
Efficient Indexing and Querying of XML Data using
Modified Pr üfer Sequences

K. Hima Prasad P. Sreenivasa Kumar

Dept of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai - 600 036, India

{hima, psk}@cs.iitm.ernet.in

ABSTRACT
With the advent of XML as the new standard for informa-
tion representation and exchange, indexing and querying of
XML data is of major concern. In this paper, we propose
a method for representing an XML document as a sequence
based on a variation of Prüfer sequences. We incorporate
new components in the node encodings such as level, num-
ber of a certain kind of descendants and develop methods for
holistic processing of tree pattern queries. The query pro-
cessing involves converting the query also into a sequence
and performing subsequence matching on the document se-
quence. We establish certain interesting properties of the
proposed method of sequencing that give rise to a new ef-
ficient pattern matching algorithm. The sequence data is
stored in a two level B+-trees to support query process-
ing. We also propose an optimization for parent-child axis
to speed up the query processing. Our approach does not
require any post-processing and guarantees results that are
free of false positives and duplicates. Experimental results
show that our system performs significantly better than pre-
vious systems in a large number of cases.

Categories and Subject Descriptors
H.2.4 [Database Management]: [Systems—Query pro-
cessing]; H.3.1 [Information Storage and Retrieval]:
[Content Analysis and Indexing—Indexing methods]

General Terms
Algorithms, Experimentation, Performance

Keywords
XML, Indexing, Query Processing, Modified Prüfer Sequences,
Tree pattern queries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

1. INTRODUCTION
XML has emerged as the new standard for representing

and exchanging information on the web[13]. XML data is
self describing and can be modeled as an ordered node-
labeled tree. Each node in the tree represents a tag in
the XML document and the values are stored at the leaf
level. Indexing and querying XML data has been a ma-
jor research issue in the database world. Many query lan-
guages such as XQUERY[12] and XPATH[1] are proposed
for querying XML data. Path expressions are the basic
building blocks of these languages. A path expression speci-
fies a tree pattern where the nodes are separated by location
steps. These location steps can be any of parent-child(/),
ancestor-descendant(//), a wild card(*) etc. Using a path
expression one can specify constraints over both structure
and content of the XML data. Nodes in the path expression
can contain predicates which can be value predicates or can
be simple path expressions.

One way of solving tree pattern queries is using the struc-
tural join approach where an XML document is encoded
using interval encoding scheme. In this approach structural
join between two element lists corresponding to nodes given
in the query is performed and it takes multiple binary struc-
tural joins to solve a tree pattern query. There have been
many efforts for solving tree pattern queries using structural
joins[11, 10, 2, 8]. To avoid expensive individual join oper-
ations, Pathstack and Twigstack algorithms[6] have been
proposed. In this, stack based algorithms for holistic pro-
cessing of path and twig queries are proposed. These have
been proved to be performing better than earlier simple join
based approaches.

Since XML data and Queries are tree patterns, there have
been efforts to convert both into sequences and do a subse-
quence match of the query sequence on the data sequence
to get the results. Vist[15] and PRIX[9] follow this ap-
proach. They use a virtual trie index proposed in Vist[15]
for indexing subsequences. The PRIX system uses Prüfer
sequences[3] for transforming XML data into sequences. In
both of these approaches mere subsequence matching does
not result in valid results. One has to do post processing
after subsequence matching to filter the matches that are
valid according to the given query structure.

In this paper we propose a new way of generating a se-
quence for an XML document called modified Prüfer se-
quence which is inspired by Prüfer sequences[3]. We give a
new indexing mechanism for these sequences that can index

397

sequences of any length and supports holistic processing of
twig queries efficiently. In our system we club the validation
and subsequence matching process together which results in
elimination of invalid results and thus resulting in reduction
of disk I/O’s performed while querying. Our method also
ensures that results are free of false positives and duplicates
and does not require any post-processing. We also propose
optimization for parent-child axis.

The main contributions of this paper are summarized as
follows:

• A new way of transforming XML documents into se-
quences based on a variation of Prüfer’s method.

• We propose a suitable indexing scheme for indexing
the sequences.

• An efficient pattern matching algorithm, which pro-
cesses twig queries without breaking them into linear
paths and also gives the results that are free of dupli-
cates and false positives, is proposed.

• An optimization for parent-child axis is proposed.

The rest of this paper is organized as follows. Section 2
gives the background and related work. In Section 3 we de-
scribe our work. In Section 4 we give the details of optimiz-
ing parent-child axis. Section 5 gives the implementation
details. In Section 6 we present our experimental results.
Section 7 gives the conclusions of the paper.

2. BACKGROUND AND RELATED WORK
Path expressions are the basic building blocks of both

XPATH[1] and XQuery[12]. To support these queries several
indexing methods and querying algorithms are proposed.

2.1 Querying XML using Interval Encoding:
As XML is a tree structured data, to find the twig match

efficiently, structural relations among the elements in the
query twig are to be satisfied. To solve the structural rela-
tionship between any two elements, Khalifa et al. proposed
a numbering scheme [11] which is based on the interval en-
coding of the elements. In an XML document each ele-
ment is assigned with a tuple (DocID,start,end,level) where
(start, end) denotes an interval. If an element B is a descen-
dant of A then it is assigned an interval which is contained
in the interval of A. To find structural relationship between
two elements one element’s (start,end) has to be contained
within the other element’s interval. Structural join algo-
rithm [11] takes two lists of elements and gives the pairs of
elements that are structurally related. There are many ef-
forts that are based on the positional representation of [10,
2, 8]. Using this approach to compute the result of a path
or twig query needs many binary structural joins on element
lists which is very expensive.

Bruno et al. proposed stack based pattern matching algo-
rithms called Pathstack and Twigstack[6] which uses interval
encoding of elements to find twig match. These operate on
input stacks corresponding to each element in the query and
the stacks are linked according to the ancestor descendant
relationship in the query twig. A variant of Twigstack al-
gorithm called TwigstackXB[6] that uses XB-trees to speed
up the processing when input lists are long by skipping the
elements within the lists that won’t result in the solution.
Twigstack also suffers from sub-optimality in case of solving
queries with parent-child relationships.

2.2 Querying XML by Subsequence Match:
Wang et al. proposed a new method that transforms

XML data tree and Twig queries into structure encoded
sequences and do a subsequence match of the query se-
quence on the data sequence to find a valid match in the Vist
system[15]. The structure encoded sequence is a sequence
of (symbol,prefix) pairs (a1, p1), (a2, p2)...(an, pn) where ai
represents a node in the XML document tree and pi rep-
resents the path from root to ai. The nodes a1, a2...an are
in pre-order. They proposed a new technique for building
virtual trie using B+-trees, which is useful in subsequence
matching. The main drawback of the above method is that
indexing large sequences result in underflow and it takes
many disk I/O’s to find matches because of the top down
transformation of the tree to sequence. Apart from this it
gives false positives in case of documents having identical
sibling nodes and also doesn’t handle duplicates resulting
from the process of matching.

Praveen Rao et al. proposed an another method for query-
ing XML using Prüfer sequences[9]. In this XML document
is transformed into sequence of labels by Prüfer’s[3] method
that constructs a one to one correspondence between tree
and the sequence. All the nodes in the tree are given unique
numbers from 1 to n. A Prüfer sequence of a tree Tn is
generated by deleting one node at a time from Tn. Delete
a leaf node with smallest number to form a smaller tree
Tn−1. Let a1 be the label of the node that was the parent
of the node deleted. Repeat this process on Tn−1 to deter-
mine a2 and continue until only two nodes are left. The
sequence (a1, a2,, an−2) is called Labeled Prüfer sequence
of tree Tn. The numbers corresponding to those nodes in se-
quence form a Numbered Prüfer sequence. The PRIX system
of[9] uses Extended-Prüfer sequence to support value based
queries. This sequence is generated by attaching dummy
nodes to the leaves and constructing Prüfer sequence for it.
In PRIX post-order numbering is given to the nodes and a
Prüfer sequence of length n − 1 is generated by removing
elements till one node is left. It eliminates the problem of
false positives. It reduces the number of disk I/O’s taken
for subsequence matching substantially because of bottom-
up transformation of tree into a sequence. It gets all the
subsequence matches from the database in first phase and
does a document-wise post processing using the numbered
Prüfer sequence in the next phase to get valid results. Re-
cently Wang et.al proposed a constraint sequencing method
which aims at finding best sequencing strategy to index and
query XML data[14].

3. ENCODING AND QUERYING XML US-
ING MODIFIED PR ÜFER SEQUENCES

In this section we give the details of the XML querying
system built by us using modified Prüfer sequences.

3.1 Sequence Generation
A sequence for an XML document tree is constructed in a

manner similar to the one used in Extended-Prüfer sequence.
We call this sequence Modified Prüfer Sequence. We
delete the nodes in post-order sequence and output the label
of parent nodes with additional information. We assume
that for each leaf node in the XML data tree, a dummy
child node is attached. We define elementNumber for each
node with label L in the document as follows:

398

B

C
E

B

A

C D

B F B

CA

(B,2,4,1) (E,1,3,2)(B,1,2,3)(C,1,3,1)(B,1,2,2)(A,1,1,6)
(B,3,3,1)(C,2,2,2)(A,1,1,3)
(A,2,4,1)(F,1,3,2)(D,1,2,3)(C,3,4,1)(B,4,3,2)(D,1,2,3)(A,1,1,7)

Figure 1: The Sample XML Document and corre-
sponding Modified Prüfer Sequence

elementNumber: 1+(number of nodes with same label as
L that appear before this node in the depth first traversal
order(i.e, document order) of the document tree).
Let X be the node being deleted and P be its parent in the
tree. The tuple generated corresponding to the deletion of
X will have the following components.
(label, elementNum, level, count)

• label: Denotes the tag of the parent node P.

• elementNum: elementNumber of P

• level: Level at which P is present in the XML docu-
ment tree.

• count: Number of nodes(including dummy nodes) in
the subtree rooted at the node X in the original docu-
ment tree.

XML documents are converted into sequences as described
above. An Example XML document and the sequence cor-
responding to that can be seen in the Figure 1. The letters
in the nodes denote the element tags in the XML document.
We can see that number of tuples in the sequence is one less
than the number of nodes(including dummy nodes) in the
tree. The nodes without any label denote the dummy nodes
that are added to include the leaf nodes into the sequence.
In an actual XML document the values at leaf level would
correspond to the dummy nodes. The elementNum distin-
guishes elements with similar labels. The Count field in the
sequence denotes the number of nodes in the subtree of the
deleted node. This takes dummy nodes also into consider-
ation. Take for instance, When the node B at level 2 is
deleted the tuple output is (A, 1, 1, 6) at position 6. It has
the count of the nodes in the subtree containing the node
(B, 1), which is nothing but the count of the nodes in the
first subtree of the root. Given an XML document we can
generate the above sequence in one pass of the document
using a SAX parser.

There is one-to-many correspondence between nodes in
the tree and the tuples in the sequence. Note that if a

node N with label P has r children, then there will be r
tuples with the label P corresponding to the node N . The
elementNum component of these tuples will all be the same.
Whereas if there are m nodes in the XML tree all with label
P , corresponding to each such node, there will be a set of tu-
ples. The elementNum distinguishes between these sets by
having a distinct number for all tuples in one set. Thus given
a label and elementNum one can easily identify the node in
the XML data tree associated with the tuple. All the tuples
corresponding to a single node are said to be consistent with
each other(Two tuples Ti and Tj with same label are said to
be consistent if they have the same elementNum).

In all the places we use (label, elementNum) to talk about
a particular tuple in the sequence and we use this inter-
changeably for node and tuple in the rest of this paper. In
the rest of the paper the term sequence refers to modified
Prüfer sequence generated using above procedure. For a
given sequence we can prove the following properties.

Theorem 1. Let a node (A,n) appear k times in the se-
quence at positions p1, p2, ..., pk, let l be the count value of
(A,n) at position p1 and let Tpi denote the tuple at position
pi, then

1. There are exactly k children for the node (A,n).

2. Tuples from Tp1−l+1 to Tp1−1 correspond to the subtree
rooted at the first child of the node (A,n).

3. Tuples Tpi+1 to Tpi+1−1 (i < k) correspond to the sub-
tree rooted at the i+ 1th child of node (A,n).

The proof of the theorem follows the definition of the se-
quence. Due to space constraints we do not provide the
proofs of these theorems here. For details one can refer
to[7].
Example 1: Take the sequence for the Figure 1. One can
observe that element (A, 1) appears at three positions 6th,
9th and 16th. The tuples from position 1 to 5 is the se-
quence corresponding to the subtree rooted at the first child
of (A, 1). Similarly we can see that tuples from 7th to 8th
positions correspond to the subtree rooted at the second child
of (A,n). This property is maintained for all the tuples in
the sequence.

Finding the structural relationship between two elements
in the XML document is the basic operation for solving
the XPATH expressions. A structural relationship could
be parent-child (/) or one of the XPATH’s wild card rela-
tionships ancestor-descendant (//) or ’*’. These structural
relationships between two elements denote that there is a
linear path connecting the two nodes in the tree with some
constraint on the level of the nodes. We define the connect-
edness of two tuples as follows.
Connectedness: We say that two tuples in the sequence
are connected if the nodes corresponding to the tuples are
connected by a linear path. A linear path here means that
it should not form a twig structure.

We define immediate ancestor tuple of a node as follows.
Immediate ancestor tuple: Let a node A be an ancestor
of a node B in the XML tree. We call the tuple corre-
sponding to A that occurs immediately after all the tuples
corresponding to B as the immediate A-ancestor tuple of B.
If A is the parent of B in the XML tree, then the immediate
A-ancestor tuple of B is called immediate parent tuple of the
node B. In the following Theorem we specify how the con-
nectedness check between a pair of nodes can be done given

399

the modified Prüfer sequence. We restrict our connected-
ness check of a node to the immediate ancestor tuple in the
sequence.

Theorem 2. Let Ti = (A, x, li, ci) and Tj = (B, y, lj , cj)
be two tuples at positions i and j (i < j) in the modified
Prüfer sequence corresponding to an XML data tree such
that there is no tuple Tk =(B, y, lk, ck) at position k, i <
k < j then, (A, x) is a descendant of (B, y) iff (j − i) < cj.

Example 2: Take two tuples at positions 3 and 6 in the
Figure 1. The difference in their positions 6− 3 is less than
count of the 6th tuple which is 6. So we can say that they
are connected. Even from the tree it is clear that (B, 1) and
(A, 1) are connected.
We say there is drop in level between two successive tuples
in the sequence if the level of the former is higher than the
level of the latter. Similarly we say there is a rise in level
between two tuples if the level of the former is less than the
level of the latter.

Theorem 3. Let Ti and Ti+1 be two consecutive tuples in
the sequence corresponding to the nodes (A, x) and (B, y),
then

1. If there is drop in the level from Ti to Ti+1 then we
can say that (B, y) is the parent of (A, x).

2. If there is rise in the level from Ti to Ti+1 then we can
say that (B, y) belongs to the subtree rooted at the next
available child of (A, x).

For a given Modified Prüfer sequence one can always re-
construct the tree uniquely using Theorem 3. The detailed
algorithm can be found in[7].

3.1.1 Query Sequence
A sequence for a query twig is also generated in a same

way except that the tuple will have a relationship field in-
stead of count. Relationship describes the relation of the
tuple with the preceding tuple in the sequence. It could be
one of parent-child or ancestor-descendant or the wild card
’*’ present in the XPATH expression. For leaf nodes we
maintain a special value as there won’t be any relationship
between preceding node to itself. An example XPATH ex-
pression, its equivalent tree representation and the sequence
corresponding to that are given in Figure 2. The last field
denotes the relationship. The relationships ’0’, ’v’, ’p’ and
’a’ denotes a leaf, value, parent and ancestor respectively. A
’*’ in the relationship denote the wild card ’*’ in the query
expression. Encoding a query sequence in this way helps val-
idation of subsequence which is described in later sections.

3.2 Indexing
Once the sequence is ready, we need to store it along

with the sequences corresponding to other documents us-
ing a suitable indexing mechanism that supports efficient
subsequence matching. In our system we maintain three
different kinds of indices that are useful in query processing.
All the three index structures can be seen in the Figure 3.
For subsequence matching we maintain a Two level B+-tree
similar to the one used in the Vist system [15]. We take a
sequence and assign a (position, tail) pair to each tuple in
the sequence. position is the position number of the tuple

B

C

A

C

Query: A[/C]//B/C

(C,1,2,0)(A,1,1,p)(C,2,3,0)(B,1,2,p)(A,1,1,a)

Figure 2: An Example XPATH Expression Tree and
the Equivalent Sequence

key−position of tuple
Element B+ trees..

Document
B+tree

− − − −

Element B+trees

key=leaf Values
Leaf B+tree

key−position of parent tuple.

key−Tag Name DOCID

B+tree

key=position of last tuple

 in the sequence

− − − − − −

Figure 3: Different Index Structures Maintained in
the System

in the sequence and tail denotes the number of tuples in the
sequence following the tuple being considered. We build a
B+-tree for the element tags in the document and we call it
the Document B+-tree. Each leaf node in this points to an-
other B+-tree called Element B+-tree. Element B+-tree is
indexed on the position of the tuple as key and it stores the
values of tail along with (elementNum, level, count) values
of the tuples in the sequence. Tuples in each document se-
quence are given a distinct range of position numbers. For
example, if we have two sequences of size 20 and 15, we give
position numbers in the range of (1,20) to the first sequence
and (21,35) to the second sequence. We assign a new range
whenever a new sequence is inserted into the database. A
DocId B+-tree is maintained separately which indexes the
last tuple’s position number in each sequence. It stores the
(DocId, size of the sequence) as data value.

Indexing the data values at the leaf nodes of the XML
tree is done in a different way which actually helps in speed
up the processing of the value based queries. This again is a
two level B+-tree with the top level B+-tree being built on
distinct leaf values which in turn points to another Element
B+-tree. The key of this Element B+-tree is the position of
the tuple corresponding to the node to which this leaf node
is attached. By indexing in this way the parent of a leaf can
be reached directly.

The space complexity of the index structure is of the order
of the number of tuples in the sequence. We use this sin-
gle indexing scheme(containing three index structures) for
processing all types of queries, whereas PRIX uses three dif-
ferent types of indexing schemes. First one is Prüfer index,
used for simple path expressions, second one is extended
Prüfer index (EPI), which is used for value based queries
and the third is Reverse Prüfer index, which is used for op-
timizing the query processing time. The space complexity
of EPI is almost equal to the number of nodes in the tree as
sharing is minimal.

400

3.3 Query Processing
This section gives the details about query processing us-

ing the subsequence matching. Once the data sequence is
indexed according to the method given in Section 3.2, we do
a non-contiguous subsequence match of the label part of the
query sequence with the label part of the data sequence.

Now we give a brief description of how query process-
ing is done by subsequence match taking a simple example.
Consider an XPATH expression A/B/C which will result in
a query sequence (C,1,3,0)(B,1,2,p)(A,1,1,p). To solve this
first we get all C elements from the document. After get-
ting all the C’s, for each C we retrieve B’s that follow it
in the sequence and for each B we retrieve A tuples that
follow it in the sequence. This is the process of simple sub-
sequence matching on a single document. All the subse-
quences matched may not be valid results of a given query.
For a subsequence to be valid it has to satisfy the tests given
below. These tests are applied at each stage in the subse-
quence matching. All the tuples resulting in stage i(i > 0)
are validated using the validation checks given below and
only the tuples satisfying them are retained for the next
stage.

The above subsequence matching can be easily extended
to multiple documents which are indexed in the way de-
scribed in Section 3.2. The only difference is that in the
first stage we get all the tuples from Element B+-tree of the
first tuple. This will get the tuples from all the documents.
After getting all the elements in the first stage we get the
next elements within the range of each of these element.
Here, range means (position, position+ tail).

In all the examples given below we use the data sequence
and query sequence of Figure 1 and Figure 2. Here x:tuple
is used to denote each tuple, where x is the position number
in the sequence.
Data Sequence:1:(B, 2, 4, 1), 2:(E, 1, 3, 2), 3:(B, 1, 2, 3),
4:(C, 1, 3, 1), 5:(B, 1, 2, 2), 6:(A, 1, 1, 6), 7:(B, 3, 3, 1),
8:(C, 2, 2, 2), 9:(A, 1, 1, 3), 10:(A, 2, 4, 1), 11:(F, 1, 3, 2),
12:(D, 1, 2, 3), 13:(C, 3, 4, 1), 14:(B, 4, 3, 2), 15:(D, 1, 2,
3), 16:(A, 1, 1, 7).
Query Sequence:(C, 1, 2, 0) (A, 1, 1, p) (C, 2, 3, 0) (B,
1, 2, p) (A, 1, 1, a)

3.3.1 Connectedness Check
Let us say that we are matching tuple Qi in the query se-

quence in the range of data tuple Di−1 of the previous stage,
we get positions {p1, p2, ..., pn} in the document where the
matching has occurred. We retrieve data tuples {d1, d2, ..., dn}
corresponding to these positions. If the Qi.relationship is
one of ’p’, ’a’ or ’*’ then we do a connectedness check be-
tween tuples Di−1 and dj(0 < j ≤ n) and retain those
dj ’s that are connected as per the required relationship.
The connectedness check is carried out as per Theorem 2.
For ancestor-descendant relationship, connectedness check
is enough. Whereas in case of parent-child relationship the
level difference between the two tuples should be one and
in case of wild card ’*’ it has to be two. Tuples that fail to
satisfy the structural relationship are also discarded at each
stage.

We note that in our approach a single check is enough
to determine the connectedness , whereas PRIX[9] takes as
many checks as the level difference between the nodes in
the data tree in case of ancestor-descendant axis check. It
also generates duplicate results in the same case as it uses

post-order numbers which allow the check to pass on all the
instances of the tuples present in the sequence.
Example 3: Consider the query given in Figure2.Take the
subsequence matches R1(8, 9, 13, 14, 16) and R2 (8, 10,
13, 14, 16), the two vectors representing the positions of the
matchings in the data sequence. Now we apply the connect-
edness check for the tuples at positions (1, 2), (3, 4) and
(4, 5) in R1 and R2. R1 satisfies the check at all the three
places whereas R2 fails at (1,2). So R2 can be eliminated as
an invalid match at that stage itself without going further.
We can also see that R1 satisfies all the structural relations
given in the query sequence.

At any point we require the positions of the two tuples
along with their contents to do the above validations. So we
can perform connectedness check at each phase of the sub-
sequence matching and can discard invalid matches without
considering them for further processing.

3.3.2 Consistency Check
We know that two tuples Ti and Tj with the same label

are said to be consistent if they have the same elementNum.
Suppose two elements at positions i and j are consistent in
the query sequence then the elements matched in the data
sequence at those positions should also be consistent with
each other. For this, we maintain an array C which is of
length equal to query sequence. If two elements Ti and Tj
are consistent tuples in the query sequence and i < j then
C[j] is assigned i. If Tj has no element Ti such that i < j
then C[j] is assigned zero. This array can be generated in a
single pass through the query sequence. Using this we can
check the consistency of the subsequence while matching.
one can see that tuples resulted from outputting same node
will be consistent. For the example query taken above the
C array will be (0,0,0,0,2). This indicates that element at
position 5 should be consistent with element at position 2.

4. OPTIMIZING PARENT-CHILD AXIS
Occurrence of parent-child axis is more common in tree

pattern queries when compared with other XPATH axes.
We introduce a mechanism to optimize parent-child axis
which results in reduced query processing time. To incor-
porate this optimization we introduce an extra field parent-
Pointer in the Modified Prüfer Sequence, which is an offset
from the current tuple to its Immediate parent tuple. The
remaining fields in the tuple have their original meaning.
The structure of the tuple in this case is given below.
(label, elementNum, level, count, parentPointer)
parentPointer: parentPointer of tuple Ti is the difference
in positions of parent(Ti) and Ti, where parent(Ti) is the
Immediate parent tuple of Ti.
The sequence for the tree in Figure 1 with introduction of
parentPointer will be as follows.
(B, 2, 4, 1, 1) (E, 1, 3, 2, 1) (B, 1, 2, 3, 3) (C, 1, 3, 1, 1) (B,
1, 2, 2, 1) (A, 1, 1, 6, 0) (B, 3, 3, 1, 1) (C, 2, 2, 2, 1) (A, 1,
1, 3, 0) (A, 2, 4, 1, 1) (F, 1, 3, 2, 1) (D, 1, 2, 3, 4) (C, 3, 4,
1, 1) (B, 4, 3, 2, 1) (D, 1, 2, 3, 1) (A, 1, 1, 7, 0)
In the above sequence the fifth field in each tuple denotes
the parentPointer of that tuple. We assign zero to the
parentPointer of root.

By generating the sequence with this extra field, we index
the sequence in a similar way described in the Section 3.2.
The only change comes in the query processing, where in
case of parent-child we don’t retrieve tuples in a range but

401

try to check for the tuple in exact position by using the
parentPointer. This could increase the index size to some
extent, but overall the space complexity of the index will
still be linear with the number of tuples in the sequence.

By introducing this extra field we can get the position of
the parent of a tuple in the sequence. To solve a parent-child
axis between two tuples Qi and Qi+1 in the query sequence,
we have to check if the key Ti+Ti.parentPointer exists in
the Qi+1.label’s Element B+-tree, where Ti is the tuple con-
sidered at stage i. If it exists we can continue the matching
with that tuple otherwise we can stop the matching for that
partially matched subsequence.

5. IMPLEMENTATION DETAILS
In this section we present the implementation details of

the Query Processing system built using modified Prüfer se-
quences. The system has the following three basic blocks.
Each of them is explained below.
Parsing: Sequence is generated using the SAX parser in
one pass of the document as described in section 3.1.
Indexing: Indexing of the sequences is done in a way given
in Section 3.2. We use the BerkeleyDB [5] library for imple-
menting B+-tree’s.
Query Processing:
Algorithm 1 findMatch is used for solving tree pattern
queries. The algorithm presented here is for evaluating tree
pattern having only equality predicates on values. This pro-
cedure is invoked by calling findMatch(Q,1,0,MAXRANGE).
Qi denotes ith tuple in the query sequence Q. The function
retrieve(Qi, database, start, end) retrieves the tuples from
the Element B+-tree of Qi.label from the specified database
in the range (start, end) whereas function get(Qi, k) returns
the tuple at the specified position k in the Element B+-
tree if it exists otherwise it returns null. Since we index
the leaf values in the XML document separately to speed
up the processing, query containing value based predicates
should be handled separately. The lines from 1 to 7 in the
algorithm are used for handling value nodes. The algorithm
presented here handles only equality predicates and can be
easily extended to allow other predicates also. Let the tuple
preceding the current tuple being matched correspond to a
leaf value in the XML tree, one can get the parent of the leaf
node directly using the get() function, if it exists in that
Element B+-tree. The lines from 8 to 10 perform this task.

The remaining algorithm is for handling regular cases. In
line 11 of the algorithm we get all the tuples matching ith
tuple in the query sequence within the range (start, end)
of the Element B+-tree of Qi.label. Line 14 to 16 check for
connectedness and structural relationship as explained in
Section 3.3.1. The function checkRelationship() takes two
tuples as input and uses the level information encoded in
them and returns true if the relationship specified in the
query is satisfied. Lines 17 to 19 perform consistency check
described in the Section 3.3.2. Throughout the Algorithm k
denotes the position number of a sequence tuple and t de-
notes the structure (tail, ElementNum, level, count) of the
tuple which is stored as the data field in the Element B+-
tree. We remove the duplicate tuples from the result of a
range query at line 22. This task can be accomplished us-
ing the elementNum field in the tuples of a sequence. This
along with the connectedness check ensures duplicate free
results.

Algorithm 1 Algorithm for Pattern matching

Input:{(Q, i, start, end)}:Q is the query sequence; index i;
(start, end) is a range;
Output:{(P,D, id)} P denotes Positions of matching; D is
the data tuples matched; id is the document number;

Procedure:findMatch(Q, i, start, end)

1: if Qi.relationship = ’v’ then
2: M ← retrieve(Qi, leaf, start, end);{for leaf nodes}
3: for all k in M do
4: findMatch(Q, i+ 1, k, k);
5: end for
6: return;
7: end if
8: if Qi−1.relationship = ’v’ then
9: N ← get(Qi, start); {handling parent of leaf nodes}

10: else
11: N ← retrieve(Qi, document, start, end);
12: if Qi.level < Qi−1.level then
13: for all (k, t) in N do
14: if not(k − P [i− 1] < t.count and checkRelation-

ship()=True) then
15: Remove (k, t) from N ; {Connectedness check}
16: end if
17: if (C[i]6=0 and t.elementNum6=

D[C[i]].elementNum) then
18: Remove (k, t) from N ; {Consistency check}
19: end if
20: end for
21: else
22: Remove duplicates from N ;
23: end if
24: end if
25: for all (k, t) in N do
26: D[i] = t; P [i] = k;
27: if i = |Q| then
28: id = getDocId(k + t.tail);
29: output(D,P, id);
30: else
31: findMatch(Q, i+ 1, k, k + t.tail);
32: end if
33: end for
34: return;

The advantage of the new algorithm over the existing sub-
sequence matching algorithm presented in [9] is that we do
validation along with subsequence matching. This reduces
the number of range queries as the invalid tuples are elim-
inated at each stage. This actually results in a cascading
effect. If 10 tuples are eliminated at stage 2, then it will
result in reduction of 10 range queries in stage 3(as they are
removed from N) and number of range queries resulting from
those tuple’s in the next stages. Even if each of the 10 ele-
ments generate 5 invalid tuples in 3rd stage, that will come
around to 50 range queries till that stage. When querying
on large databases with large query sequences the gains are
significant. As the range queries are expensive operations in
the above algorithm, reducing them results in more efficient
query processing. The effect is higher in case of data having
deep recursive structure and large sequence size.

402

Table 1: Queries
Query Dataset

Q1 //article[./month=”August”][./year=”1994”] DBLP
Q2 //mastersthesis[./author][./year] DBLP
Q3 //inproceedings[./author=”Jim Gray”][./year=”1990”] DBLP
Q4 //proceedings[./isbn][./url] DBLP
Q5 //Entry[./Org=”Piroplasmida”][.//Author]//from SWISSPROT
Q6 //Entry[./Org=”Theileria”][.//DB=”MEDLINE”] SWISSPROT
Q7 //Entry[.//Author=”Smith A.G”] SWISSPROT
Q8 //NP[./RBR OR JJR]/PP TREEBANK
Q9 //NP/P/NP[./NNS OR NN][./NN] TREEBANK
Q10 //S//NP/SYM TREEBANK

6. EXPERIMENTAL RESULTS
We implemented our system in C++ for indexing and

querying of XML data. We also implemented PRIX and ob-
tained TwigstackXB from the authors for comparison pur-
pose. We use the B+-tree API provided by BerkeleyDB [5]
for implementing the B+-trees. All these experiments were
carried out on a Linux machine running Red Hat 7.2 with
a 2.4 GHz processor and 256 MB main memory. We used
4-byte number to index the Element B+-tree. We fixed the
page size of 8K in all our experiments.
Data Sets :
We carried out our experiments on three datasets DBLP,
SWISSPROT and TREEBANK. All the Datasets are down-
loaded from the University of Washington XML repository[4].
The information about the datasets and the details associ-
ated with them are given in Table 2.

Table 2: Description of Data Sets
Name Size #Sequences MaxDepth
DBLP 127MB 32858 6

SWISSPROT 109MB 50000 5
TREEBANK 82MB 56385 36

Queries :
We compared the performance of our system with PRIX
and TwigstackXB for the queries given in Table 1. Some of
the queries in the Table 2 are taken from [9]. Apart from
these queries, we tested the system for several other queries
and in all the cases MPS and MPS-P outperform other two
systems.

6.1 Analysis of Results

6.1.1 Comparison With PRIX
In Table 3 time taken for processing different queries is

given. Here MPS is the proposed Modified Prüfer Sequence
based system and MPS-P is the MPS system with parent-
child optimization. We observe that query processing for
value based queries in all the cases takes lesser time in our
system(Q1, Q3, Q5, Q6, Q6, Q7). This gain is because of the
reduction of excessive range queries in the findMatch pro-
cedure. Since PRIX has two phases where in one phase it
gets all the subsequences matches from the database and
then performs a document-wise post-processing to validate
matched subsequences, its performance is poor. Even the
validation process takes additional disk I/O’s as the num-
bered Prüfer sequences are to be fetched from flat files that

Table 3: Comparison Of Query Processing Times in
secs

Query MPS MPS-P PRIX TwigstackXB
Q1 0.030 0.020 0.098 0.38
Q2 0.018 0.016 0.014 0.68
Q3 0.035 0.019 0.11 1.01
Q4 0.20 0.10 0.15 0.41
Q5 0.043 0.043 0.70 2.5
Q6 0.019 0.019 0.050 0.54
Q7 0.014 0.014 0.055 0.43
Q8 0.016 0.013 0.11 0.68
Q9 0.023 0.017 0.26 0.33
Q10 0.016 0.012 0.044 0.20

are stored separately. Our observation shows that number
of invalid results generated are more compared to the actual
ones in the first phase of PRIX. In case of DBLP dataset
similarity in the sequences is very high. PRIX gets the ad-
vantage of sharing of sequences to large extent in case of sim-
ple path expression which doesn’t contain any value based
predicates. These are processed using regular Prüfer index,
whereas when it comes to value based queries PRIX uses
Extended Prf̈er index and the amount of sharing is almost
negligible because of the bottom-up approach used. Query
Q2 and Q4 which are processed with regular Prüfer index
got the advantage of sharing compared to our system. Query
Q1 and Q3 are value based queries on DBLP dataset and
we can see that MPS performs better than PRIX.

Performance of the PRIX degrades when we have large
sequences with good recursive structure. Take the queries
Q8, Q9 and Q10 on TREEBANK dataset. Since TREE-
BANK has deep recursion and large sequences compared to
the DBLP, sharing of the sequence is less in this case. All
these queries are not having any value predicate. The reduc-
tion of range queries in this case is very high as the number
of intermediate tuples generated while querying are high be-
cause of the large sequence size and deep recursion. One can
see that MPS has out performed PRIX in all these queries.

Queries Q5, Q6 and Q7 are value based queries on SWIS-
SPROT database. The sequence sizes are large in this case.
The number of intermediate nodes that are filtered in this
is very high so we get the advantage from the reduced range
queries at each stage of subsequence matching. Since the re-
duction of range queries has a cascading effect on the latter
stages, the effect gets multiplied at each stage.

So we can say that for datasets having high similarity in
structure, PRIX gets a slight advantage for processing sim-

403

ple path queries. This effect was countered in our system
by the reduction of range queries. In all the other cases our
system performs better than PRIX.
Problem of Duplicates with PRIX
When a query containing ancestor-descendant relationship
is given to the PRIX system, it will generate duplicate re-
sults depending on the bushiness of the tree. The check
given in the PRIX system for ancestor-descendant case will
be valid for all the tuples corresponding to an element in the
sequence resulting in duplicate results. The queries having
ancestor-descendant axis and the number of matches gener-
ated in each case is tabulated in Table 4.

Table 4: Number of results generated in PRIX
Query MPS PRIX

Q5 158 2234
Q6 6 86
Q7 21 260
Q10 9 15

6.1.2 Comparison With TwigstackXB
For all the queries, our system performed better than

TwigstackXB. TwigstackXB uses XB trees to store the ele-
ment lists. Using XB trees one can skip the elements that do
not participate in join operation. The amount of skipping in
Twigstack depends on the distribution of the solutions over
the database. The skipping is effective only in cases where
the solutions are clustered at some place. TwigstckXB also
suffers from sub-optimality in case of queries having parent-
child queries. In which case solutions retrieved are checked
for this relationship and are filtered in the next stage. This
effect can be seen in Table 3 in case of such kind of queries.
We observe that Our system MPS performs almost ten times
better than TwigstackXB in almost all the cases.

6.1.3 Comparison of MPS and MPS-P
MPS-P has advantage over MPS in case of queries having

more of parent-child relations. This can be observed in case
of queries Q1, Q2, Q3, Q4, Q7 and Q8. In case of queries
with ancestor-descendant axes we can see that there is no
difference in the query processing times of both the system.
Queries Q4, Q5 and Q6 demonstrate that. The difference in
performance is less here because of the smaller sequence size
of the databases. In case of databases having large sequence
size and bushy structure, MPS-P will get the advantage of
skipping the range queries. One can observe this in case of
DBLP, which is bushy in structure. The difference is more
though the sequence size is less in this case.

7. CONCLUSIONS
In this paper, we have proposed a new way of represent-

ing an XML document as a sequence that has one-to-one
correspondence with the original document based on a vari-
ation of Prüfer sequences. We have also proposed index-
ing mechanism for these sequences and given the algorithm
that processes twig queries holistically without requiring any
post-processing. The proposed optimization mechanism for
parent-child axis speeds up query processing. Experimen-
tal results show that our system performs better in most
of the cases independent of characteristic of the data being
queried.

8. REFERENCES
[1] A.Berglund, S.Bong, D.Chamberlin, M.F.Fernandez,

M.Kay, J.Robie, and J.Simon. XML path
language(XPATH)2.0 W3C working draft. Technical
report, World Wide Web Consortium, August 2002.

[2] H.Jiang, H.Lu, W.Wang, and B.C.Ooi. XR-tree:
Indexing XML data for efficient structural join. In
ICDE, pages 253–264, March 2003.

[3] H.Prüfer. Neuer Beweis eines Satzes über
Permutationen. Archive für Mathematik and Physik,
27, pages 142–144, 1918.

[4] http://www.cs.washington.edu/research/xmldatasets.

[5] http://www.sleepycat.com.

[6] N.Bruno, N.Koudas, and D.Srivastava. Holistic twig
joins: Optimal XML pattern matching. In
ACM-SIGMOD, pages 310–321, June 2002.

[7] K. H. Prasad and P. S. Kumar. Indexing and querying
of XML data using modified prüfer sequences.
Technical report, IIT MADRAS, January 2005.
http://aidb.cs.iitm.ernet.in/papers/mps.pdf.

[8] Q.Li and B.Moon. Indexing and querying XML data
for regular path expressions. In VLDB, pages 361–370,
September 2001.

[9] P. Rao and B. Moon. PRIX: Indexing And Querying
XML Using Prüfer Sequence. In ICDE, pages 288–300,
March 2004.

[10] S-Y.chein, Z.Vagena, D.Zhang, V.T.Tsotras, and
C.Zaniolo. Efficient structural joins on indexed XML
document. In VLDB, pages 263–274, Aug 2002.

[11] S.Al-Khalifa, H.V.Jagadish, N.Koudas, J.M.Patel,
D.Srivastava, and Y.Wu. Structural joins: A primitive
for efficient XML query processing. In ICDE, pages
141–152, Feb 2002.

[12] S.Bong, D.Chamberlin, M.F.Fernandez, D.Florescu,
J.Robie, and J.Simon. XQuery1.0: An XML query
laguage W3C working draft. Technical report, World
Wide Web Consortium, August 2002.

[13] T.Bray, J.Paoli, C.M.Sperberg-McQueen, and
E.Maler. Extensible markup language(XML)1.0.
Technical report, World Wide Web Consortium,
October 2000.

[14] H. Wang and X. Meng. On the sequencing of tree
structures for XML indexing. In ICDE, pages
373–383, April 2005.

[15] H. Wang, S. Park, W. Fan, and P. S. Yu. Vist: A
dynamic index method for querying XML data by tree
structures. In ACM-SIGMOD, pages 110–121, June
2003.

404

