Using the Lippmann–Schwinger equation, we reproduce the well-known ∼1/r
decay of the localized Vπ wave function with distance, and in addition, find an
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interference term coming from the two Dirac points, previously unnoticed in the
literature. The long-range nature of the Vπ wave function is a unique feature of
the graphene vacancy and we suggest that this may be one of the reasons for
the widely varying relaxed structures and magnetic moments reported from the
supercell band calculations in the literature.
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1. Introduction

Graphene is a material of considerable interest on account of its unusual linearly dispersive
Dirac band structure and particle–hole symmetry [1, 2]. The vacancy constitutes an important
defect center, the electronic structure of which forms the basic foundation for understanding
the behavior of more complex defects including impurities. Recently, it was suggested that
transition-metal-doped graphene with vacancies may have potential application in hydrogen
storage [3]. Experimentally, vacancies in graphene have been created intentionally by irradiating
materials with electrons and ions [4–7], and may also occur at small concentration during the
growth process [8]. Although an ideal graphene sheet is non-magnetic, experimental observation
of magnetism in carbon systems has been long explained in terms of a variety of defects
including isolated vacancies, vacancy clusters or the presence of internal or external boundaries
as in nanoribbons [7, 9–11].

There have been several theoretical studies of the isolated vacancy in graphene from
first-principles density-functional theory (DFT) [12–22] or Hartree–Fock calculations [23] as
well as from tight-binding models [25–27]. There is also a large amount of related work on
chemisorbed defects such as hydrogen defects and chemisorbed magnetic atoms (see, e.g., [13]
and [28]). Most of the tight-binding models have focused on the π bands alone, which is
clearly inadequate due to the formation of sp2σ dangling bonds in the mid-gap region. The
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first-principles calculations include all relevant states in the band structure including the sp2σ

states; however, in spite of all these works, a clear picture of the vacancy states has not emerged.
In this paper, we study the electronic structure of the vacancy in graphene using the all-

electron density-functional linear augmented plane waves (LAPW) method along with tight-
binding studies as well as the impurity Green’s function (GF) approach to interpret the band
structure. To our knowledge, this is the first all-electron density-functional calculation for the
vacancy in graphene reported in the literature. We have already reported the electronic structure
for mono- and bilayer graphene using the same method [29]. In addition to the DFT calculations,
the nature of the vacancy-induced states is modeled from the tight-binding and GF studies,
which help interpret the DFT results.

The basic overall picture of the electronic structure that emerges from our present work
is summarized in figure 1. It shows the standard σ and π bands of graphene plus the vacancy-
induced states, denoted by Vπ and Vσ , which are split due to the crystal field, Jahn–Teller
and the Hund’s rule interactions. The Vσ states are made of three sp2σ dangling bond states,
which are located on the three carbon atoms adjacent to the vacancy with their lobes directed
toward the vacancy site. With their bonding partners missing, they occur in the mid-gap region.
At the same time, a localized state Vπ gets introduced in the π bands in the mid-gap region
as well, the so-called ‘zero-mode’ state, whose energy is exactly zero in the nearest-neighbor
(NN) tight-binding approximation. These four states, localized around the vacancy center, can
hold eight electrons in total taking into account the spin degeneracy. The level structure of the
vacancy-induced states is shown in figure 2.

At the same time, electron counting arguments show that the vacancy releases four
electrons to be occupied among the above localized states. These electrons include the three
orphan sp2σ electrons, one from each of the three carbon atoms adjacent to the vacancy, plus
one orphan π electron, whose origin may be understood in the following way. Focusing on the
π states now and considering a vacancy on the A sublattice, the majority sublattice B has one
extra atom, NB − NA = 1, so that the total number of π orbitals is NA + NB , which is the same
as 2NA + 1. Out of these, there is one zero-mode state and the electron–hole symmetry of the
graphene lattice results in NA band states below E = 0 and the same number above it. (See
figure 7 for the π band structure.) So, of the 2NA + 1 π electrons (one per atom), 2NA fill up the
lower bands, leaving a lone orphan π electron. These four orphan electrons (three σ and one π )
occupy the vacancy-induced states as indicated in figure 1.

The remaining sections are organized as follows. In section 2, we discuss the results of
our DFT calculations. Section 3 discusses the crystal-field and Jahn–Teller splitting of the
vacancy-induced localized σ states and section 4 is devoted to the vacancy-induced π states.
In section 4.1, we revisit the zero-mode theorem, and in section 4.2, we present numerical
results for the π states from a numerical diagonalization of the tight-binding Hamiltonian before
discussing the vacancy-induced π states using the GF approach in sections 4.3 and 4.4. Finally,
the results are summarized in section 5.

2. Density-functional calculations

For the density-functional calculations, we used the all-electron spin-polarized LAPW
method [30] with the general gradient approximation (GGA) [31] for the exchange-correlation
functional. A 72-atom 6 × 6 supercell was used, which included one vacancy site. The LAPW-
basis functions included the carbon 2s and 2p valence orbitals and a momentum cutoff of
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Figure 1. Sketch of the electronic structure of an isolated substitutional vacancy
in graphene. The continuum π and σ bands are shown as dashed curves, while
the vacancy-induced localized states, Vσ and Vπ , are indicated by straight lines.
EF is the Fermi energy. The occupied vacancy states are indicated by solid circles
with a corresponding net magnetic moment of 2µB. The circular density of states
(DOS) in the mid-gap region, labeled πl ↑↓, indicates schematically the anti-
ferromagnetic spin polarization of the π electron states in the local neighborhood
of the vacancy. This spin polarization is responsible for the reduction of the
localized magnetic moment from 2µB (S = 1) to about 1.7µB in our density-
functional calculation.

RKmax = 5.2 was used, with approximately 3500 basis functions and about 50 000 plane waves
at each k point. All atomic sphere radii were taken as 0.66 Å. The maximum angular momentum
for the wave function expansion inside the atomic sphere was kept at lmax = 6. Thirty k points
in the irreducible Brillouin zone were found to be sufficient for converged results in the
self-consistent calculations.

2.1. Relaxed structure

First we performed a structural optimization of the lattice constant for pure graphene, which
yielded about the same lattice constant as the experimental value. For the vacancy calculation,
the lattice constant was kept fixed at the experimental value and a structural relaxation was
performed for the entire structure. The optimization yielded a planar Jahn–Teller distorted
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Figure 2. Splitting of the three dangling bond sp2σ states of the carbon triangle,
denoted by Vσ , and the vacancy-induced zero-mode Vπ state originating from
the π band. The splitting of the Vσ states is discussed in detail in section 3.

carbon triangle around the vacancy with the carbon atoms outside the triangle relaxed by a
much smaller amount. For the carbon triangle, we found two long bonds of length 2.66 Å each
and a short bond of length 2.40 Å (figure 3), as compared with the 2.48 Å for the undistorted
structure. In terms of the standard Jahn–Teller modes of the equilateral triangle, the magnitudes
of the distortion are: Q0 = 0.08 Å (breathing mode), Q1 = 0.166 Å (symmetric bond-bending
mode) and Q2 = 0 (asymmetric mode) [32].

The relaxed structure for the vacancy reported in the literature varies widely. While some
have reported planar structures [13–17, 23], others have found non-planar structures with out-of-
plane displacements varying from δz ≈ 0.12 to 0.47 Å [12, 19–22]. We find that a paramagnetic
relaxation (less accurate for the present problem) yields a non-planar structure δz ≈ 0.27 Å,
whereas a spin-polarized calculation yields a planar structure, an observation made by Faccio
et al [17] from their calculations as well using the SIESTA code. We attribute this wide variation
in the calculated relaxed structure in the literature partly to the unusual nature of the Vπ bound
state, which falls off only as 1/r , leading to a larger width of the Vπ band in the supercell
calculations than is expected from resonance broadening due to the π band continuum.

The calculated vacancy formation energies agree much better between different
calculations. Our result for EV = E(graphene + vacancy) − N−1(N − 1)E(graphene), N being
the number of atoms in the graphene supercell, is 7.87 eV, which compares well with the
previous calculations [12, 15, 20] of 7.4–7.8 eV as well as with the experimental value of
7.0 ± 0.5 eV [33].

2.2. Electronic structure

Figure 4 shows the band structure, where the vacancy-induced Vσ and Vπ states are clearly
seen. The momentum points in the Brillouin zone for the band structure plot are defined as:
K = x̂/

√
3 + ŷ and M = ŷ in units of 2π3−1a−1/n with n = 6 for the 6 × 6 supercell used in

the calculation. For this supercell, it can be easily seen by drawing both the Brillouin zones that
the Dirac points K and K ′ of graphene get folded into the 0 point of the supercell Brillouin
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Figure 3. The Jahn–Teller distorted planar carbon triangle obtained from
structural relaxation using the all-electron spin-polarized LAPW–GGA method.

zone, so that remnants of the Dirac bands are seen at the 0 point in figure 4 just above EF

(see also figure 7 for the folded graphene tight-binding π bands for the same supercell and
note the similarity between the tight-binding π bands and the DFT bands, figure 4). Due to
symmetry, the σ and π bands do not mix (strictly forbidden for the planar geometry, but also
weakened significantly if the relaxed geometry is non-planar), which leads to clearly identifiable
vacancy-induced Vσ bands. The Vσ states originating from the dangling bonds are split due to
the crystal field, Jahn–Teller and exchange coupling as indicated in figure 2 and discussed in
more detail in section 3. The dispersion of the Vσ bands in the band structure comes from the
vacancy–vacancy interactions in different supercells or from the k-dependent interaction with
the bonding and the anti-bonding σ bands, both effects being small. For non-planar relaxed
structure, they should have a small resonance broadening due to the interaction with the π band
continuum. Three electrons occupy these states, leading to the occupation Vσ1 ↑↓, Vσ2 ↑, with
the remaining fourth electron occupying the Vπ ↑ state.

We now turn to a description of the effect of the vacancy on the π states. Basically,
the vacancy introduces a sharp, resonance state Vπ in the mid-gap region. The following
summarizes the discussions of section 4, which are important to keep in mind: (i) if only
NN tight-binding hoppings are kept, then the vacancy introduces a single localized state Vπ at
E = 0 and of zero width called the zero-mode state, and its wave function decays as ∼1/r with
distance in the linear-band approximation. (ii) The presence of the vacancy in each supercell
does not affect the energy or the width of this state because of the result that the zero-mode wave
function lives on the majority sublattice entirely and any changes in the minority sublattice do
not affect it (in the supercell, all vacancies are located on the same minority sublattice). (iii)
However, due to the second-neighbor (2NN) hopping as well as the exchange splitting, the
energy of Vπ is different from zero, so that it now has a small but finite width due to resonance
broadening with the linear π band continuum consistent with the scanning tunneling microscopy
experiments [10]. (iv) In the supercell calculations, the Vπ state acquires an extra broadening
due to the slow 1/r decay of the Vπ wave function, because of the interaction between the
supercells.
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Figure 4. Spin-polarized band structure of graphene with a single vacancy
in a 72-atom 6 × 6 supercell obtained from the density-functional LAPW
method. The vacancy-induced Vσ and Vπ bands are indicated in blue and red,
respectively. Symmetry strictly forbids the admixture between σ and π states for
a planar relaxation around the vacancy, leading to flat Vσ bands (blue lines). The
Vπ bands are not flat owing to hybridization with the continuum π states. The
Dirac points K and K ′ of the original graphene Brillouin zone get folded into
the 0 point of the supercell Brillouin zone. The zero of energy is taken to be the
Fermi energy EF.

2.3. Dirac point

In figure 4, the Dirac point occurs above the EF (see the bands just above EF at the 0 point, to
which the standard Dirac points K and K ′ have become folded). For the truly isolated vacancy,
the location of the Dirac point above EF would mean that an infinite number of electrons are
transferred from the unfilled part of the Dirac cones to the lone vacancy site, which is impossible.
Another way of seeing this is to consider first an infinite lattice without the vacancy. Obviously,
the EF occurs at the Dirac point with zero DOS as usual. Now, if we introduce a single vacancy
into the structure it can only affect the position of EF by ∼1/N , where N is the total number
of atoms in the lattice, so that EF remains unchanged for the infinite lattice. Of course, the
electron states in the local neighborhood of the vacancy are modified, e.g. due to the resonance
interaction with the vacancy states or due to the vacancy potential. The Dirac-like bands seen
just above EF at 0 in figure 4 represent the effect of the vacancy on the electronic structure in
the local neighborhood of the vacancy in the supercell calculation.

2.4. Magnetic moment

The vacancy magnetic moment consists of two parts as shown schematically in figure 5: (i) the
localized moment coming from the vacancy states Vπ and Vσ and (ii) the induced moment
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Figure 5. Sketch of the magnetic moment for an isolated vacancy, emphasizing
the spatial extent of the various electronic states. The Vσ electrons are highly
localized on the carbon triangle surrounding the vacancy, whereas the Vπ

electron is only ‘quasi-localized’ with its wave function decaying only as 1/r .
Hund’s-rule exchange aligns the Vσ and Vπ electrons, producing an S = 1 state
with the nominal magnetic moment of 2µB. This moment is, however, reduced
by polarization of the π band spins in the vicinity of the vacancy, described
by an antiferromagnetic Kondo-like coupling tkπ between the π bands and the
localized Vπ and Vσ moments. The π band polarization is about 0.3µB in our
DFT calculations, leading to the net magnetic moment of 1.7µB.

on the band electrons in the vicinity of the vacancy. One can argue on general grounds that
the first contribution should be 2µB (S = 1), while the second contribution should reduce this
value somewhat due to the antiferromagnetic Kondo-like coupling between the localized and
the itinerant band spins. Turning to the localized states, the vacancy leaves four electrons to
be occupied among the Vσ dangling bond states and the Vπ zero-mode state. Of these, three
electrons will occupy the Vσ states, so that one electron resides on each of the three dangling
bonds of the carbon triangle. The Coulomb interaction U would prevent the occupation of a
fourth Vσ state, so that the remaining electron is energetically favored to occupy the π states.
Hund’s coupling between the Vσ and Vπ electrons leads then to an S = 1 state with a magnetic
moment of 2µB. This basic picture is illustrated in figures 2 and 5 and is fully supported by
the DFT bands (figure 4). This localized magnetic moment of 2µB is reduced due to the spin
polarization of the π bands in the vicinity of the vacancy.

The spin polarization of the π bands can occur due to two factors: (i) the resonance
coupling with the Vπ ↑ electron with the π continuum bands and (ii) the Kondo-like
antiferromagnetic interaction between the localized vacancy states and the continuum π states.
The first is not well described in a supercell calculation due to the long-range nature of the Vπ

state and the second effect is intrinsically not well described within the band theory.
Our DFT calculations yield a magnetic moment of about 1.7µB. This can be seen by

estimating the number of holes in the small hole pocket in the two bands just above EF at the
0 point in the spin-up bands of figure 4. The spin-down bands must contain exactly the same
number of extra electrons missing from the spin-up bands. Without this pocket of holes, which
represents the band polarization in the immediate neighborhood of the vacancy, the magnetic
moment would be exactly 2µB, corresponding to the full occupancy of Vσ1 ↑↓, Vσ2 ↑ and Vπ ↑.
The existence of the hole pocket reduces this number. We can estimate the number n in the hole
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pocket by computing the total area of the two-hole Fermi surfaces and comparing it to the area
of the supercell Brillouin zone, which yields the value n ≈ 0.15. Since the same number of
electrons must be accommodated in the spin-down bands, this would cause a net reduction of
N↑ − N↓ by 0.30, leading to a net magnetic moment of 1.7µB.

In the literature, the calculated magnetic moment varies widely, anywhere between 1.04
and 1.84µB [12–24]. Typically, the lower values come from calculations, where the Vπ ↑ and
Vπ ↓ bands overlap significantly. We suggest that the variation of the calculated magnetic
moment in the literature is due to the intrinsic deficiency of the supercell method in estimating
the π magnetic moment due to the slow 1/r decay of the Vπ state, which produces an extra
broadening of the Vπ state due to the supercell interaction and does not take into account the
full anti-ferromagnetic polarization of the itinerant π band states.

The exchange splitting 1 of the Vπ state is due to its overlap with the Vσ states which
are localized on the three carbon atoms adjacent to the vacancy. It may be estimated from the
expression

1 ≡ E(V π↓) − E(V π↑) ≈ JH×|90|
2
≈ 0.35 eV, (1)

where the Hund’s rule energy is typically JH ∼ 0.9–1.0 eV for the atoms and |90|
2
∼ 0.4 is

the combined total density of the Vπ state on the carbon triangle as obtained from the DFT
results. The estimated exchange splitting is in agreement with the splitting seen in the DFT
bands (figure 4).

2.5. Relation to Lieb’s theorem

Lieb’s theorem [34] states that for the repulsive one-band Hubbard model on a bipartite lattice
and half-filled band, the ground state has spin S = (1/2)|NB − NA|, NA (NB) being the number
of sites on the two sublattices. It is important to point out that the theorem holds if we consider
only the π -band system and also neglect the small 2NN interactions that couple the two
sublattices. Thus, with a single vacancy present, |NB − NA| = 1 so that according to Lieb’s
theorem we should have a net spin of S = 1/2. However, in addition to the π , we also have
the σ electrons. The Lieb result of S = 1/2 for the π electrons is now coupled to the spins
of the three σ electrons localized near the vacancy, leading to the net spin S = 1 as indicated
in the summary figure (figure 1). We have already argued that the magnetic moment of 2µB

corresponding to S = 1 will be reduced due to the polarization of the band electrons in the local
neighborhood of the vacancy.

3. Vacancy-induced Vσ states

The essential features of the density-functional results may be understood by simple tight-
binding considerations of the effect of the vacancy on the σ and the π bands. We study the
σ states in this section followed by the π states in the next section.

The description of the vacancy-induced Vσ states for graphene is rather simple. In
graphene, the sp2σ states are removed away from EF due to strong interaction with neighboring
orbitals along the C–C bonds. However, with a vacancy present, the three sp2σ orbitals of the
three NN carbon atoms with their lobes pointed toward the vacancy have their usual bonding
partners missing, so that they occur near EF, with their on-site energies εσ slightly below the π

orbital energies because of the s orbital component present in the σ states.
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Figure 6. Spin density n↑ − n↓ at different sites in graphene with a vacancy as
obtained from the density-functional calculations. Green (blue) circles indicate
positive (negative) values, with the area of the circle being proportional to the
spin density. The spin moments on the carbon atoms other than the vacancy
triangle are due to the π electrons, which are long-range due to the slow 1/r
decay of the Vπ state. The hopping integrals T and T ′ between the sp2σ orbitals
on the carbon triangle adjacent to the vacancy have reference to the model
discussed in section 3.

The crystal-field splitting, however, will lift the threefold degeneracy. The main feature can
be described by taking into account the 2NN hopping T between the three dangling bonds in
the undistorted triangle, leading to the 3 × 3 Hamiltonian:

Hcf =

 εσ −T −T
−T εσ −T
−T −T εσ

 , (2)

diagonalization of which yields a double degenerate state at E = T and a single degenerate
state at E = −2T as shown in figure 2, where we call this splitting the crystal-field splitting.
The Jahn–Teller distortion of the triangle splits the double degenerate state further, which
is described by the unequal hopping T 6= T ′. Taking the isosceles-triangle relaxation found
in our DFT results, two of the three hopping terms are modified into T ′ as indicated in
figure 6. From the DFT band structure, we find that T ≈ 1.6 eV, while T ′

≈ 1.2 eV. The
new eigenstates are: Eσ1,σ2 = 2−1(−T ∓

√
8T ′2 + T 2) and Eσ3 = T with the corresponding

(unnormalized) wave functions 91,2 = ((−T ±
√

8T ′2 + T 2)/T ′, 1, 1) and 93 = (0, −1, 1). This
simple model suggests a Jahn–Teller distortion of the carbon triangle surrounding the vacancy.

The Jahn–Teller interaction is of the type E ⊗ e (both electronic and vibrational states
are doubly degenerate) in a trigonal (D3h) symmetry. With this lattice distortion, the trigonal
symmetry is broken. The distortion removes the double degeneracy and the two states (shown in
figure 2 as Vσ2 and Vσ3) are now split by the amount 2−1(3 T −

√
8T ′2 + T 2) ≈ 4(T − T ′)/3 ≈

0.55 eV. Since there are only three electrons available to the Vσ states, Vσ1 is occupied by
two electrons, while the lone remaining electron occupies the Vσ2 state. The spin degeneracy
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is removed by Hund’s coupling with the electron occupying the Vπ state, producing the spin
structure indicated in figure 2. The wave function 92 corresponding to the Vσ2 state shows that
the maximum weight (∼66%) comes from the sp2σ dangling orbital of the apical atom of the
carbon triangle, which is consistent with the spin density plotted in figure 6. The Jahn–Teller
distortion is actually dynamic, with the carbon triangle tunneling between three equivalent
minima on the adiabatic potential surface of the E ⊗ e Jahn–Teller problem, an issue we discuss
elsewhere [35].

4. Vacancy-induced Vπ states

In this section, we discuss the origin of the localized state—the so-called ‘zero-mode’
state—near the band center of the π bands. Understanding the origin and ‘quasi-localized’
nature of the zero-mode state is an essential part of the interpretation of the full band calculation
using DFT.

If NN interactions alone are present, the ‘zero-mode’ state is a localized state with energy
exactly at the band center. If, in addition, higher-neighbor interactions are also present but not
too large, as is the case for graphene [29], then the localized state turns into a sharply peaked
resonance state owing to its overlap with π bands and occurs not too far away from the band
center.

4.1. The existence of the zero-mode state

According to the zero-mode theorem [25], which is in fact valid for any bipartite lattice with NN
interactions, whenever there is an imbalance in the number of atoms in the two sublattices of a
bipartite lattice, namely n = NB − NA > 0, there are n degenerate solutions with the eigenvalue
εB (the on-site energy of the majority sublattice), with the wave functions residing entirely on
this sublattice. This can be seen, from the following simple considerations, as an alternative to
Pereira et al’s proof that used the rank-nullity theorem in linear algebra [25].

We begin with the conjecture that there are some solutions where the wave functions live
completely on the majority sublattice (B), and proceed to find them. Thus we have(

HB B HB A

H†
B A HAA

)(
9B

0

)
= E

(
9B

0

)
, (3)

where 9B is a vector in the B sublattice of dimension NB and there is null contribution from
the A sublattice to the wave function. It will be clear from the following discussion that for the
theorem to hold, the B sublattice NB × NB Hamiltonian is restricted to the diagonal form

HB B = εB I, (4)

and there are no restrictions on the remaining part of the Hamiltonian. The specific form of
HB B means that there is no site disorder, nor is there any interaction between the atoms on the
B sublattice (hence it will fail if interactions beyond the NN are present, which will produce a
non-diagonal HB B). However, such restrictions need not apply to the A sublattice, so that the
NA × NA HamiltonianHAA for the minority sublattice can have diagonal disorder and also there
is no restriction on the form ofHB A as well. This means that the A sublattice atoms can interact
between themselves and with the B sublattice atoms as well without invalidating the theorem.

New Journal of Physics 14 (2012) 083004 (http://www.njp.org/)

http://www.njp.org/


12

The wave function 9B thus satisfies

HB B9B = E9B, (5)

H†
B A9B = 0. (6)

The first of these equations tells us that if conjectured solutions of the form (9B, 0) exist, then
they must have energy E = εB and there would be at most NB such degenerate solutions; the
equation does not place any constraints on the individual components of 9B .

Turning to equation (6), there are NB components of 9B to be determined but only NA <

NB equations to determine them. This means that the solutions cannot be fully determined.
However, if we specify NB − NA components of 9B , then the remaining components are
uniquely determined as linear functions of these components. These solutions are therefore of
the form

9B = (φ1, φ2, . . . , φNB−NA; f1, f2, . . . , fNA), (7)

where we can choose the φi ’s arbitrarily and the fi ’s are then just linear combinations of φi ’s
( fi =

∑NB−NA
j=1 ci jφ j , where the expansion coefficients are determined by H†

B A in equation (6)).
Thus the number of linearly independent solutions is given by the number of ways in which
we can choose linearly independent solutions in the subspace (φ1, φ2, . . . , φNB−NA), which is
clearly NB − NA. This proves the conjecture and theorem.

It is easy to see why the theorem is not valid if there is on-site disorder on the majority
sublattice or interactions beyond the NN, which introduces off-diagonal terms in HB B . So,
equation (4) is no true longer. This means that equation (5) puts constraints on the components
of 9B in order to satisfy the eigenvalue problem, and as a result equations (5) and (6) cannot
both be satisfied simultaneously. For example, if we use the form equation (7) which satisfies
equation (6), we are only left with the freedom to choose φ1, φ2, . . ., φNB−NA and this is
not enough to satisfy the eigenvalue problem of equation (5). There is no such problem if
HB B = εB I , since any vector (φ1, φ2, . . ., φNB−NA ; f1, f2, . . ., fNA) is a solution with E = εB .

The theorem has an important bearing on the results of the supercell calculations, both
tight-binding and density functional. In these calculations, the vacancies are repeated in each
supercell, connected by the superlattice translational vectors, and hence are all located on the
same sublattice, which forms the minority sublattice. If n is the number of supercells in the
crystal, then this is also the imbalance in the number of atoms in the two sublattices n =

NB − NA. According to the theorem, there should be n zero modes in the Brillouin zone, which
is also precisely the number of Bloch momentum points in the Brillouin zone. These states thus
show up in the form of a dispersionless band in the tight-binding supercell calculations at E = 0.

If hopping beyond the NN is present or if the on-site energies of the different atoms are
different, then the theorem does not hold. However, the hopping beyond the NN in graphene
is small [29] and the on-site energies are negligibly different on sites close to the vacancy as
obtained from the DFT calculations. Because these effects are small, a clearly identifiable,
nearly dispersionless zero-mode band is found in the DFT calculations as can be seen from
figure 4, as well as in the higher-neighbor tight-binding results (figure 7), where the zero-mode
band is marked by red dots.

4.2. Tight-binding results: direct diagonalization of the Hamiltonian

In order to better understand the formation of zero-mode states, we have studied the vacancy
π bands with the standard tight-binding model of the pz orbitals containing both NN and 2NN
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Figure 7. Tight-binding band structure obtained from the Hamiltonian
equation (8) for the 72-atom 6 × 6 supercell both with and without a vacancy.
The band structure without the vacancy is shown in the left panel. The Dirac
points K and K ′ of the original graphene Brillouin zone get folded into the 0

point of the supercell Brillouin zone and the two linear Dirac bands are clearly
seen in the left panel. The middle and right panels show the zero-mode states
(red dots) with and without the 2NN interaction t ′. In the NN tight-binding
approximation (middle panel), all zero modes have the same energy and live
exclusively on the majority sublattice, whereas with the 2NN interaction, the
zero-mode states have a band dispersion and leak into the minority sublattice as
well. The sublattice with the vacancy atoms is labeled A and the total number
of states in different bands (not counting spin degeneracy) is shown on the right,
with NA and NB denoting the total numbers of atoms in the two sublattices of
the entire crystal.

interactions. In particular, we look for the vacancy-induced zero-mode states discussed in the
previous subsection.

The tight-binding Hamiltonian is

HTB = −t
∑
〈i j〉σ

c†
iσ c jσ + t ′

∑
〈〈i j〉〉σ

c†
iσ c jσ + h.c., (8)

where −t and t ′ are the NN and 2NN interactions with the signs chosen such that t, t ′ > 0
(t ≈ 2.91 eV and t ′

≈ 0.16 eV for graphene [29]).
The band structures and the DOSs are shown in figures 7 and 8. The electron counting

in the band structure figure 7 is as follows. Both the lower and the upper bands contain in
total (integrated over the Brillouin zone) NA states each, whereas the zero-mode band contains
NB − NA states, making a total of NA + NB states, as must be the case. We have one π electron
per site present in the system, so that taking the spin into account, the entire lower subband is
full, while the zero-mode states are half full. For the single vacancy (NB − NA = 1), this leads
to a single occupied electron in the zero-mode states, resulting in S = 1/2 in agreement with
Lieb’s theorem [34].
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Figure 8. The tight-binding π DOSs of graphene with a vacancy either with NN
interactions alone (left) or with both NN and 2NN interactions present (right), as
obtained from the tight-binding Hamiltonian equation (8).

As discussed in the previous section, if NN interactions alone are present, we should have
NB − NA zero-mode states at E = 0 exactly. That is why the zero-mode band in the middle
panel of figure 7 is completely flat. However, if, in addition, 2NN interactions are also present,
then the energies of the zero-mode states are not guaranteed to be the same and we see a spread
in the energy of these states, which shows up as a dispersion in the zero-mode band, as seen
from the right panel of figure 7.

Here, the vacancy site was modeled by simply removing a lattice site, corresponding to
the vacancy potential U0 = ∞. In a real material, however, U0 is large but finite. The effect of a
finite U0 is that (i) it causes the zero-mode state to occur slightly below the mid-gap (E = 0) and
(ii) the sharp zero-mode state turns into a resonance state due to interaction with the continuum
π bands. This can be best described with the GF approach discussed in the next subsection.

4.3. Impurity Green’s function and the zero-mode state in the π bands

In this section, we investigate the effect of a single impurity on the π electron states by studying
Dyson’s equation and show that the zero-mode state emerges as the strength of the impurity
potential U0 is gradually increased. For the vacancy, this potential is large but finite, so that the
results obtained in this section are helpful in understanding the nature of the zero-mode state in
the actual structure with a finite vacancy potential.

The wave function of the zero-mode state is obtained from the Lippmann–Schwinger
equation. Consistent with previous results [25, 36], we find that (i) the zero-mode state consists
of wave functions from the majority sublattice alone and (ii) it is quasi-localized decaying as
1/r as a function of distance from the vacancy in the limit of the linear-band approximation. In
addition to these known results, our analysis allows us to (i) obtain the oscillatory phase factors
in the zero-mode wave function due to the interference of the two Dirac points and (ii) compare
the linear-dispersion results with the full tight-binding band result by computing the GFs for
large distances in both cases.

The vacancy is modeled by adding an on-site perturbation V to the unperturbed NN tight-
binding Hamiltonian, so that

H=H0 + V, (9)
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where H0 = −t
∑

c†
iαc jβ + h.c., iα being the site-sublattice index, and

V = U0c†
0Ac0A, (10)

where U0 is the strength of the potential due to the impurity on the A-sublattice of the central
cell. The vacancy corresponds to the value of U0 → ∞.

A key quantity of interest here is the unperturbed GF, G0(E) = (E + iη −H0)
−1, the

calculation of which was discussed in our earlier paper that studied the Ruderman–Kittel–
Kasuya–Yoshida (RKKY) interaction in graphene [37]. As usual, the imaginary part of the GF
contains information about the DOS: ρ0(E) = −π−1Im G0(E). The GF G(E) in the presence
of perturbation will be obtained from Dyson’s equation.

Since we will be interested in the local density of states (LDOS) in the various carbon sites
and how they are modified by the presence of an impurity, we need to calculate the real-space
matrix elements G0

iα, jβ(E) ≡ 〈iα|G0(E)| jβ〉. This may be done by going to momentum space

and defining the Bloch functions for the electrons |Ekα〉 = N−1/2
∑

i eiEk·Eriα |iα〉, with Eriα = ERi + Eτα

being the position vector of the αth atom in the i th unit cell. The unperturbed Hamiltonian H0

in this basis set becomes

HEk =

(
0 f (Ek)

f ∗(Ek) 0

)
,

where f (Ek) = −t (eiEk·Ed1 + eiEk·Ed2 + eiEk·Ed3) and Ed1, Ed2 and Ed3 are the positions of the three NNs.
Diagonalization of the Hamiltonian yields the eigenenergies E(Ek) = ±| f (Ek)|, which when
expanded around the Dirac points lead to the usual linear band structure E(Eq) = ±vF|Eq|,
where Eq = Ek − EK D is the deviation from the Dirac point in the Brillouin zone. Here the Fermi
velocity vF = 3ta/2, where a is the carbon–carbon bond length. Note that unlike in our previous
work [37], vF is defined here as a positive quantity, since t is positive.

The real-space GFs are conveniently obtained by first calculating the momentum-space
GF, which can be easily shown to be G0(Ek E) ≡ 〈Ekα|G0(E)|Ekβ〉 = (E + iη +HEk)((E + iη)2

−

| f (Ek)|2)−1. A Fourier transform then yields the real-space unperturbed GF, namely

G0
iα, jβ(E) =

1

N

∑
Ek

eiEk·(Eriα−Er jβ )G0
αβ(

Ek E), (11)

which can be calculated by a simple brute-force summation over the Brillouin zone. It can also
be computed by a second method using the Horiguchi recursive technique [37, 38]. However,
the latter, despite being computationally fast, has convergence problems [39] for distances
| ERi − ER j |> 7a so, in this case it is a better method to use only smaller distances.

The perturbed GF is related to the unperturbed GF through Dyson’s equation: G =

G0 + G0 VG. Using the localized form of the impurity potential, equation (10), and taking the
matrix elements, we immediately obtain, for the real-space GF, the result

G iα, jβ(E) = G0
iα, jβ(E) + U0×G0

iα,0A(E)G0A, jβ(E). (12)

We are specifically interested in the on-site GFs with α = β and Ri = R j , which give the
LDOS on the A and B sites at distance riα = Ri + τα from the impurity site. Equation (12) is
easily inverted to yield the perturbed G(E) in terms of the unperturbed G0(E), namely

G iα,iα(E) = G0
iα,iα(E) +

U0G0
iα,0A(E)G0

0A,iα(E)

1 − U0G0
0A,0A(E)

. (13)
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Figure 9. On-site GF G0
0A,0A(E) for the π bands computed by the Horiguchi

method and the energy of the resonance state, indicated by a black dot, obtained
from Dyson’s equation: U0 F0(E) = 1. As U0 → ∞, the solution moves to
E → 0, leading to the sharply localized zero-mode state at the band center.

The LDOS at different sites may be obtained by taking the imaginary parts of the diagonal
elements of the GF: ρiα(E) = −π−1Im G iα,iα(E). It immediately follows from equation (13)
that the LDOS at the impurity site has the much simpler form

ρ0A(E) =
ρ0(E)

(1 − U0 F0(E))2 + (πU0ρ0(E))2
, (14)

where ρ0(E) = −π−1 Im G0
0A,0A(E) is the unperturbed LDOS at the central site, which is of

course the same for every site in unperturbed graphene, and F0(E) = Re G0
0A,0A(E). Note

that we have defined here ρ0(E) to be the unperturbed DOS per sublattice per spin (which
is independent of the sublattice or the cell index) and ρiα(E) is the corresponding perturbed
quantity for the iα site.

The resonance condition follows from equation (14), namely

1 − U0 F0(E0) = 0, (15)

where E0 is the resonance energy. The graphical solution to this equation is shown in figure 9.
There are four solutions for E0: the two solutions at E0 = ±t do not produce much change in
the DOS, as may be inferred from equation (14), due to the diverging DOS ρ0(E) there, and the
bound state with E0 → U0 for large U0 is inconsequential because it is removed to ∞, which
then leaves the sole resonance state indicated by the black dot in figure 9. Its energy goes to
0 in the limit U0 → ∞ and the oscillator strength to 1, producing the zero-mode state for the
vacancy.

The total DOS in the presence of the perturbation may be computed by taking the
trace of equation (13) for the entire lattice. Using the identity

∑
iα G0

iα,0A(E)G0
0A,iα(E) =

−dG0
0A,0A(E)/dE and some tedious algebra, the result is

ρtot(E) = 2ρ0(E) +
1

N
×

−U0[U0ρ0(E)F ′

0(E) + ρ ′

0(E)(1 − U0 F0(E))]

(1 − U0 F0(E))2 + (πU0ρ0(E))2
. (16)
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Figure 10. Changes in the total sublattice DOS due to the addition of the impurity
with U0 = 5t as computed from the factors by multiplying the coefficient
‘1/N ’ in equations (17) and (18). The emergence of the zero-mode state on
the B sublattice at E = 0 is clearly seen, which grows into a δ function as
U0 → ∞. The remaining changes in the DOS go to zero as 1/N , except for
the (unimportant) bound state on the A sublattice (occurring at E/t ∼ 6 in the
top panel), which becomes a δ-function bound state as E → ∞ in the limit of
U0 → ∞.

Similarly, by taking the trace of equation (13) over the cell index alone, the individual sublattice
DOS may be found, which for the A sublattice reads as

ρA(E) = ρ0(E) +
1

N
×

−U0[(1 − U0 F0(E))Im ξ(E) − πU0ρ0(E)Reξ(E)]

π [(1 − U0 F0(E))2 + (πU0ρ0(E))2]
, (17)

where ξ(E) = (1/N )
∑

k[G0
AA(k E)]2 and the DOSs are, again, per sublattice and per spin. A

similar expression for ρB(E) reads

ρB(E)=ρ0(E)+
1

N
×

−U0[(1−U0 F0(E))(πρ ′

0(E)−Im ξ(E))+πU0ρ0(E)(F ′

0(E)+Re ξ(E))]

π [(1−U0 F0(E))2+(πU0ρ0(E))2]
.

(18)

It can be verified from equations (16)–(18) that ρtot(E) = ρA(E) + ρB(E), so that these
equations are consistent.

The numerical results are summarized in figures 10–12. The factors multiplying the 1/N
in equations (17) and (18) are the changes in the DOS 1ρA(E) and 1ρB(E) introduced by the
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Figure 11. Total DOS for the A sublattice ρA(E) (top) and the B sublattice
ρB(E) (bottom) for different values of the impurity potential U0/t = 0, 2 and
5, denoted by black dashed, black solid and red dashed lines, respectively. These
results are obtained from equations (17) and (18) by using N = 20 for the
purpose of plotting. The figure shows the evolution of the zero-mode state at
E = 0, which lives completely on the B sublattice in the limit of U0 → ∞, i.e.
opposite to the sublattice in which the vacancy is introduced.

impurity potential, which are shown in figure 10. Figure 11 shows the emergence of the zero
mode in the DOS with E = 0 and that this state resides entirely on the B sublattice in the limit
U0 → ∞. Figure 12 shows the LDOS on the impurity site (ρ0A) and on the nearest (ρ0B) and the
next-nearest sites (ρ1A).

The width of the resonance peak increases with resonance energy E0. Keeping the linear
term in the expansion of F0(E), namely F0(E) ≈ U−1

0 + F ′

0(E0)(E − E0), equation (16) yields
the Lorentzian lineshape

ρtot(E) ≈ 2ρ0(E) +
1

π N

0

(E − E0)2 + 02
, (19)

where the resonance width is given by

0 = −πρ0(E0)/F ′

0(E0). (20)

The width is zero if E0 = 0 and increases with energy as shown in figure 13.
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Figure 12. LDOS at the impurity site ρ1A (top), the NN site ρ0B (middle) and the
next-NN site ρ1A (bottom) obtained from equations (13) and (14) for different
strengths of the impurity potential U0/t = 0, 2 and 5, denoted by black dashed,
black solid and red dashed lines, respectively. As U0 → ∞, the top LDOS goes
to zero (except for the bound state beyond the top of the band whose energy
goes to ∞), and the zero-mode state lives only on the B sublattice, as indicated
by the middle and bottom panels. The prominent zero-mode peak in the middle
panel for U0/t = 5 will develop into a δ-function peak at E = 0 as the impurity
potential U0 → ∞.

4.4. Impurity state wave function

In this section, we study the impurity state Vπ wave function from the Lippmann–Schwinger
equation. The analysis allows us to obtain the well-known 1/r decay of the vacancy state;
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Figure 13. Resonance width of the zero-mode state (Vπ ) as a function of the
resonance energy E0. Both E0 and 0 are in units of the NN hopping, with the
value t ≈ 2.56 eV [29] if the NN hopping alone is kept.

however, in addition we also obtain the oscillatory behavior of the wave function due to the
interference between the two Dirac cones.

Our starting point is the Lippmann–Schwinger equation |9〉 = |90
〉 + G0 V |9〉, where

|90
〉 is the unperturbed state. For the localized impurity potential on the central A site,

V = U0|0A〉〈0A|, the Lippmann–Schwinger equation leads to the wave function

9iα ≡ 〈iα|9〉 = 90
iα +

U0G0
iα,0A(E)90

0A

1 − U0G0
0A,0A(E)

. (21)

We are interested in the low-energy behavior, since that is the region where the resonance state
gets introduced by the impurity as seen from figure 9. The GFs for the full tight-binding band
structure as well as for the linear bands were computed in our previous work [37]. For the linear
bands and in the low-energy limit, the results are

G0
i A,0A(E) = −β

Ac E

2πv2
F

K0

(
−iEr

vF

)
,

G0
i B,0A(E) = α

Ac E

2πv2
F

K1

(
−iEr

vF

)
,

(22)

where Ac is the unit cell area in graphene, K0 and K1 are the modified Bessel functions of the
second kind and Er is the distance vector between the two atoms: Er = Eri A − Er0A for the first GF
and Er = Eri B − Er0A for the second. The multiplicative factors are β = ei EK ·Er + ei EK ′

·Er , which is a real
number for the graphene lattice, and

α = e−iπ/3(ei( EK ·Er−θr ) − ei( EK ′
·Er+θr )), (23)

which is purely imaginary, and the polar angle θr = tan−1(y/x) is defined with the x-direction
taken to be along the vector EK ′ − EK , which are two adjacent Dirac points in the Brillouin zone.

Using the small z expansion for the Bessel functions [40]: K0(z) = −ln(z/2) − γ and
K1(z) = z−1 + 2−1z ln(z/2) + (γ − 1/2)z/2, where γ ≈ 0.577 is the Euler–Mascheroni constant,
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we find that the Bessel functions entering the expressions for the GFs (equation (22)) become,
in the low-energy limit,

K0

(
−

iEr

vF

)
=

iπ

2
sign(E) + ln

2vF

|E |r
− γ,

K1

(
−

iEr

vF

)
= −

vF

iEr
−

iEr

2vF
ln

(
−

iEr

2vF

)
−

(
γ −

1

2

)
iEr

2vF
.

(24)

Plugging these into equation (22), taking the E → 0 limit and retaining the lowest-order terms
in energy, we find the following results:

G0
i A,0A(E) =

Acβ

2πv2
F

×

(
E ln

|E |r

2vF
+ γ E −

iπ

2
|E |

)
,

G0
i B,0A(E)=

Ac Im α

2πv2
F

[
−

vF

r
+

E2r

2vF

(
γ − 2−1 + ln

|E |r

2vF

)
−

irπ

4vF
E2 sign E

]
.

(25)

There is no guarantee that these results, calculated for the linear bands extending to infinite
energy, should agree even for low energies with the GFs for the actual bands, e.g. as obtained
with the tight-binding band structure. Certain elements must exactly agree at low energies,
for example, the imaginary part of G0

0A,0A, which yields the DOS, since at low energies, it is
controlled by the Fermi velocity vF alone. We, nevertheless, find that expressions (25) agree
quite well with the tight-binding GFs, the agreement becoming better with increasing distance.
A comparison between the low-energy GFs, equations (25), and the full GFs for a typical case
is shown in figure 14, which illustrates the symmetry of the GFs. A notable exception is the real
part of the on-site GF G0

0A,0A(E), where the substitution of r = 0 into equation (25) yields
a divergent result. However, we find that the tight-binding GF in this case can be fitted to
expression (25) for G0

0A,0A(E), provided that we use the value r ≈ 0.6a instead of r = 0.
We note that the symmetry properties of the above GF equations (25) are consistent with the

results [38] that follow from the particle–hole symmetry and are valid for all energies, namely
Re G0

iα, jβ(E) = ±Re G0
jβ,iα(E), Im G0

iα, jβ(E) = ±Im G0
jβ,iα(E) and G0

iα, jβ(E) = G0
jβ,iα(E),

where the upper (lower) sign is for α = ( 6=)β. The symmetry properties for specific cases are
illustrated in figure 14.

The nature of the impurity state immediately follows from the Lippmann–Schwinger
expression (21). First of all, note an important point from the expression for the GF
equations (25), namely that all GFs vanish at E = 0 except for the real part of G0

i B,0A, which is
finite and decays as 1/r . This is precisely the reason for the property that the zero-mode state
resides on the majority sublattice B alone and its wave function decays inversely with distance.
These features hold true if NN interactions alone are present on the graphene lattice. If 2NN
interactions are present, then there is no electron–hole symmetry and the behavior of the GFs
near the resonance energy differs from equation (25). The form of the GFs for the latter case is
such that both sublattices contribute to the resonance state near E = 0, an issue that is discussed
in detail elsewhere [41].

Returning to the Lippmann–Schwinger equation (21) and inserting into it the low-energy
expansion for the GFs (equation (25)) and then taking the limit of the resonance energy E0 = 0,
it can be easily seen that as E0 → 0 in the limit U0 → ∞, the impurity wave function follows
the behavior

9 =

(
9i A

9i B

)
=

(
1/ ln |E0|

ci |E0|
−1

)
→

(
0
ci

)
. (26)
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Figure 14. Illustration of the symmetry of the GF and its low-energy behavior,
calculated using the Horiguchi method and the tight-binding band structure.
Dashed and full lines denote the real and imaginary parts, respectively. For the
upper panel, the distance vector of the atom with respect to the impurity is given
by Er = Eri A − Er0A = 2

√
3a(1, 0), whereas for the lower panel, it is Er = Eri B − Er0A =

2a(0, 1), where the coordinates are indicated in figure 6. The points near E = 0
are the low-energy results for the linear bands as given by equation (25).

This is an important result, which states that in the NN approximation, only the B sublattice
component survives for the zero-mode state, it being the stronger infinity. The surviving
component is found to be simply proportional to the real part of the inter-sublattice GF,

9i B ∝ Re G0
i B,0A(E0 → 0), (27)

since its imaginary part vanishes. Using equation (25) and evaluating Im α from equation (23),
we finally obtained the desired result

9B(r) =
N

r
sin[( EK − EK ′) · Er/2 − θr ] cos[( EK + EK ′) · Er/2 − π/3], (28)

where we have suppressed the cell index i , N is a constant, r is again the actual distance vector
of the B site with respect to the impurity position and the two Dirac points in the Brillouin zone
may be taken as K = 2πa−13−3/2(−1,

√
3) and K ′

= 2πa−13−3/2(1,
√

3).
Equation (28) is the central result of this subsection that describes the 1/r decay of the

vacancy-induced Vπ state along with the phase factors. The long-range nature 1/r of the wave
function (28) is well known [36], but the oscillatory factor due to the interference effect of
the two Dirac points is new. The same kind of interference is also present in the oscillations of
the RKKY interactions [37, 42]. The wave function is not square integrable because we used the
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Figure 15. Square amplitude |9|
2 of the zero-mode state on the B

sublattice along the zigzag and armchair directions computed from the
Lippmann–Schwinger result equation (27) using GFs obtained for (a) the
full tight-binding bands (black solid lines) and (b) linear bands (analytical
expression, equation (28)) (red dashed lines). Circles indicate the same quantity
computed from direct diagonalization of the tight-binding Hamiltonian on a
finite lattice consisting of a single vacancy in a 512-atom supercell.

linear band structure, but it will be if we take into account the full band structure. Equation (28),
nevertheless, describes the gross features of the zero-mode state. The wave function changes
sign along different directions, e.g. it changes sign along the zigzag direction but not along
the armchair direction. The kinetic energy gained by the delocalization of the wave function is
exactly canceled by anti-bonding components present in the wave function, so that its energy is
still equal to the on-site energy in spite of the delocalization. The calculated wave function for
the zero-mode state is shown in figure 15. We note that a recent study has shown that the 1/r
decay of the vacancy state remains unchanged even when a repulsive Coulomb interaction is
included in the tight-binding Hamiltonian [43].

5. Summary

In summary, we have studied the electronic structure of graphene with a single substitutional
vacancy from density-functional calculations using the all-electron LAPW method and
interpreted the results with the help of the tight-binding model and the impurity GF approach.
We find that the vacancy induces four localized states, namely three Vσ dangling bond states on
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the carbon triangle and one Vπ resonance state. The dangling bond states cause a Jahn–Teller
distortion, which we found to be a planar distortion of the carbon triangle. Hund’s coupling
between these electrons would then produce the S = 1 state at the vacancy center as indicated
in the summary figure (figure 1). The magnetic moment has two components: (i) the component
2µB coming from the localized vacancy states Vσ and Vπ ; and (ii) an opposite component of
several tenths of µB coming from the spin polarization of the continuum π band states in the
vicinity of the vacancy. The second part is not well described in the supercell band calculations
due to the slow 1/r decay of the ‘quasi-localized’ Vπ wave function. This long-range decay
also means that in an experimental sample it is only for extremely low vacancy concentration
that the truly isolated vacancy limit is reached and as a result the magnetic moment is expected
to be dependent on the vacancy concentration.

In addition to density-functional calculations, we also studied the formation of the Vπ state
in detail using the impurity GF approach for the isolated vacancy, which provided significant
insight into the interpretation of the results of band calculations and the formation of zero-
mode states in the π bands. This zero-mode state is a slowly decaying localized state that lives
mostly in the majority sublattice. It spreads into the minority sublattice (the one containing the
vacancy) and becomes a resonance state due to the second and higher-neighbor interactions as
well as the finite strength of the vacancy potential. The GF approach provided a sinusoidal
phase factor associated with the Vπ wave function described by equation (28). In addition
to an understanding of the vacancy electronic structure, our work provides important insight
necessary for the understanding of impurities in general, such as iron and cobalt dopants and
other complex defects.
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[11] Červenka J, Katsnelson M I and Flipse J C F 2009 Nature Phys. 5 840
[12] El-Barbary A A, Telling R H, Ewels C P, Heggie M I and Briddon P R 2003 Phys. Rev. B 68 144107
[13] Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
[14] Choi S, Jeong B W, Kim S and Kim G 2008 J. Phys.: Condens. Matter 20 235220
[15] Singh R and Kroll P 2009 J. Phys.: Condens. Matter 21 196002
[16] Yang X, Xia H, Qin X, Li W, Dai Y, Liu X, Zhao M, Xia Y, Yan S and Wang B 2009 Carbon 47 1399

New Journal of Physics 14 (2012) 083004 (http://www.njp.org/)

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1080/00018732.2010.487978
http://dx.doi.org/10.1021/jp100230c
http://dx.doi.org/10.1038/nature02817
http://dx.doi.org/10.1103/PhysRevLett.91.025505
http://dx.doi.org/10.1103/PhysRevLett.77.699
http://dx.doi.org/10.1103/PhysRevLett.91.227201
http://dx.doi.org/10.1021/jp983648v
http://dx.doi.org/10.1103/PhysRevB.76.161403
http://dx.doi.org/10.1103/PhysRevLett.104.096804
http://dx.doi.org/10.1038/nphys1399
http://dx.doi.org/10.1103/PhysRevB.68.144107
http://dx.doi.org/10.1103/PhysRevB.75.125408
http://dx.doi.org/10.1088/0953-8984/20/23/235220
http://dx.doi.org/10.1088/0953-8984/21/19/196002
http://dx.doi.org/10.1016/j.carbon.2009.01.032
http://www.njp.org/


25

[17] Faccio R, Fernández-Werner L, Pardo H, Goyenola C, Ventura O N and Mombrú A W 2010 J. Phys. Chem.
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