
Elastocapillary powered manipulation of liquid plug in microchannels

D. George, R. Anoop, and A. K. Sen

Citation: Appl. Phys. Lett. 107, 261601 (2015); doi: 10.1063/1.4939116

View online: http://dx.doi.org/10.1063/1.4939116

View Table of Contents: http://aip.scitation.org/toc/apl/107/26

Published by the American Institute of Physics



Elastocapillary powered manipulation of liquid plug in microchannels

D. George, R. Anoop, and A. K. Sen
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

(Received 13 October 2015; accepted 15 December 2015; published online 30 December 2015)

We report the manipulation of a liquid plug inside a rectangular microchannel, when one of the

channel walls is a deformable membrane, which adjoins another parallel microchannel.

Elastocapillary flow of a driving liquid (DL) through the adjoining microchannel, when approaches

the plug, tries to pull the membrane near the plug, which is initially deflected into the plug, towards

the DL. The plug is transported due to a differential pressure that develops across the plug owing to

the increase in the radius of curvature of the trailing meniscus of the plug. A theoretical model is

proposed to predict the plug velocity, which depends on a parameter J and plug length ~L. The

predictions of the theoretical model show good agreement with experimental data. The dynamic

behaviour of the plug and DL is presented and discussed.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939116]

Rapid development of microfluidics is ascribed to its

myriads of applications in miniaturized bio-analysis, point of

care diagnosis, and drug delivery.1 Owing to this interest,

studies on capillary flows2 have seen a renaissance in the last

decade.3–6 Subsequently, characteristics of capillary flows

were exploited to develop complex self-powered microflui-

dic systems.7–9 Studies on the possible use of capillarity and

elasticity for mass production of 3D micro and nanoscale

objects—capillary origami—are also reported.10 In elastoca-

pillary flow through deformable micro and nanochannels,

significant enhancements in capillary flow performance have

been observed.11,12 Dynamic and static analyses of elastoca-

pillary phenomena have also been reported.13,14 Dynamics

of liquid plugs in narrow confinements received attention

mainly due to its significance in pulmonary system15 and

oscillating heat pipes.16 In nature, certain sea birds utilize

the pressure difference across the two menisci of capillary

plugs for the transport of prey-laden water droplets mouth-

ward.17 Self-propagation of liquid plugs in narrow channels

was achieved in a tapered capillary tube18 and by juxtapos-

ing two liquid plugs of different surface tension values.19

However, the applications of later techniques in microflui-

dics may be limited by the fabrication complexity, lack of

proper control over the plug once it is placed inside a micro-

channel, or the adulteration of the liquid plug due to the use

of additional liquids.

Here, we report the transport of a liquid plug inside a

rectangular microchannel, when one of its walls is a deform-

able membrane, which adjoins another parallel microchannel

(Fig. 1). Due to the Laplace pressure jump across its curved

interfaces, the liquid plug is below ambient pressure.20 The

bottom membrane wall of the microchannel containing the

plug deflects into the plug due to the difference in pressure

between the plug and the ambient air inside the adjoining

microchannel. A driving liquid (DL) is introduced at the inlet

of the adjoining microchannel, which fills the channel due to

capillary action. When the DL approaches the plug, the

membrane near plug is pulled downward into the DL thus

increasing the radius of curvature of the trailing interface of

the plug. A differential pressure is created across the plug

due to which it is transported in the direction of the DL flow.

We report a theoretical model to predict the plug velocity,

which depends on a non-dimensional parameter J and plug

length ~L. The location of the leading end of the plug and DL

menisci with time and the effects of membrane thickness and

plug length on the plug velocity are predicted using model

and experimentally measured. Finally, the important flow

regimes are identified and discussed.

First, we analyse the initial upward deflection of the

membrane due to the pressure difference �ppðxÞ between the

plug and ambient air inside the adjoining microchannel (Fig.

1(a)). Consider a thin rectangular membrane of width w,

length L, and thickness t with its edges y ¼ 6w=2 built-in.

Let E and � denote, respectively, its Young’s modulus and

Poisson’s ratio. Assuming the pure bending theory for thin

plates gives a reasonable approximation (since maximum

deflection is less than half the membrane thickness), we take
@4x
@x4 þ 2 @4x

@x2@y2 þ @4x
@y4 ¼ � pp xð Þ

D
, where D ¼ Et3=12ð1� �2Þ is

the flexural rigidity. By using x0 ¼ x=L, y0 ¼ y=w, x0

¼ x=d̂p, and p0pðx0Þ ¼ ppðxÞw4=d̂pD, where d̂p is maximum

membrane deflection, we obtain the non-dimensional equa-

tion (primes dropped for clarity)

e4
@4x

@x4
þ 2e2

@4x

@x2@y2
þ @4x

@y4
¼ �pp xð Þ: (1)

Since e ¼ w=L � 1, the terms involving e4 and e2 are being

neglected. Now, integrating the simplified equation, using

boundary conditions at the built-in edges; x ¼ 0 at y ¼
6x=2 and dx=dy ¼ 0 at y ¼ 6w=2, we get

x x; yð Þ ¼ dp xð Þ 4
y

w

� �2

� 1

 !2

; (2)

where dpðxÞ ¼ xðx; 0Þ ¼ �a ppðxÞw4=D is the maximum

deflection, at any given x, which occurs at y ¼ 0, the con-

stant a ¼ 1=384. The pressure �ppðxÞ acting on the mem-

brane is maximum and thus the maximum deflection d̂p
occurs at x ¼ x̂p, a short distance away from the plug
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meniscus x ¼ ~xp (Fig. 1(c)). Our numerical simulations

showed that ~dp ¼ d̂p=2 is a very good approximation, which

is in agreement with the earlier works.11 The change in pres-

sure over the short distance from ~x to x̂ is neglected, so that

ppð~xpÞ ¼ ppðx̂pÞ ¼ �pmp. Assuming w � hp, where hp is the

height of the plug channel, we equate the pressure jump

across the plug meniscus pmp with the pressure that corre-

sponds to the membrane deflection �ppðxÞ as

2rp cos hp
1

hp � dp

� �

¼ 2dpD

aw4
; (3)

where rp is the surface tension and hp is the contact angle of

the plug. Solving for the upward deflection at the meniscus

gives ~dp=hp ¼ gp ¼ ð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffi

1� J
p

Þ where J ¼ 4aw4

rp cos hp=Dh
2
p, which represents the ratio of the capillary

force to the mechanical restoring force. Initially, the radius

of curvatures of the leading and trailing menisci of the plug

and deflections of the membrane at these two locations are

equal (i.e., ~dp) (Fig. 1(a)).

When the DL is introduced, there is a downward deflec-

tion of the membrane close to the advancing capillary menis-

cus. When the meniscus of the DL approaches the trailing

interface of the plug, it tends to pull the membrane down-

ward. Since, at the trailing interface of the plug, the mem-

brane is already deflected upward, the magnitude of this

upward deflection is reduced (Fig. 1(b)). The resultant

deflection of the membrane d is obtained by considering the

pre-existing upward pull owing to the pressure �ppðxÞ due to
pressure jump across the trailing end of the plug and the

competing downward pull owing to pressure �pdðxÞ due to

the pressure jump across the DL meniscus as

2gDhp

aw4
¼ 2rp cos hp

hp 1� gð Þ �
2rd cos hd

hd 1þ hp

hd
g

� � ; (4)

where p and d denote plug and DL, respectively, and

d ¼ hpg. The downward pull of the membrane near the trail-

ing meniscus of the plug creates a difference in the radii of

curvatures of the leading and trailing menisci of the plug.

Thus, a differential pressure is created, which is responsible

for the transport of the plug. When the plug is set to motion,

there is a balance between the driving differential pressure

Dpd ¼ ðDpl � DptÞ, i.e., difference between the pressure

jumps at the leading and trailing menisci, DPl ¼ 2r cos hpl=
ðhp � dpÞ and DPt ¼ 2r cos hpt=ðhp � dÞ, respectively, and
the viscous pressure drop DPv.

16,19 During experiments, we

observed that the trailing meniscus of the plug completely

wets the channel wall; thus, the dynamic contact angle of the

trailing meniscus hpt � 0�. The dynamic contact angle of the

leading meniscus hpl is found in terms of the static contact

angle hp using the expression21 cos ðhplÞ ¼ cos ðhpÞ � 2ð1þ
cos ðhpÞÞCa0:5 , where Ca ¼ ðlpUpÞ=rp, where lp is the plug
viscosity and Up is the plug velocity.

The viscous pressure drop DPv is found by considering

fully developed velocity profile vp ¼ upðy;zÞex and pressure

ppðxÞ constant at a cross-section and using Poiseuille equa-

tion lpr2up ¼ @pp=@x (similar to Ma16 and Bico and

Qu�er�e19). By changing variables using y
_ ¼ y=w, z

_ ¼ z=hp
and u

_ ¼ up=Up (considering flow rate Qp ¼ whpUp), we get

a2p
@2u

_

p

@y
_2

þ @2u
_

p

@z
_ 2

¼
wh3p

lpQp

@pp
@x

¼ Kp; (5)

where ap ¼ hp=w is channel aspect ratio and Kp is a constant.

For channels of small aspect ratios (i.e., hp � w), considered

in our experiments, the first term in Equation (5) is dropped.

Equation (2) gives the variation of the channel height across

the width as h
_

ðy_Þ ¼ 1� gð4y_2 � 1Þ2, where h
_

ðy_Þ
¼ hðyÞ=hp and g ¼ dpðxÞ=hp. Using no-slip boundary condi-

tions at the bottom z
_ ¼ 0 and top z

_ ¼ hðy_Þ walls, integrating
Equation (5), we get the velocity profile u

_

pðy_;z_Þ
¼ ð1=2ÞKpz

_½z_ � h
_

ðy_Þ�. The form of the non-

dimensionalization requires
Ð Ð

dy
_
dz
_
u
_ðy_; z_Þ ¼ 1, from

which we obtain Kp ¼
wh3p
lpQp

@pp
@x

� �

¼ �12=F gpð Þ. So the hy-

draulic resistance per unit length rp ¼ 1
Qp

� @pp
@x

� �

¼ 12lp
bwh3p

1
FðgpÞ ; where F gpð Þ ¼ 1� 8gp

5
þ 128g2p

105
� 1024g3p

3003
. Thus, the aver-

age channel height �hp � hp½1� ð16g=15Þ�. Finally, the

viscous pressure loss Dpv ¼ 12lpLUp=bp �h
2

p, where L is the

plug length. To ensure that velocity u
_ðy_;z_Þ satisfies the no-

slip condition at the side walls y
_ ¼ 61=2, a factor bp ¼

1� 0:63ap is included, similar to that reported elsewhere.22

Now, by equating the driving pressure DPd with viscous

pressure drop DPv and using the deflection of the membrane

at the trailing meniscus d ¼ hpg and leading meniscus
~dp ¼ hpgp, we get

cos hpl

1� gp
� 1

1� g

 !

¼ 6~LCa

bp 1� 16g

15

� �2
; (6)

where ~L ¼ L=hp is the non-dimensional plug length.

The above equation is solved numerically in MATLAB to

predict the capillary number Ca and thus the velocity of the

plug Up.

FIG. 1. (a) Liquid plug (indicated by

dotted area) and the resulting mem-

brane deflection. (b) DL approaches

the trailing interface of the plug thus

pulls membrane downward and

changes the curvature of the trailing

interface. Close-up views of the (c)

plug meniscus and (d) DL meniscus.

(e) Optical images of the device.
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The dynamics of the DL meniscus is obtained by consid-

ering the increase in the driving pressure due to the decrease

in the radius of curvature of the meniscus owing to the

membrane deflection and the corresponding increase in the

viscous pressure drop due to the decrease in the flow cross-

sectional area. Before the DL meniscus interacts with the

plug, the position of the DL meniscus ~xd as a function

of time t is expressed as ~xdðtÞ ¼ Wf

ffiffi

t
p

, where Wf is the

modified Washburn coefficient Wf . For the DL channel, we

have ddðxÞ ¼ �apdðxÞw4=D. By differentiating, we get � dpd
dx

¼ Dhd
aw4

dgd
dx
; for 0 	 x 	 x̂d in (Fig. 1(d)). Similar to the plug,

we analyze the fully developed flow inside the DL to arrive

at an equation similar to Equation (5). Using
Ð Ð

dy
_
dz

_

u
_

dðy_; z_Þ ¼ 1, the hydraulic resistance per unit length of the

deformed cross-section Rd ¼ 1
Qd

� @pd
@x

� �

¼ 12ld
bwh3

d

1
FðgdÞ ; with

f ðgdÞ ¼ 1� ð8=5Þgd þ ð128=105Þg2d � ð1024=3003Þg3d , we

rearrange to get � dpd
dx

¼ RdQdðtÞ ¼ 12ld
bdwh

3
d

QdðtÞ
f ðgdÞ ; where QdðtÞ is

the instantaneous flow rate and bd ¼ 1� 0:63ðhd=wÞ. By

equating the two expressions for � dpd
dx

and integrating from

x ¼ 0 to x̂d, we get

12aldw
3

bdDh
4
d

Qd tð Þ x̂d tð Þ ¼ F ĝdð Þ; where

F ĝdð Þ ¼ ĝd 1� 4ĝd
5

þ 128ĝ2d
315

� 256ĝ3d
3003

� �

: (7)

Assuming that the inertial effects23 are negligible, we use

QdðtÞ � whd
d
dt
x̂dðtÞ

Ð Ð

1 dy
_
dz

_jx¼~xd to get x̂d
dx̂d
dt

¼ W2
f

2
; where

the modified Washburn coefficient Wf for the DL channel is

Wf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bdF ĝdð ÞDh3d
6aA ĝdð Þldw4

s

; where A ĝdð Þ ¼ 1� 4=15ð Þĝd: (8)

When the DL meniscus approaches the trailing meniscus

of the plug, owing to the pre-existing upward membrane

deflection, there is a modification in the DL meniscus

curvature and hence the corresponding driving pressure

and velocity. The modified maximum deflection of the

membrane d̂dp (or ĝdp ¼ d̂dp=hd) is found by equating

the driving pressure (approximated as the pressure at the

DL meniscus) and the pressure causing the membrane

deflection at this point as ĝdp � 2rda cos hdw
4=

ðDh2dð1þ hpg=hdÞ. Thus, the modified reduced channel

cross-sectional area at the meniscus is obtained as

AðĝdpÞ ¼ whdð1þ 8 ĝd=15Þ. The modified Washburn coef-

ficient, which represents the velocity of the DL meniscus,

while it crosses the plug is approximated as

Wf p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bdF ĝdp
� �

Dh3d

6aA ĝdp
� �

ldw
4

s

: (9)

Once the DL crosses the plug, the driving pressure increases

again due to decrease in the channel cross-section. Since the

length of the plug is small, once the DL overtakes the plug,

the effect of the plug on the DL flow is negligible.

The devices were fabricated24 by bonding two identical

PDMS microchannels with width of 1100 lm and height of

160 lm with a thin PDMS membrane12 with different thick-

nesses of 60–180lm sandwiched in between the two micro-

channels (Fig. 1(e)). The device was mounted on a

microscope stage (Axio Vert A1, Zeiss). First, a plug is cre-

ated inside the upper microchannel by introducing 2 ll of liq-

uid into the channel and then removing the excess liquid.20

A DL drop of 0.1ml is introduced into the adjoining micro-

channel, which fills the lower channel due to elastocapillary.

The motion of the meniscus of the DL and plug are recorded

using high-speed camera (FASTCAM SA3, Photron). The

distance travelled by the plug and DL meniscus with time

measured from experiments and predicted by model show

good agreement within 11% (Fig. 2).The location of the plug

with time was predicted from the velocity using Equation

(6). The distance travelled by the DL meniscus was predicted

using Equations (8) and (9), respectively, before and after

the DL meniscus approaches the plug. The ratio of viscous

force to capillary force is of the order of 1 even after a short

distance of �1.0mm from the driving capillary flow inlet.

Hence, inertia effects23 are negligible and the use of

Washburn model is justified. The error in position and time

measurements were 60.125mm and 60.004 s, respectively.

Figs. 3(a) and 3(b) show the effect of J and plug length ~L on

plug velocity (or Ca) from the experiments and model,

respectively. As J increases, the capillary force becomes

stronger as compared with the restoring force due to which

the driving differential pressure across the plug increases,

which gives rise to higher plug velocity. While the model

predicts a continuous increase in the velocity with the

increase in J, for J> 0.28, a sudden decrease in velocity was

observed in experiments. For higher J, the elastocapillary

force is so strong that the initial upward deflection of the

membrane is significant. The DL meniscus, when approaches

the plug, experiences a diverging channel (neglected in the

model) due to which the pressure jump across its meniscus is

reduced significantly and thus the DL has negligible effect

on the plug. In Fig. 3(b), the decrease in the plug velocity

with the increase in the plug length is attributed to the higher

viscous resistance offered by longer plugs. In Fig. 3(a), the

maximum difference between the model predictions and ex-

perimental data is found to be <15% up to J¼ 0.28 (i.e.,

before side wall-wetting becomes predominant). A good

match (error< 10%) is observed at lower values of J but at

FIG. 2. Distance travelled by the menisci �X ¼ x=hd of the DL (mineral oil)

and the liquid plug leading end (olive oil) with time t=s ¼ t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r cos h=3lhd
p

,
~L¼ 18.75, size of channels is 1100
 160lm.
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higher J values (i.e., J> 0.28), the error increases due to

large initial upward deflection of the membrane, which is not

accounted for in our model. Similarly, in Fig. 3(b), the match

between the model and experiment is good (error< 10%) for

shorter plugs, i.e., up to ~L¼ 31.25. However, for longer

plugs (~L> 31.25), the error is as high as 20%. This could be

because, for longer plugs, the meniscus takes much longer

time to completely cross the plug and therefore the reduction

in pressure difference across the membrane at the trailing

meniscus of the plug is more apparent, which is not

addressed in our model. Thus, our model is accurate for

lower range of J and ~L values. In order to reduce the error at

higher values of J and ~L, an improved 3D model is required.

However, development of such a 3D model is extremely

challenging and left as a future scope of the work.

Depending on the value of J, important flow regimes are

observed. For J< 0.04, due to large restoring force as com-

pared with capillary force, the DL is unable to transport the

plug. The membrane deflection is negligible and DL menis-

cus traverse through a rectangular channel and with its

meniscus shape unchanged. For 0.40> J> 0.04, the DL is

able to transport the plug (over dm � 0.5mm for J¼ 0.13),

shown in Fig. 4(a), at various time instants (i-iii). According

to Equation (2), the initial membrane deflection varies in

y-direction (i.e., across width) as x x; yð Þ ¼ dp xð Þ

4
y
w

� �2 � 1

� �2

. Due to the pre-existing deflection of the mem-

brane, the DL meniscus, while crossing the trailing interface

of the plug, experiences a diverging channel of height

h ¼ hd þ 16dp xð Þ y
w

� �2 � 1
4

� �2

. By approximating the radius

of curvature in the x-z plane Ry ¼ ðh=2 cos hÞ, the Laplace

pressure jump across any point along the DL meniscus is

obtained as

DP¼ r
1

Ry

þ 1

Rz

� �

¼ r
2 cosh

hd þ 16dp xð Þ y

w

� �2

� 1

4

 !2
þ 1

Rz

0

B

B

@

1

C

C

A

;

(10)

where Ry and Rz are the first and second radii of curvature of

the DL meniscus, respectively. The radius of curvature Rz of

the DL meniscus is in the x-y plane. Similar expression for

the pressure drop across a liquid meniscus inside a flexible

nanochannels has been reported by van Honschoten et al.25

Also, this pressure drop is fixed throughout the liquid menis-

cus as reported by Tas et al.20 The deflected channel height

increases from hp at the sidewalls to hp þ duðxÞ at the centre

(y¼ 0). Thus, Ry ¼ hp þ 16du xð Þ y
w

� �2 � 1
4

� �2
� �

.

2 cos h

continuously increases along the meniscus from the walls

towards the centre. In order to maintain the same pressure

jump DP at every point along the meniscus,20 the Rz

decreases from Rl to Rs at the centre of the channel (Figs.

4(a) and 4(b)). For J> 0.4 (Fig. 4(b)), the Rz of the DL me-

niscus decreases at the centre but near to the wall, it

increases rapidly to wet the walls completely. The DL me-

niscus at the centre moves very slowly or stops but near the

walls it attains a large curvature and continues to move by

completely wetting the walls. When the advancing DL me-

niscus near the walls arrives at the leading end of the plug,

the shape of the plug meniscus is modified. This significantly

improves the distance through which the leading meniscus of

the plug is transported (dm > 20mm, in Fig. 4(b)). When the

DL meniscus arrives at the leading meniscus of the plug, the

membrane is pulled towards the DL side. Thus, Ry of the

leading meniscus of the plug increases over a region closer

to the side walls. In order to maintain a constant pressure

jump at every point along the leading meniscus of the plug,

at the centre, the meniscus attains a negative radius of curva-

ture Rz.

In conclusion, we presented a technique for the manipu-

lation of a liquid plug inside a microchannel with a deforma-

ble wall. Theoretical model is developed, which predicts the

plug velocity as a function of the non-dimensional parameter

J and the plug length ~L. Self-powered transport of liquid

plug has significance in various physical systems reported in

the literature. The proposed technique could be used for

coating chemicals inside microchannels,19 controlled deliv-

ery of reagents and chemicals28 inside microfluidic devices,

and in a trigger valve system in a microfluidic device with

the plug acting as the trigger.8,9 Also, the proposed work

could motivate in furthering the research on the interaction

between fluid interfaces across soft membranes in microflui-

dic networks.26,27

FIG. 3. Effects of (a) J, ~L¼ 31.25 and

(b) ~L, J¼ 0.05, on plug velocity (Ca),

in both cases, DL is silicone oil and

size of channels is 1100
 160lm.

FIG. 4. Flow regimes. (a) 0.40> J

> 0.04, the DL is able to transport the

plug by some distance (dm � 0.5mm

for J¼ 0.13) before crossing the liquid

plug, DL undergoes a change in the

meniscus shape. (b) J> 0.4, DL wets

sidewalls and causes a change in the

meniscus shape at the leading end of

the plug, plug moves by dm > 20mm.
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