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Correspondence

Efficient Mapping of Backpropagation examples) training algorithms for multilayered feedforward neural
Algorithm onto a Network of Workstations networks. It has been used for a large number of practical applications
such as speech processing [29], [30], sonar/radar target detection [9],
V. Sudhakar and C. Siva Ram Murthy [10], [28], control [22], [24], and medical imaging [25]. The BP

algorithm is unfortunately computationally intensive. As a result of
‘ N _ this, there have been several investigations into developing parallel
_Abstract—n this paper, we present an efficient technique for map- formulations of this algorithm for a diverse range of parallel archi-
ping a backpropagation (BP) learning algorithm for multilayered neural tectures, such as linear arrays, meshes, and hypercubes. However
networks onto a network of workstations (NOW'’s). We adopt a vertical ' . o ' : ’ !
partitioning scheme, where each layer in the neural network is divided du€ to the high cost of these machines, computing on a network of
into p disjoint partitions, and map each partition onto an independent workstations (NOW's) is proving to be an economical alternative for
workstation in a network of p workstations. We present a fully distributed  a number of scientific and engineering applications. The viability of
version of the BP algorithm and also its speedup analysis. We compare the (network) computing on a NOW’s has been established for many

performance of our algorithm with a recent work involving the vertical | ientifi d : . licati 341, It has b h
partitioning approach for mapping the BP algorithm onto a distributed arge scientific and engineering applications [34]. as been shown

memory multiprocessor. Our results on SUN 3/50 NOW’s show that we that, for a small number of processors, computing on a NOW’s
are able to achieve better speedups by using only two communication (RS/6000) for these applications is quite competitive with hypercube

sets and also by avoiding some redundancy in the weights computation multiprocessors [34]. The most important feature of this type of
for one training cycle of the algorithm. (network) computing is that it enables the use of existing resources.
Index Terms—Backpropagation algorithm, distributed memory mul-  Furthermore, these resources can be shared with other applications
tiprocessors, multilayered neural networks, network of workstations, that require them.
network partitioning, pattern partitioning, performance analysis. Some recent simulations of neural networks on distributed-memory
message-passing multiprocessors (DMM'’s) have been reported in the
I. INTRODUCTION literature in [6] and [20]. They consider the_ mapping of_ generic
neural network models and models employing BP algorithms for

Artificial Neural Networks (ANN's) have recently been shown tqearnin respectively, onto transputer-based DMM's. Their approach
be powerful computational models that can effectively address com- g, resp 4 P . bp

e ” IS based on systolic algorithms, which do not exploit the architectural
plex pattern classification and pattern recognition problems. Due ?0 4 g P

. . - ) features of DMM’s. In [8] and [35], they also consider DMM's for
their adaptive, self-organizing, fault-tolerant, and nonlinear features . h

, . . . ... .heural network simulations. However, they assume that the network
ANN’s are emerging as an attractive technology for potential artificial

. . . .~ Can be partitioned into groups of neurons such that the connectivity
intelligence [4], [7], [30], [31], [36], [39] and signal processing P . .
applications [9], [12], [13], [19], [26], [28], [33], [41]. Since they between the neurons within a group is much higher than the overall

. . r}e ork connectivity, an assumption which does not suitably model
require large computational resources, the usual approach adoqu(?y connected neural networks. In [37] and [38], they study the

fqr studying ANN's is to simulate them on_conve_ntlonal umprocessi)ﬁapping of a BP algorithm onto transputer-based DMM’s. In this
high speed computers. However, these simulations are limited by the . . . S . .
er, we discuss the design and implementation issues in mapping a

. ) a
speed and storage capacity of the computer. Parallel 'mplememaWalgorithm onto a NOW’s. We also study the performance of our

of ANN's offers a natural way out of this problem for meetlng{ormulation on an Ethernet network of Sun 3/50 workstations.

both the speed and storage requirements. Parallel implementatio he paper is organized as follows. In Section Il, we introduce

models take advantage of the several parallel computational structufes . . . . . .
. . ) . : . € BP algorithm and discuss the issues involved in parallelizing
inherent in ANN’s to achieve high processing rates. As a resu . . . . .

, . . - e algorithm. In Section Ill, we describe our distributed algorithm
ANN'’s have been implemented on several commercially available

multiprocessor platforms, such as the Connection Machine [1], [ hd analyze its time complexity. In Section IV, we present our
P P ’ ' Mgerformance results and compare them with a recently proposed BP
Warp [27], MPP [13], and BBN butterfly [5], and also on sever

different architectures, such as systolic arrays [17], [18], hypercub?%%igtzr;n:?zlggleun;ﬁ% ?ng':/ll('zl s [38]. Finally, in Section V we
[15], [41], [23], reduced mesh of trees [19], reconfigurable array '
processor [32], and SIMD arrays [33].

One class of ANN's that has been widely studied is the multi-

layered feedforward neural networks. Typically, the network consists Il. THE BACKPROPAGATION ALGORITHM

of a set of input nodes that constitute timput layer one or more  The BP algorithm is a supervised training algorithm for multilay-
sets of intermediate nodes that constitute fidden layers and a ered feedforward neural networks. The training data consists of many
set of output nodes the constitute thetput layer The input signal pairs of input/output training patterns. The trained neural network is
propagates through the network in the forward direction, on a layeken used later in the retrieval phase to process real test patterns and
by-layer basis. The backpropagation (BP) algorithm [16], [29] is ongeld classification results. We have employed the BP algorithm for
of the most popular supervised (represented by a set of input-outgidining a fully connected multilayered neural network. The critical
issue in executing this BP algorithm on a distributed system of
n’zj""X‘UrﬁC{i(f)’t;‘;%‘gved March 18, 1995; revised May 18, 1996, April 9, 199§0Ww's is determining how to map the neural network onto the
: Thepauthoyrs are With the Department of Computer Science and Engineeri"}E](,)CeSS(_)rs of the_ d_|5tr|bUted system 1o minimize exgcutlon time. In
Indian Institute of Technology, Madras 600 036, India. this section, we will introduce the fully connected multilayered neural
Publisher Item Identifier S 1083-4419(98)09256-5. network, describe the sequential BP algorithm for its training, and
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Fig. 2. Forward execution phase.

Inputs

Fig. 1. A fully connected multilayered neural network. .
feedforward equation,

ny
discuss various parallel formulations of the BP algorithm available a;(l+1)=Ff Z wji(l) - ai (1) +6;(1+1) |,
in the literature. = '

j=Ll-mgi and I=1---,L—1,
&

. . . where f is a nonlinear sigmoid function of the fort(z) = (1 +
The neural network for which we consider mapping the BP-=)-1 1pis is represented in Fig. 2. We note that the computation

algorithm is a fully connected multilayered neural network. Thg ihe activation value of a neuron in lay@r-1) is a function of the
network consists of. layers as shown in Fig. 1. The bottom layer, .ty ation values of all the neurons in layleand the weight values

(I = 1) is the input layer and the top lay¢t = L) is the output ot yhe connections joining them, i.e., the input weights of the neuron.
layer. The remaining intermediate layers are called hidden layersshe second phase involves the comparison between the actual

Thelth layer has:, neurons. Each neuron in a layer is connected {Q ¢ pattern and the desired one, and the propagation of the error,
all of the other neurons in the previous and next layers. Associatgflich is governed by the following equations:

with each neuron in layer! is an activation value; (/) and an error

A. The Multilayered Neural Network

values; (7). Attached with each connection between neujdn layer 6i() =[ti() —a; (V)] [a: (D) - (1= a:i(1))], 1=L (2
(I+ 1) and neurory in layer! is a weightw;;(I). nigl
= >0 8,04+ 1) wi(D)
i=1
[a’l(l)(l_at(l))]* l=L-1,---,1 (3)

B. The Sequential BP Algorithm

The BP algorithm is a supervised training algorithm which usesvéhere 6:(1) is the error value of neuron in layer ! and#;(L) is
set of input/output training patterns to train a multilayered neurfte desired value of neuronin the output layer. We note that the
network. The training can be viewed as a procedure to find €@mputation of the error value of a neuron in layes a function of
set of weights for the network. The algorithm has three phasdBe error values of all the neurons in the laye# 1) and the weight
feedforward execution, backpropagation of error, and weight updat@lues of the connections joining them, i.e., the output weights of
In the feedforward phase, the input portion of a training pattern is fé@e neuron.
to the input layer of the network. It is propagated through the layers!n the final phase, weight updates are performed according to the
to compute the activation values of the nodes in each layer. Tflowing equation:
difference between the activation values of nodes in th_e output layer Awji(1) =5+ 8;(1+1) - ai(l) @)
and the expected output value (output part of the training pattern)
defines the error in the output layer. In the backpropagation of ernehere 5 is the learning rate. We see that the weight update of a
phase, the error in the output layer is propagated to the nodes in toenection between a neuron in layér 1) and a neuron in layer
layers below it to compute the error associated with each neuronliis a function of the error value of the neuron in layér 1) and
the layers below. The third phase updates the weights based upontligeactivation value of the neuron in layerThe second and third
new error and activation values. phases are depicted in Fig. 3. We also see from this figure that the
In the feedforward execution phase, the activation value of a neureecond and third phases can be combined into a single phase, called
j at layer(l + 1), denoted bya; (! + 1), is given by the following the backward execution phase.
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replicating the network nodes and weights at each processor, where

¢ o o e s o Layer I-+1 each processor carries out the forward and backward phases for the
Sill+1) s(l+1) S (L 1) local set of patterns [35], or by pipelining the computation at each
wyi(f) will) (X)) Wayi(D) layer, i.e., while one pattern is being processed in some layer, another

pattern can be processed in the preceding layer [18].

Hybrid schemes combine pattern partitioning with network par-
titioning. For example, some implementations include, pipelining
combined with vertical sectioning [18], combining vertical sectioning
with pattern partitioning involving network duplication [40], and
Ace; e e e Layerl checkerboarding combined with the network duplication scheme [15].

Heuristic partitioning techniques involve the use of heuristics for
partitioning the neural network graph for mapping onto a general or
specific architecture represented by a processor graph [8], [18], [35].
These techniques try to find an efficient way of partitioning/mapping
the neural graphs in such a way that it reduces the inter-processor
communication and balances the load on the processors.

In this paper, we employ a vertical sectioning scheme for parti-
tioning the nodes, and a combination of inset and outset grouping of
weights, for efficient mapping of multilayered neural network onto a
NOW'’s. This scheme is particularly suitable for a NOW'’s, because
it is architecture independent.

Ace; = S 6(0+ 1).wy(l)

j=1
D. Training Regimes

There are two variations in training regimes available in the
literature for training a neural network using a BP algorithm: the
per-pattern or data-update training regime and the set-training or
) the block-update training regime. In the per-pattern training regime,
C. Parallel Schemes for BP Algorithm the weight changes computed for a particular pattern are affected

In this section we present a brief taxonomy of the existing schemiesfore processing the next pattern [29]. We note that the per-
to parallelize a BP algorithm. Fig. 4 gives a classification of thpattern training regime is not amenable for the pattern partitioning
existing BP algorithms. We notice that the parallelization schemasapping technique for parallelization of the BP algorithm. The set-
for a BP algorithm can be broadly classified into four categoriegaining regime accumulates the weight changes over a set of patterns
network partitioning, pattern partitioning, hybrid partitioning integratbefore applying these to update the weight values [15]. Set-training
ing the previous two strategies, and heuristic partitioning schemesgimes can be utilized with both the pattern partitioning and the
The network partitioning schemes take advantage of the inheremtwork partitioning schemes for mapping the BP algorithm onto a
parallelism in the node and the weight value computations presemaltiprocessor. The set-training scheme may produce results which
in the BP algorithm. These schemes distribute both the nodes anddiféer from the results obtained by the per-pattern training regime
weights of the network to different processors. This distribution @nd may also take a greater number of iterations than the per-pattern
nodes and weights can be carried out in various ways. Nodes of th&ning regime for convergence, a fact ignored by many researchers
multilayered network can be either completely partitioned, i.e., eaethile presenting performance comparison figures. We have used the
node is assigned to a different processor [1], or can be partitioneer-pattern training regime for training our network.
using the vertical sectioning scheme where each processor gets some
nodes from each layer [37], [38]. The weights of the neural network IIl. OUR DISTRIBUTED ALGORITHM

can be partitioned using four strategies: complete partitioning, inseRN . tigat distributed impl tati f the BP aldo-
grouping, outset grouping, and checkerboarding. Complete partition- € now investigale a distributed impiementation of the algo

ing allocates one processor per weight [1] and exploits maximulh hm on a NO_W,S f°f training a fully co_nnected mul_ti_lay_ered neural
. . . network. In this section, we first describe our partitioning strategy,
concurrency in the weights computation but suffers from heavy cortrﬂ]- di fully distributed imol tati d finall "
munication overhead. The inset and outset grouping schemes are Ja&g discuss our fully distributed implementation, and finafly presen
with the vertical sectioning scheme for partitioning the nodes. Ea@h"\"p%dUp analysis for the algorithm.
processor keeps either the input or the output weights connecting all o
the nodes mapped onto it. We note that while inset grouping redudssPartitioning Scheme
communication during the activation value computation (forward We have used a vertical partitioning scheme for partitioning the
phase) [40], the outset grouping decreases communication overheade set of the multilayered neural network in our implementation.
during the error propagation phase (backward phase). Both inset &\el have used a per-pattern training regime to train the neural network
outset grouping can be combined to increase efficiency in both thed only a network partitioning scheme can be used for per-pattern
forward and backward phases [37], [38], though this introduces #&maining of a neural network. In the vertical partitioning scheme, each
additional overhead in maintaining the consistency of the redunddayer (1), having n; neurons, is divided intg partitions, wherep
weight sets. Checkerboarding partitions the weights of a neuialthe number of processors in our distributed implementation. Each
network by grouping the rows and the columns of the weight matripartition has:; /p neurons that are assigned to a processor as shown
It has been used for systolic arrays connected in a mesh configuraiioiirig. 5. We have adopted a combination of the inset grouping and
[18] and for the nCUBE, a hypercube configuration [15]. outset grouping for partitioning the weight set of the neural network.
Pattern partitioning divides the pattern set equally among allach processor maintains in its local memory the activation values,
processors. This division of the patterns can be achieved eitherthg error values, and the input and the output weight vectors of

wi(l) = wii(l) +nd; (L + Dai(l)

Fig. 3. Backward execution phase.



844 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 6, DECEMBER 1998

BP Algorithm

/\

Sequential Parallel Schemes
Per-pattern Set Network  Pattern Hybrid  Heuristic
Training Training  Partitioning Partitioning Partitioning Partitioning

/N N

Nodes \VCightS Network Pipelining
Partitioning Partitioning Duplication

Complete Vertical Complete Inset Outset Checkerboarding
Partitioning  Sectioning Partitioning  Grouping Grouping
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phase is conceptually divided into two subphases: communication
and computation. As noted earlier, the second and third phases of
the BP algorithm can be combined into a single phase. Hence, we
present our distributed algorithm in only two phases, which we call

the forward execution phase and the backward execution phase. We

Qutput
Layer

w2y (2) will discuss below the necessary computations and communications
involved in both the phases of our algorithm.

Hidden The Forward Execution Phaseln this phase, the activation values

Layer of all the neurons in the hidden layers and the output layer are

computed. To compute the activation value of a neuron layer
l,a;(1), we require the activation values of all the neurons in layer
(I — 1) and the input weights of the neuran(l). So, before we
start computing the activation values of the neurons on a processor
for the layerl, we broadcast the activation values of all the neurons
present on the local processor in layér 1) and receive broadcasts
from all the other(p — 1) processors. After this communication
step is complete, all the processors will have all activation values
of the neurons in layefl — 1), so that the activation values of the
neurons local to the processor for layiecan be computed. This
broadcast and receive step, in which a set of distinct messages initially
the assigned neurons. We observe that the input weight values;&iding at each processor is disseminated so that eventually a copy
neurons in laye(l + 1) are the output weight values of the neurongs each message resides with all the processors, is callgd-all

in layer!/, and, hence, in our scheme, the same weight value is stolg@dadcasting(4.AB) [16]. For an Ethernet network of workstations

at two processors. Even though, this partitioning scheme resuItS(MvaS), this can be achieved in steps, one for broadcasting the
the duplication of weight values, we prevent inconsistency amongsta| values andp — 1) steps to receive messages from the rest of

them by_ employing recomputation of the' weights and t_hUS avojfle processors. We describe our algorithm for the forward execution
communication of the weight values during the execution of thehase below.

algorithm. We also note that all the activation values and the error
values are completely partitioned ingodisjoint sets.

wy, (1)

Input
Layer

[ER—

Fig. 5. \Vertical partitioning of a multilayered neural network.

Distributed forward execution algorithm
Read the input pattern.
for (start=1to (L — 1)) do

B. The Distributed Algorithm stop= start+1.

Since we have employed a partitioning strategy where the neural Broadcast local activation values start layer.
network is partitioned intg subnetworks and then mapped onto Receive activation values from the other
processors, each processor is required to cooperate with every other (p — 1) processors.
processor to simulate the complete network. Every processor in the Compute activation values astoplayer.

distributed system executes the three phases mentioned in Section II-

B, but some inter-processor communication is required to acquire thélThe Backward Execution Phaséls seen earlier, the backward
activation and error values of neurons present on other processexecution phase comprises the back propagation of the error at the
as the data in a layer is distributed to all the processors. Thus, eacitput layer and the update of weights. After the completion of the
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forward execution phase we have the activation values of the neurane in the forward execution phase for the activation values, and
in the local processor for the output layer. So, for the neurons tine other in the backward execution phase for the error values.

the output layer, we can compute the error values using (2). When

computing the error'valuéi(l) for a neuroni local to the processor Improvements Over a Recent Algorithm

for a layerl, we require the error values at all the neurons in the layer i . . ) o
(1+1) and the output weights of the neurd(8). Hence, in this phase, As mentioned _earller, we _adopted a simple vertical partitioning

too, we have to execute a similar broadcast/receive step as in $B€me for mapping the multilayered neural network onto a NOW's.

previous phase, for broadcasting the error values at neurons locaPRf critical issue here is that of mapping the data, especially the
the processor for the layét+ 1) and receiving the same from all the WeIghts, onto the processors of the network. A partitioning scheme in
other(p—1) processors. For updating a weight, (1) of a connection which the processor keeps either the input or the output weights of the
joining a neuron; in layer (/+ 1) and a neurod in layer!, we need neurons mapped onto it incurs a significant amount of communication
the error value at the neurgrand the activation value of the neurbn overhead in the backpropagation or the feedforward cases [23], [40].

We observe that, the activation values of the neurons in the larer ;Lhe |0?IC?| ex_tehrlsmr; ttk? this scher_neth to keep both the |2$ut:nd
propagated to all the processors in the forward execution phase hig QutPUt weights of the neurons in the same processor [37]. Here
) 00, there is heavy communication overhead incurred in order to
the error values of the neurons in the laye# 1) are propagated to . . . : . )
. S majntain consistency among the replicated weight set, if weights
all the processors in the backward execution phase. Hence, we avol

S S . . are to be communicated. A modification to the above is proposed
communication of any activation or error values while updating the

. . . . In [38], where weight recomputation is suggested as a compromise
weight values. Starting from layer. —1), for all Iayers until the input for weight communication in order to update the duplicated weight
layer, at every step we update the output weights of neurons IO% k This algorithm makes use of three sets of communication,

to the processor for the current layieand the input weights of the each in the forward execution, error propagation, and weight update
neurons local to_the processor for Ia_“(éH' 1). Hence, at each step, hase, and four sets of computation for one training cycle of the
we compute the input and Ol_JtpUt weights of all the neurons mappecgiaorithm which consists of activation values, error values, and weight
the local processor, connecting the current ldyaerd the layef/+1). update computations. Our algorithm makes use of only two sets of
At the end of this phase, each weight has been computed twice: 0R6Gmynications, one each in the forward execution and backward
as an output weight and once again as an input weight. Assume thalc tion phases; moreover, it also avoids some redundancy in
neuron; in layer (I + 1) and neuron: in layer are mapped onto \yejght update during the weight recomputation phase, per cycle
processop.. and processar,, respectively. The difference in weight, ¢ the algorithm. We also employ a grouped-broadcast strategy to
Awji(l), can be computed at processar, if the processor knows proadcast all the values at a processor, instead of the one-by-one
the activation value; (1) since it already has the error valtig/+1) 4 4B employed in [37], to reduce the communication setup time.
stored locally with it. Similarly, the same differenc;i(7), canbe  The following are the improvements of our algorithm over a
computed at processpy,. if it knows the error value; (1+1), since  yecent algorithm [37], [38] available in the literature employing a
it already has the activation valag(l) stored locally with it. Both the vertical partitioning scheme for a distributed implementation of the
above updates are identical and the consistency of the two updages algorithm.

is guaranteed, as the weight update value computed in both cas Our algorithm uses only two sets of communication, com-
uses the same error and activation values for computation. We have pared to the three sets of communication used by the earlier
also carefully avoided recomputing the weights joining the neurons algorithm.

present on the same processor. For a given processor, for weights) e also save on the computation of the weights, by avoid-
between the layefl + 1) and layer/, we compute the weight change ing recomputing weights joining the neurons on the same
for all the weights which connect a neuron local to the processor and a  processor.

neuron which is mapped onto some other processor, and for weightg) We employ grouped-broadcast strategy, to broadcast all the
which connect local neurons, we compute the weight change only  values at a processor, instead of the one-by-ané&B, to
once. In earlier implementations [37], [38], the weights connecting  reduce the communication setup time.

the local neurons were updated twice, once as an input weight to

neurons in the layef/ + 1) and the next time as an output weight .

to neurons in the layel. We save on recomputation of the weight?' Speedup Analysis

connecting the local neurons as these are computed only once. WEOr the time complexity analysis of our model we assume a fully
present our algorithm for the backward execution phase as followgonnected multilayered neural network with L layers and, without loss

Distributed backward execution algorithm of generality,n neurons per layer. The neural network is partitioned
Compute error values of the local neurons at the vertically into p partitions and mapped onto processors with one
output layer. partition per processor. There angp neurons from each layer per
for (stop= L to 2)do processor. _ _ _ _

start = stop —1. The time required for the sequential execution of the BP algorithm
if (start> 1) do on a uniprocessor for one layer can be representéd ast: +#>+#s,
Broadcast local error values sfoplayer. wheret; is the time taken to execute kil phase of the BP algorithm
Receive error values from other processors. for the layer. The times can be approximately expressed as follows:
Compute error values for thetart layer.
for (j =110 n.,) do tr=n-(n-M,+F)
for (i =110 nsgare) doO ts=n-(n-M,)
if (i == local or j == local) 2=n(n-M,
updatew; (start). ty =n-(n-Ma)
We notice from the above (distributed forward and backward Ti=tit+t:+1t;

execution) algorithms that we require two sets of communications, =n-3-n-M,+F) (5)
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whereM,, is the time taken for one multiply and one add function for TABLE |
multiplying and adding two floating point numbers, and F is the time CHARACTERISTICS OF THEAPPLICATION
taken to execute the sigmoid function. We have ignored for simplicity,
and without loss of generality, the time taken for the additiord of Structure Total Input
the neuron threshold value (Input x Hidden x Output) | Connections | Patterns
o . . N 5

We now analyze our distributed algorithm having two phases, the 6 insl 48 x 48 x 6 3592 NI(I)I:bSCrS
forward execution and the backward execution. The time taken for 5 13 %13
executing our distributed BP algorithm for a layer ofp neurons 12 x 12 144 x 144 > 12 20736 Numbers

on p processors can be representedZas= t] + 5, wheret, is the
time taken for the execution of thi¢gh phase on a processor, which

can be expressed as follows: In (7) the most important parameter is the communica-

t, = AAB(p) + n (n- M, +F) tion/computat_ion ratioo. _It lies between 0.5 and 2_56 for va}rious
p currently available architectures. For a NOW'’s this value is very

# = <AAB(p) L. (n- Ma)> high and lies in the range 32—256.
P

o n < <2 1) " ) IV. PERFORMANCE EVALUATION
—_ n- —_—— . 1" a
D p In this section we present the results obtained from implementing
n . no_ our distributed algorithm on a network of Sun workstations. We
=AAB(p) + o <3 e Ma - o M”) compare the results with those obtained by Yeomal. [38]. We also
T, =t +1, conduct an analytical comparison of the two algorithms for studying

the scaleup of the algorithms with an increasing number of processors
) (6) and size of the neural network.

=2 AAB(p) + = <4-71,-J,, +F-2 0,
p r

We will now take a look at thedAB employed by our algorithm. A. Experimental Comparison
We too assume as in [38] a single-port communication, where, eachy, this subsection we present the performance of our algorithm on
workstation in the NOW’s can send/receive one unit of messagenow's and also compare the results with a recently proposed BP
on its communication port at a given instance of time. This Sef¥gorithm for a DMM [38]. We implemented both algorithms on a
a lower bound of0(p) for the AAB, because each workstation has)g Mp/s Ethernet network of Sun 3/50 workstations. We conducted
to receive data from all the othep — 1) workstations. This bound geyeral experiments to obtain a suitable valuedfolVe have found
for AAB can be achieved on an Ethernet NOW’s. The unit of timgyat for a groupedi A B, the cost of communication is 50 to 60 times
for sending/receiving one unit of data (a floating point number) ife cost of a multiply-and-add operation, given the size of messages
defined asC. We have assumed a grouped broadcast for modelifjgour experiments. Since the variation in the cost of communication
communication, where all the values on a processor are groupgdery small with an increase in the size of the message for a grouped
together and broadcast as one message. This reduces the overhegg e have assumed the value ©f- f(n/p) to be 55, for our
for processing each broadcast. Hence AAB(p) to broadcast a gnajytical studies. We have kept the valuedodt 40 as in the earlier
message of size/p to all thep processors, can be represented byymplementation [38]. We have tested the algorithms for classifying
AAB(p) = C -p- f(n/p), where f(n/p) represents the scaling grapic numeral digits. The characteristics of the application are listed
of the grouped broadcast as the items in the group to be broadggstaple I. Binary images of the numbers are used as inputs to a
are increased. Normally(n/p) is much less tham/p which is the  neyral network with 3 layersStructure represents the number of

worst case for one-by-ond AB(p). _ neurons in the input, the hidden, and the output layer. We evaluated
From (5) and (6), speedups,, of our algorithm can be formulated the performance of the algorithms for classifyihg 8 numbers Klum
as below: 6 x 8) and12 x 12 numbers Kum12 x 12).
Fig. 6 shows the speedup of the algorithms for the application
g T (Num 6 x 8). We observe from the graph that, our experimental
P_TTD values closely agree with the analytical curve. The difference in
n-(3-n-M,+F) the analytical and expgrimgntal spegdup can be attributed to the
= . n assumptions made to simplify the derivation of the speedup factor.
2-AAB(p) + P <4 - M, + F— b Ma> We ignore the processing time far, and deal with a simplified

Son M.+ F communication to computation ratio while computing the speedup
= no(3-n- M.+ F) factor for our distributed algorithm. We have experimented with small

2.C-p- f(ﬁ) 4 n, <4 n-M,+F— n, Ma) values in the number of processors to fully exploit the power of the

p p p distributed system, i.e., to keep the processors uniformly balanced

A A Aney [T [15], [38]. Itis seen that, with an increase in the number of processors,

<by AABp) = C-p f(p)) the vertical partitioning scheme does not uniformly balance the
n-(3-n-My+73-M,) distributed system, resulting in degradation in performance [15].

= n n n Fig. 7 shows the speedup of the algorithms for tRari12 x 12)
2-a-p-Ma-f <]—)> +to <4 - Mo+ 53 M, - o Ma) application. We see that, for a small value in the number of processors,
, ) our algorithm shows only slight improvement over the algorithm of
(byC=a-M,, F=p5-M,) ; icati
(3 3 Yoon et al. because there is much less communication overhead, and
= n-(3-n+5) (7) the slight gain is attributed to the saving in the recomputation step. As
2-a-p-f <ﬁ> + n. <4 N ﬁ) the number of processors increases, the performance of our algorithm
p p p improves. The experimental curve tends to agree with the analytical
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Fig. 7. Experimental speedup for Nut? x 12.

] ] ) o _ than the algorithm of Yooret al, especially for higher number
plot, with a marginal error,_attrlbuted to simplification steps during processors and large values. Note that for loosely coupled
the speedup factor derivation. We used log-log graphs to plot thgributed systems, the values are very high. We had am

relative performance of the two algorithms [2]. value of 55 for workstations without math co-processors. With faster
) ) processing workstations, the values tend to be higher, and hence
B. Analytical Comparison the need for having an algorithm minimizing the communication

Because of system limitations such as main memory size and theerhead. We also note from the graph that there is a cost-effective
broadcast packet size, we could not study the experimental scaleumber of processors depending upon séhealues, where, even if
of our algorithm. We have, however, compared the analytical modei®re processors are added to the simulation, the speedup ratio does
of our algorithm and the algorithm of Yooet al. [38] to study the not increase significantly.
speedup of the algorithms against the number of processors and thieig. 9 shows the comparison of the speedups of the algorithms
number of neurons in the neural network. Equation (7) gives tiversus the size of the neural network, whenthe number of
speedup analysis for our algorithm. The speedup analysis for fh®cessors, is fixed at 64. We note that the speedup is heavily
algorithm of Yoonet al. can be found in [38]. We have assumednfluenced bya when the size of the network is small, and, hence,
f(n/p) to be equal to(n/p), when comparing the two analytical for smaller values ofn, our algorithm performs better than the
models. The theoretical speedups for both the algorithms for varicalgorithm of Yoonet al. Similarly for larger values ofr our algorithm
« values are shown in Fig. 8, when = 2048 neurons/layer and performs better than their algorithm, because of the saving in the
4 = 40. The graph clearly shows that our algorithm performs betteommunication. We plotted the above graphs too on the log-log scale.
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V. CONCLUSIONS [18]

We have presented an efficient distributed algorithm for implemerrfa-g]
ing the BP algorithm for training neural networks on a network o
Sun 3/50 workstations. We have used the vertical partitioning scheie]
to map the multilayered neural network onto the NOW'’s, since a
vertical partitioning scheme is amenable for per-pattern training of[?l]
multilayered neural network.

We have compared the results obtained from our implementatigap)
with a recent algorithm suggested by Yoeh al. [38], employing

vertical partitioning scheme for implementation on a distribut(iﬁj%]3
memory multiprocessor. Because of hardware limitations we co

not study the scaleup of our algorithm on the NOW's. Hence, we
also conducted analytical studies to compare the speedup of the fia4j

algorithms with the increase in the number of processors and wit
the increase in the size of the neural network.

h
[25]

Our experimental and analytical results show that we are at[%]
to achieve better speedups than the algorithm of Yebral. We
improved the communication time by using only two sets of commu-

nication instead of three used by Yoenal, per cycle of the training

[27]

algorithm. We also made saving in computation by eliminating some
redundancy in the recomputation step during computation of tipgg
weights. We also made use of a groupéd B to broadcast all the

values on a processor as a group, to decrease the setup time
communication. [
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