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Abstract—Adaptive transmit beamforming based on channel
state information (CSI) is a key feature in next generation
wireless cellular systems. However, CSI available for adaptation
is imperfect due to feedback delay and estimation errors. In
this work, we analyze the outage performance of maximum
eigen-mode beamforming with imperfect CSI. First we analyze
the outage probability in terms of the correlation coefficient ρ
between the CSI available at the transmitter (CSIT) and the
CSI available at the receiver (CSIR). The analysis shows that
feedback delay leads to significant degradation at medium and
high signal-to-noise ratios (SNR). Furthermore, the effect of delay
can be overcome only if ρ tends to one with increasing SNR. Then,
we study whether linear minimum mean squared error (MMSE)
prediction can achieve the required behavior in ρ. The length of
the prediction filter required is numerically evaluated and shown
to increase with SNR. Finally, the asymptotic diversity order is
analyzed as a function of the rate at which 1 − ρ approaches 0
as the SNR → ∞. Results show that for 1 − ρ proportional to
SNR−1, the asymptotic diversity order remains unaltered.

I. INTRODUCTION

Adaptive Multiple Input Multiple Output (MIMO) trans-

mission based on the Channel State Information (CSI) is a

key feature incorporated in next generation cellular systems

like 3GPP LTE and 3GPP LTE-advanced [1] to improve

performance. In Frequency Division Duplex (FDD) systems,

the channel is estimated at the receiver using training symbols

and fed back to the transmitter. In Time Division Duplex

(TDD) systems, training symbols can be used in both links

to estimate the channel state, assuming channel reciprocity.

Codebook-based and non-codebook-based transmit beamform-

ing are important schemes proposed in the class of adaptive

MIMO schemes. With CSIT, the MIMO channel can be

split into multiple parallel subchannels using singular value

decomposition (SVD). For transmitting a single data stream,

maximum eigen-mode beamforming that uses only the channel

corresponding to the maximum singular value is optimal in

terms of received SNR [2, 3] and achieves the maximum

diversity gain. Maximum eigen-mode beamforming is a good

candidate for non-codebook-based beamforming.

In practice, perfect CSIT is not possible due to channel

estimation errors and feedback delay. The effect of feedback

delay on closed-loop transmit diversity was studied in [4]

and the effect of imperfect CSIT on the outage performance

of Multiple Input Single Output (MISO) beamforming was

analyzed in [5]. The capacity gain of a transmit beamforming

system compared to the case of no feedback is shown to

decrease at least exponentially with feedback delay in [6].

The effect of feedback delay and estimation error on MIMO

multiplexing systems based on the eigen-beams obtained using

singular value decomposition (SVD) are studied in [7–10]. In

[7] and [8], feedback delay is shown to result in interference

between the eigen-beams. While zero-forcing (ZF) and MMSE

receivers are proposed in [7] to compensate for the effect

of feedback delay, prediction is proposed and compared with

ZF and MMSE methods in [8] using simulations. In [9, 10],

the bit error rate and outage probability are evaluated for

constellations with finite number of symbols assuming that

the interference between channels is Gaussian. Since all eigen-

modes are used in [7–10], the performance is limited by the

worst eigen-mode even with perfect CSI. Furthermore, the

interference between modes leads to error floors. The effect

of delay on a single beam is dominated by the interference

from the beams. In [3], maximum eigen-mode beamforming

is studied and the use of prediction is evaluated in the con-

text of adaptive modulation using uncoded rectangular QAM

constellations with a target bit error rate. However, channel

estimation errors are neglected in [3].

In this paper, we analyze the outage probability of the

MIMO maximum eigen-mode beamforming in the presence of

imperfect CSI in terms of the correlation coefficient ρ between

the CSIT and the CSIR. We first show that the degradation

due to feedback delay is significant at medium and high SNR.

In comparison, the effect of channel estimation error is not

significant at high SNR because the estimation error decreases

with SNR. Then, we study whether prediction can compensate

the effect of feedback delay. This requires the prediction filter

length to increase with SNR. Finally, the asymptotic diversity

order is analyzed as a function of the rate α at which ρ
approaches 1 as the SNR approaches infinity.

II. SYSTEM MODEL

A MIMO system with Nt transmit antennas and Nr receive

antennas is considered. Let M = min(Nt, Nr) and N =
max(Nt, Nr). The channel between each pair of transmit and

receive antennas is assumed to frequency flat. The received

vector is given by:

y =
√

PHx + n, (1)

where P is the average transmit power, H is the Nr × Nt

matrix of channel coefficients, x is the Nt × 1 transmitted



vector, and n ∼ CN (0, σ2
nINr

) is the additive white Gaussian

noise (AWGN) vector. The entries of H, i.e., Hij , are i.i.d.

circularly symmetric complex Gaussian with variance 0.5 per

dimension. A correlated block fading channel model [5] is

considered, where H is assumed to constant over a block of

symbols (frame) and correlated across blocks (or frames).

A. Imperfect CSI Model

Channel estimation is performed using training symbols

once in every frame. At the beginning of every frame, Nt sym-

bols are allocated for training, one for each transmit antenna.

Minimum Mean Squared Error (MMSE) channel estimation

is performed. The training symbol power can be increased

compared to the data symbol power, without changing the

average transmit power, to improve the quality of the estimate

[11][12]. Assuming that the number of symbols in a frame

is much larger than Nt, increasing the training power leads

to a negligible change in the data power in order to maintain

the same average transmit power. In FDD systems, there is a

delay in feedback and the CSIT is delayed by one or more

frames. In TDD systems, the channel estimate obtained from

training the transmitter can be used for adaptation. Even in

this case, there is a time delay between transmissions in the

two directions. If the delay is known, channel prediction can

be used to compensate for the delay.

Let Ht (Nr ×Nt matrix) be the CSIT (used for adaptation)

and Hr (Nr × Nt matrix) be the CSIR (used for decoding).

For the Rayleigh fading model with AWGN, Ht and Hr are

both zero mean and jointly Gaussian. Therefore, they can be

related as follows:

Hr = σr

[

ρ

σt

Ht +
√

1 − ρ2E

]

, (2)

where E ∼ CN (0, I), σ2
r = E[|Hr,ij |2], σ2

t = E[|Ht,ij |2],
and ρ =

E[Hr,ijH∗

t,ij ]√
E[|Hr,ij |2]E[|Ht,ij |2]

. Hr,ij and Ht,ij represent the

(i, j)th elements of the matrices Hr and Ht respectively. This

imperfect CSI model can be used to model several scenarios.

Some of these scenarios are discussed below.

Case 1: Estimation error, No feedback delay

In this case, Ht = Hr = Ĥ (estimated CSI), ρ = 1, and
σ2

t = σ2
r = Pt

Pt+σ2
n

= (1−σ2
e), where σ2

e is the estimation error

variance and Pt is the transmit power used during training.

Note that σ2
e decreases with increasing SNR.

Case 2: Feedback delay, No estimation error

In this case, Hr = H, and Ht = Hold (past channel),

σ2
t = σ2

r = 1, and ρ = J0(2πfdT∆) (assuming Jakes’ fading

correlation model), where J0(x) is the zeroth order Bessel

function, fd is the Doppler spread, ∆ is the feedback delay in

number of frames, and T is the frame duration. Note that ρ is

independent of SNR and is strictly less than 1.

Case 3: Estimation error and Feedback delay

In this case, Hr = Ĥ and Ht = Ĥold, σ
2
t = σ2

r = Pt

Pt+σ2
n
, and

ρ = Pt

Pt+σ2
n
J0(2πfdT∆). Note that ρ < 1 and as SNR → ∞,

ρ → J0(2πfdT∆).
Case 4: Estimation error, Feedback delay, and Prediction

An L−tap linear MMSE prediction filter is assumed. In this

case, Hr = Ĥ, and Ht = H̃ (predicted CSI). At time

k, H̃ij(k) = wHhij,∆(k), where hij,∆(k) = [Ĥij(k −
∆), Ĥij(k − ∆ − 1), · · · , Ĥij(k − ∆ − L + 1)]T , and w is

the vector of prediction filter coefficients. Since the chan-

nel between different pairs of transmit and receive antennas

are i.i.d., the linear MMSE prediction filter coefficients are

independent of i and j and given by w = R−1p, where

R = E[hij,∆(k)hij,∆(k)H ] and p = E[Hij(k)hij,∆(k)H ].
Further, it can be shown that σ2

t = pHw = pHR−1p and

ρ =
√

Pt

Pt+σ2
n
pHR−1p. Again, note that ρ < 1 as SNR → ∞

for a finite-tap predictor.

B. Maximum eigen-mode beamforming

Transmit beamforming is employed at the transmitter. The

transmit vector at time k is given by: x(k) = bx(k), where
x(k) is the transmit symbol and b is the beamforming vector.

In maximum eigen-mode beamforming, b is chosen to be

u, the right singular vector corresponding to the maximum

singular value of H. This choice of b maximizes ||Hb||2
and this maximum value of ||Hb||2 is λ, where

√
λ is

the maximum singular value. However, in practice, when

imperfect CSI is available at the transmitter, b is chosen to

be the right singular vector corresponding to the maximum

singular value of Ht.

III. OUTAGE PROBABILITY ANALYSIS

If the CSIT Ht is a delayed version of Hr obtained through

a feedback channel from the receiver, the receiver knows Ht

as well as Hr and the outage probability is:

P (outage) = P (I(x;y/Ht,Hr) < R), (3)

where R is the rate of transmission. A lower bound on the

mutual information between x and y, given Ht and Hr, is

given by [11, 12]:

I (x;H/Ht,Hr) ≥ log
[

1 + ΓuHHH
r Hru

]

, (4)

where Γ = P
Pσ2

e+σ2
n

=
SNR

(

P
Pt+σ2

n

)

+ 1
and SNR = P

σ2
n
.

Using this mutual information lower bound, an upper bound

on outage probability can be obtained as:

P (outage) ≤ P
(

log
[

1 + ΓuHHH
r Hru

]

< R
)

= P
(

uHHH
r Hru < β

)

, (5)

where β = eR−1
Γ . Let b = uHHH

r Hru = ||Hru||2. Using
equation (2), we get

b = σ2
r
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mean complex Gaussian entries with variance 1 per dimension.

Therefore, given Ht, A is noncentral chi squared distributed

with 2N degrees of freedom and noncentrality parameter

δ = 2µ

σ2

t

||Htu||2 = 2µ

σ2

t

λ, where µ = ρ2

1−ρ2 . Therefore, we

get

P (outage/Ht ) ≤ P

(

A <
2(1 + µ)β

σ2
r

)

=

∞
∑

j=0

e
−µλ

σ2
t

j!

(

µλ

σ2
t

)j

γj+N

(

(1 + µ)β

σ2
r

)

(7)

Equation (7) gives the upper bound on the conditional outage

probability given λ, which can be averaged over λ to get the

upper bound on outage probability as:

P (outage) ≤
∫ ∞

0

PUB(outage/x)fλ(x)dx. (8)

This upperbound can be simplified to the expression in equa-

tion (9) (see appendix for details) for rank 2 systems (i.e.,

M = 2), where ν = µ

σ2

t

. This bound can be simplified to

a closed-form expression using similar simplifications even

when M > 2. However, the expression is complicated and

does not provide any further insight. Therefore, it is omitted.

In a TDD system, the receiver does not know Ht. However,

it estimates the product Hu. Even in this case, the bound

in equation (5) can be used and the distribution of A would

remain the same given λ.

A. Numerical Results

The outage probability vs. SNR for a 2×4 system (evaluated

using equation (9)) is shown in Fig 1. The desired rate R
is 2 nats/sec/Hz. A normalized Doppler spread fdT = 0.05
(eg., fd = 25 Hz, T = 2 ms) and delay ∆ = 1 frame

are considered, corresponding to a ρ of 0.97. The outage

probability with perfect CSIT is also shown for reference.

Fig. 1 illustrates that the effect of feedback delay becomes

significant as SNR increases. The effect of estimation error

is negligible at high SNR since the estimation error reduces

with SNR. Using channel prediction compensates for the

degradation due to delay. The length of the prediction filter

required is discussed further in section III-B.

The outage probability is plotted vs. R for a 2×2 system in

Fig. 2 for SNR of 20 dB. A normalized Doppler of 0.05 and

delay ∆ = 2 frames are considered. This plot can be used to

determine the outage capacity for a given P (outage). Outage
capacity is relevant for systems that adapt the transmission

rate based on feedback while maintaining a constant outage

probability (or block error rate). For P (outage) = 0.01, the
outage capacity with delayed CSIT is about 12% lower than

the outage capacity with prediction.

B. Required value for correlation

Channel estimation error is proportional to SNR−1. There-

fore, the effect of channel estimation error can usually be

characterized by a simple SNR loss. However, the effect of

feedback delay is different. If ρ is constant with SNR, the

effect of delay dominates at high SNR. In order to bound
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Fig. 1: Probability of outage vs. SNR for a 2 × 4 system, R = 2

nats/s/Hz, normalized Doppler = 0.05, ∆ = 1 frame.
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Fig. 2: Probability of outage vs. R for 2 × 2, SNR = 20 dB,
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P (outage) ≤ 1

(N − 1)!(N − 2)!

[

N !(N − 2)!

1 + ν

1
∑

k=0

(

1

k

)

νkγk+N

(

β

(

1 + µ

1 + ν

))

− 2((N − 1)!)2γN

(

β

(

1 + µ

1 + ν

))

+

N !(N − 2)!

(−ν)N−1

2 + ν

2

N−2
∑

l=0

(−ν

2

)l

γl+1

(

2β
1 + µ

2 + ν

)

− N !(N − 2)!

(−ν)N−1
(1 + ν)

N−2
∑

l=0

(−ν)lγl+1

(

β

(

1 + µ

1 + ν

))

−

1

2N

N−4
∑

l=−1

[

(N − 2)!

l!
+

N !

(l + 2)!
− 2

(N − 1)!

(l + 1)!

]

(N + l)!

(

1

2 + ν

)l+1 l+1
∑

k=0

(

l + 1

k

)

(ν

2

)k

γN+k

(

2β
1 + µ

2 + ν

)

]

, (9)

the effect of delay by an SNR loss, the value of ρ needs to

increase with SNR and approach 1 as SNR ends to infinity. We
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Fig. 4: Required prediction filter length L vs. SNR for 2×2 system,
normalized Doppler = 0.05, ∆ = 1.

now numerically evaluate the minimum value of ρ required,

defined as ρt, such that the outage probability with delay is

bounded by (1+ǫ) times the outage probability without delay.

ǫ can be chosen depending on the acceptable degradation in

performance. Fig. 3 shows the value of 1 − ρt for a 2 × 2
system for R =2nats/sec/Hz and ǫ = 0.2. The result indicates

that 1−ρt ∝ SNR−1 at high SNR. The value of ρ with L-tap
prediction filters is also shown for L = 2, 5, 10 and 100. It can
be seen that prediction is not necessary up to the SNR of 7dB.

L = 10 and 100 limit degradation up to SNR of 25 dB and

40 dB respectively. Fig. 4 depicts the prediction filter length

required to achieve the ρt for various normalized Doppler

frequencies. At SNR of 30dB, L = 10, 25 and 100 are required

for ∆ = 1 and fdT = 0.03, 0.04 and 0.05 respectively.

IV. ASYMPTOTIC DIVERSITY ORDER

In this section, we analyze the asymptotic diversity-

multiplexing-feedback quality tradeoff for MIMO maximum

eigen-mode beamforming. Feedback quality α is defined as

the rate at which ρ → 1 as SNR → ∞, i.e.,

α = − log(1 − ρ)

log SNR
. (10)

The diversity d and multiplexing gain r are defined as in [13].

With perfect CSIT, d = NtNr(1 − r).

Theorem: The asymptotic diversity gain d of maximum

eigen-mode beamforming with imperfect CSI is given by:

d =

{

Nr (α(Nt − 1) + 1 − r) for α < (1 − r)

NtNr(1 − r) for α > (1 − r)
, (11)

for 0 ≤ α ≤ 1 and 0 ≤ r ≤ 1.
Proof: See appendix.

Note that if 1− ρ ∝ SNR−1, i.e., α = 1, the diversity order
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Fig. 5: Probability of outage vs. SNR for 2× 2 system for different
values of α

is the same as the perfect CSI case. The analytical results

for a 2 × 2 system for α = 0, α = 0.25 and α = 0.5 are

also compared with Monte Carlo simulation results in Fig. 5.

The desired rate R is 2 nats/sec/Hz. It can be seen that the

asymptotic diversity gain is 2 for α = 0, 2.5 for α = 0.25 and

3 for α = 0.5 validating the analysis.

V. CONCLUSIONS

The effect of feedback delay on the outage probability

and outage capacity of maximum eigen-mode beamforming

system is analyzed. The usefulness of channel prediction in

combating the effect of feedback delay is also studied. The

outage probability of a system operating at fixed rate is shown

to degrade because of delayed feedback. For rate adaptive

systems that maintain a fixed P (outage), delayed feedback

results in lower outage capacity. Evaluation of the minimum

ρ required to limit degradation indicates that 1 − ρ should

be proportional to SNR−1. The length of the prediction filter

required to attain the required value of ρ is also calculated.
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Since the required length increases with SNR and can be

large at high SNR, employing channel prediction to improve

the performance is practical mainly at low and moderate

SNRs. The asymptotic diversity order analysis shows that if

1 − ρ ∝ SNR−1, the diversity order is unaltered, validating

the evaluation of ρt.
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APPENDIX

Derivation of equation (9): P (outage) is upper bounded by

∞
∑

j=0

γj+N

(

β 1+µ
σ2

r

)

j!

∫ ∞

0

e
− µ

σ2
t

x
(

µ

σ2
t

x

)j

fλ(x)dx. (12)

For rank 2 channels, the pdf of λ is can be written as [14]:

fλ(x) = ce−xxN−2
[

N ! − 2(N − 1)!x + (N − 2)!x2
]

−

e−2x

N−4
∑

k=−2

[

(N − 2)!

k!
+

N !

(k + 2)!
− 2

(N − 1)!

(k + 1)!

]

xN+k, (13)

where c = 1
(N−1)!(N−2)! . Simplifying equation (12), reduces

to evaluating the following expression

∞
∑

j=0

γj+N

(

β 1+µ
σ2

r

)

j!

∫ ∞

0

e
−x

µ

σ2
t

(

µx

σ2
t

)j

e−mxxldx, (14)

for different values of l and m and adding them. For l >=
N − 1, this expression simplifies to

l!

mN

1

(ν + m)l+1−N

l+1−N
∑

p=0

( ν

m

)p

γN+p

(

mβ
1 + µ

m + ν

)

,

and for l = N − 2, it simplifies to

(N − 2)!

(−ν)N−1

[

γ1 ((1 + µ)β) −
N−2
∑

p=0

(

− ν

m

)p

(

ν + m

m

)

γp+1

(

mβ
1 + µ

m + ν

)]

.

Proof of Theorem: This proof closely follows the analysis

method in [15]. First, we split the integration interval over

λ into two intervals [0, B] and [B,∞), where B is chosen

such that fλ(x) = c xp−1

(p−1)! + o(xp) in the interval [0, B] and
p = NrNt. Now, the outage probability can be expressed as

P (outage) = T1 − T2 + T3, (15)

where T1 = c

∫ ∞

0

P (outage/x)
xp−1

(p − 1)!
dx, T2 =

∫ ∞

B

P (outage/x)c xp−1

(p−1)!dx and T3 =

∫ ∞

B

P (outage/x)fλ(x)dx.

T1 − T2 corresponds to the integral over [0, B] and T3

corresponds to the integral over the other region.

T1 simplifies similar to the expression in equation (14) to

T1 = c

(

1

µ

)p ∞
∑

j=0

(j + p − 1)!

j!(p − 1)!
γj+Nr

((1 + µ)β) (16)

Writing the Gamma function as an integral and interchanging

the order of summation and integration results in:

T1 = c

(

1

µ

)p p−Nr
∑

k=0

(

p − Nr

k

)

((1 + µ)β)Nr+k

(Nr + k)!
. (17)

As SNR → ∞, β ≈
(

1
SNR

)1−r
and µ ≈ SNRα Therefore,

T1 has diversity same as equation (11). Then, we can show

that T2 and T3 decay faster than T1 with SNR in order to

prove the result in the theorem as in [15]. In order to do this,

T2 is written as:

T2 = c
∞
∑

j=0

γj+Nr
((1 + µ)β)

j!(p − 1)!

(

1

µ

)p ∫ ∞

µB

e−yyj+p−1dy,

where y = µx. As SNR → ∞, µ ≈ SNRα, and the integral

above approaches 0. T3 is bounded as (where y = µx):

T3 ≤ ce−µB

∞
∑

j=0

γj+Nr
((1 + µ)β)

j

∫ ∞

µB

e−y(y)jfλ(y)dy.
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