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Flow past a heated cylinder at constant surface temperature is computationally

simulated and analyzed in the laminar regime at moderate buoyancy. The parameters

governing the flow dynamics are the Reynolds number, Re, the Richardson number,

Ri, and the Prandtl number, Pr . We perform our computations in the range 10 ≤

Re ≤ 35, for which the flow past an unheated cylinder results in a steady separation

bubble, and vary the other two parameters in the range 0 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤

100. The heat transfer from the entire cylinder surface, quantified by the average

Nusselt number Nuavg, is shown to obey Nuavg = 0.7435Re0.44Pr0.346 in the mixed

convection regime we investigate. For a fixed Re and Pr , the flow downstream of the

cylinder becomes asymmetric as Ri is increased from zero, followed by a complete

disappearance of the vortices in the recirculation bubble beyond a threshold value of

Ri. For a fixed Re and Ri, the vortices in the recirculation bubble are again observed to

disappear beyond a threshold Pr , but with the reappearance of both the vortices above

a larger threshold of Pr . In the limit of large Pr , the time-averaged flow outside the

thermal boundary layer but within the near-wake region regains symmetry about

the centerline and ultimately converges to a flow field similar to that of Ri = 0; in

the far-wake region, however, we observe asymmetric vortex shedding for moderate

Pr . The thermal plume structure in the cylinder wake is then discussed, and the

plume generation is identified at points on the cylinder where the Nusselt number is a

local minimum. The difference between the plume generation and the flow separation

locations on the cylinder is shown to converge to zero in the limit of large Pr . We

conclude by plotting the lift and drag coefficients as a function of Ri and Pr , observ-

ing that CD decreases with Ri for Pr < Prt (and vice versa for Pr > Prt), where

Prt ≈ 7.5. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966937]

I. INTRODUCTION

Flow past a cylinder and the associated wake dynamics are fundamentally interesting and

important in engineering. Extensive literature on external flows is currently available, especially

on the flow past a circular cylinder,1–7 investigating a plethora of issues like the aerodynamic

forces, boundary layer phenomena, vortex induced vibrations, and the transition to turbulence. In

this paper, we investigate the flow past a heated cylinder, a scenario relevant for a wide variety

of engineering applications such as heat exchangers, chimney stacks, and hot wire anemometers.

Specifically, we focus on the effects of Prandtl number (defined as the ratio between the kinematic

viscosity and the thermal diffusivity of the fluid), in the presence of buoyancy force, on the steady,

asymmetric wake bubble that forms in the flow past a heated cylinder. Most earlier studies on

the flow past a heated cylinder are based on the assumption that buoyancy is negligible, i.e., the
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Richardson number Ri, defined as the ratio of the buoyancy force to the inertia force, is either close

to or equal to zero.8–11 For example, the widely used King’s law for the calibration of hot wire

anemometers assumes negligible buoyancy. Flow control strategies that use heating or cooling a

surface also assume negligible buoyancy.8 The literature discussed here, however, pertains mostly to

the work which included buoyancy force in the analysis.

Studies on thermal convection flows with finite Ri have been pioneered by Gebhart et al.12

and Gebhart and Pera.13 An experimental study by Oosthuizen and Madan14 on the vortex shed-

ding regime of air flow past a heated cylinder in various configurations (such as horizontal cylin-

der, and vertical cylinder) concluded that pure forced convection occurs for Ri < 0.53. Fand and

Keswani15 performed further experiments in water (again in the vortex shedding regime) to classify

the flow past a heated cylinder into four regimes based on the nature of convection occurring

on the cylinder surface. The regimes, in terms of the Richardson number Ri, are as follows: (1)

Ri < 0.5: pure forced convection, (2) 0.5 < Ri < 2: forced convection dominates natural convection,

(3) 2 < Ri < 40: natural convection dominates forced convection, and (4) Ri > 40: pure natural

convection. Vilimpoq et al.16 found that the Prandtl number of the fluid shifts the demarcation

of these regimes dramatically. Co-existence of the viscous and thermal boundary layers and their

mutual interaction are so critical that it leads to a migration of the different flow regimes to larger or

smaller values of Ri at different values of Pr.

Most studies that include cylinder surface heating perform their investigations in the unsteady,

vortex-shedding regime. Various experimental and computational studies at values of Re well above

50 (Re ≈ 47 is when vortex shedding is initiated in the flow past an unheated cylinder) have high-

lighted the role of the Richardson number in the asymmetry that occurs between the upper and

lower shed vortices upon heating the cylinder.17–19 The effects of Prandtl number variation are, how-

ever, not discussed in these studies where the Richardson number is finite. On the other hand, the

effects of Prandtl number on the forced convection regime, i.e., in the limit of Ri = 0 and Re again

being well above 50, have been previously discussed,20–22 identifying Re and Pr as the influencing

factors for the average Nusselt number, Nuavg. In this paper, we focus on the Prandtl number effects

in the steady regime, i.e., Re well below 47 and values of Ri that extend from the forced to mixed

convection regimes.

The values of Pr and Ri that are considered in the existing literature are shown in Table I, where

only those studies with Re . 100 are shown. One of the earliest experiments to come up with a heat

transfer correlation with Re was performed by Collis and Williams.8 The resulting Nusselt number

expression as a power law in terms of Re is, however, valid only in the forced convection regime

as is the case in the numerical studies of Dennis and Chang3 and Dennis et al.10 Other numerical

studies9 assumed zero buoyancy too, performing investigations at a fixed Prandtl number of 0.72.

Lange et al.26 included property variation due to the temperature in their computation of crossflow

past a heated cylinder of micron sized diameter. Wang et al.27 Wang and Travnicek28 suggested

a new representation of temperature called effective temperature while discussing a heat transfer

correlation, with both the studies being for a fixed Pr = 0.7. Biswas and Sarkar32 computed the flow

past a heated cylinder at low Re and fixed Pr with free slip boundary conditions at the top and

bottom boundaries of the computational domain. The free slip boundary conditions resulted in a

recirculating bubble at the top boundary in the presence of buoyancy.

In the list of studies shown in Table I, Prandtl number variation is considered only by Refs. 10,

16, and 31. The studies by Dennis et al.10 and Bharti et al.,31 however, assume that there is no coupl-

ing between the momentum and energy equations, i.e., Ri = 0. The flow as well as the heat transfer

behavior in this forced convection regime (Ri = 0) cannot be simply extended to the regime of

mixed convection, adding to the motivation for our studies presented in this paper. The experimental

study by Vilimpoq et al.16 does present results for Ri > 0 and varying Pr.

Vilimpoq et al.16 performed holographic interferometry measurements to obtain the isotherms

and consequently quantify the Nusselt number variation on the cylinder surface. Based on their

empirical data, they obtain a correlation that describes the variation of the average Nusselt num-

ber as a function of the Reynolds and Prandtl numbers in the range 5 ≤ Re ≤ 64 and Ri ≤ 0.5,

estimating that 90% of the experimental data fall within 10% of the estimated correlation. In the

present paper, we perform a quantitative comparison of the Nusselt number distribution with the
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TABLE I. The range of values of Re, Ri, and Pr considered in the earlier

studies on the flow past a heated circular cylinder in cross flow (free stream

flow direction orthogonal to the buoyancy force direction). “Comp.” and

“Expt.” refer to computational and experimental studies, respectively. Dash

indicates missing parameters in the original reference.

Reference Re Ri Pr Comp./Expt.

Collis and Williams8 0.01-140 . . . 0.71 Expt.

Acrivos et al.23 25-180 0 0.71 Expt.

Dennis et al.10 0.01-40 0 0.73−215a Comp.

Dennis and Chang3 5-100 0 . . . Comp.

Fand and Keswani15 0−160a 0−40 7 Expt.

Lee et al.24 5-100 0-4 0.72 Comp.

Jafroudi and Yang9 1-40 . . . 0.72 Comp.

Vilimpoq et al.16 0.002-64 0.001-4.4 5.5-27 000 Expt.

Dumouchel et al.25 30-120 <0.12 0.7a Expt.

Lange et al.26 10−4-200 0a 0.7 Comp.

Wang et al.27 50−160a <0.02 0.71 Expt.

Wang and Travnicek28 5-163 <5 0.7 Expt.

Shi et al.29 0.001-170 . . . 0.714 Comp.

Wu et al.30 <280 0 . . . Both

Bharti et al.31 10-45 0 0.7-400 Comp.

Biswas and Sarkar32 10-45 1-2 0.7 Comp.

Sen et al.7 6-40 0 0.71 Comp.

Present ≤35 0-2 0.25-100 Comp.

aIndicates inferred values from the original papers. The boldface values

indicate the present work.

experimental results of Vilimpoq et al.16 for specific values of the parameters, and proceed to

perform a more detailed systematic study of the isotherms for various Ri and Pr. We also estimate

a more accurate correlation for the average Nusselt number that is valid over a wider range of Ri.

Furthermore, to the best of our knowledge, no previous study has investigated the dependence of

the wake structure, flow pattern, and the aerodynamic force coefficients as a function of the Prandtl

number for Ri > 0.

In this paper, the effects of Prandtl number in the low Reynolds number (Re ≤ 35) regime,

where the flow past an unheated cylinder is steady, are discussed for cases with non-zero Ri. The

numerical formulation is described in Section II. The variation of the Nusselt number as a function

of Re, Pr, and Ri is discussed in Section III A. The dramatic changes in the wake behind the

cylinder with a change in the Prandtl number are discussed in Section III B. Plume generation, flow

separation, and the corresponding consequences for the heat transfer are discussed in Section III C.

We investigate the variation of the aerodynamic force coefficients in Section III D, followed by a

summary of all the results and the corresponding conclusions in Section IV.

II. NUMERICAL FORMULATION

The incompressible mass conservation, Navier-Stokes, and energy equations in a two-

dimensional Cartesian co-ordinate system form the governing equations of the flow. The buoyancy-

driven flow from a heated cylindrical surface, whose temperature is held constant, interacts with

the laminar mean flow to yield mixed convection conditions. The dimensionless forms of the

conservation equations for mass, momentum, and energy with the Boussinesq approximation are

∂u

∂x
+

∂v

∂ y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂ y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂ y2

)

, (2)
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂ y
= −

∂p

∂ y
+

1

Re

(

∂2v

∂x2
+

∂2v

∂ y2

)

+ RiT, (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂ y
=

1

RePr

(

∂2T

∂x2
+

∂2T

∂ y2

)

. (4)

The non-dimensional horizontal and vertical spatial coordinates x and y are obtained using

the cylinder diameter D as the length scale. The corresponding non-dimensional velocity compo-

nents u and v are obtained using the horizontal free stream velocity U0 as the velocity scale. The

non-dimensional temperature T is defined as T = (Td − T0)/(Tw − T0), where Td is the dimensional

temperature, T0 the constant free stream temperature, and Tw the constant cylinder wall tempera-

ture. The pressure is non-dimensionalized with ρ0U
2
0

to obtain p, with ρ0 being the fluid density

at temperature T0. The non-dimensional numbers appearing in Equations (2)-(4) are the Reynolds

number Re, the Richardson number Ri, and the Prandtl number Pr, defined as

Re =
U0D

ν
, (5)

Ri =
Gr

Re2
=

βg∆TdD

U2
0

, (6)

where Gr = βg∆TdD3/ν2 is the Grashof number, and

Pr =
ν

κ
, (7)

with g being the acceleration due to gravity. The fluid properties are described by the thermal

diffusivity κ, the kinematic viscosity ν, and the thermal expansion coefficient β, all of which are

assumed to be constants. The dimensional temperature difference between the cylinder wall and the

freestream is given by ∆Td = Tw − T0. In this paper, Ri = 0 is interpreted as zero buoyancy.

The boundary conditions for solving Equations (1)-(4) are shown in Figure 1 and described

as follows. The non-dimensional velocity components at the inlet (x = −4.5, chosen based on

the domain independence study discussed later in this section) of the computational domain are

u = 1.0, v = 0.0. The temperature boundary conditions are T = 0 at x = −4.5 and T = 1 on the

cylinder surface. No-slip and no-normal-flow boundary conditions are imposed on the cylinder wall,

i.e., u = v = 0 at the cylinder surface. The bottom (y = −4.5) and top (y = 4.5) boundaries are

subjected to stress-free conditions, i.e., ∂u/∂ y = ∂v/∂ y = ∂T/∂ y = 0. The boundary conditions on

the right boundary at x = 30 are ∂u/∂x = ∂v/∂x = ∂T/∂x = 0.

The governing Equations (1)-(4) in primitive variables (u, v,p,T) are nonlinear coupled par-

tial differential equations. A projection method is employed for decoupling velocity and pressure.

Projection methods are fractional step methods based on the decomposition of velocity field into

an intermediate velocity field and the gradient of a scalar field.33 Fractional step methods integrate

the Navier-Stokes equations in time; at each time step, the momentum equation is solved without

considering the pressure field to yield an intermediate velocity field that does not satisfy the conti-

nuity equation. The pressure Poisson equation is discretized on the control volumes using a central

difference scheme. The divergent free velocity components are then obtained by correcting the

intermediate velocity using the gradient of pressure.

FIG. 1. A schematic representation of the computational domain and the its boundaries. The cylinder center is at (x, y)=

(0,0).
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The computational domain is divided into quadrilateral cells. Each quadrilateral cell is then

divided into two linear triangles and the momentum equations are discretized using the standard

Galerkin finite element method on the triangular elements. The velocity components are explicitly

evaluated at the nodes of the triangles using the projection method discussed above. The pressure

Poisson equation is discretized on each quadrilateral cell using a cell centered finite volume method

in which the variation of pressure between nodes is assumed piece-wise linear. The resulting set of

simultaneous equations are solved iteratively using the conjugate gradient method to get pressure

values at the geometrical centres of the quadrilaterals. Since the velocity components and pressure

are evaluated at different points of an element, this approach takes advantage of a staggered grid

approach in obtaining stable pressure fields without spurious checkerboard oscillations.34 The fully

explicit method for time integration is subjected to the Courant-Friedrichs-Lewy stability criterion.

The computation is continued till the L2 norms of errors of u, v , and T at a time step m, given by



N


i=0

�
φm
i
− φm−1

i

�2

N


i=0

�
φm
i

�2



1/2

, (8)

and is reduced below 10−6, with φ denoting u, v , or T and N the total number of nodes used in the

computation. This criterion for convergence is strictly valid only for steady flows, and we therefore

check the temporal evolution of other integral quantities such as the lift and drag coefficients, and

the average Nusselt number for flows that converge to an unsteady, oscillatory state. This hybrid

finite element-finite volume code has been tested satisfactorily on a number of benchmark problems

such as the flow in a lid-driven square cavity, the steady and unsteady regimes in the uniform flow

past an unheated circular cylinder, flow in a backward facing step and the natural convection flow in

a temperature-driven cavity.34

The length and height of the computational domain are selected based on four case studies

for which the Strouhal number (St = f D/ν, where f is the vortex shedding frequency), the lift

coefficient CL (defined in Equation (9)), and the average Nusselt number (defined in Equation (12))

are compared, as shown in Table II. The time-averaging (denoted by ⟨·⟩) for each case is performed

over exactly one period of oscillations, which is determined by plotting CL as a function of time.

The aerodynamic force coefficients CL and CD are computed as

CL =

 2π

0

(

−p sin θ +
1

Re

∂uθ

∂r
cos θ

)

dθ, (9)

CD =

 2π

0

(

−p cos θ −
1

Re

∂uθ

∂r
sin θ

)

dθ, (10)

where the integral is evaluated on the cylinder surface, and the azimuthal component of veloc-

ity is given by uθ = −u sin θ + v cos θ. The comparative study tabulated in Table II for Re = 100,

Ri = 1, Pr = 0.7 shows that the results are independent of the domain size for domains larger

than 34.5D × 9D. Indeed, we have verified this domain independence for larger values of Pr also.

Figure 1 shows the dimensions of the rectangular computational domain selected for the analyses

presented in the rest of this paper. In Table III, we present the results corresponding to four different

grids with different number of elements. Based on the computed values of CL, St, and Nuavg (defined

TABLE II. Comparison of various time-averaged (indicated by ⟨·⟩) quantities for different domain sizes (Re= 100, Ri= 1.0,

and Pr= 0.7).

Length Height Elements Nodes St ⟨CL⟩ ⟨Nuavg⟩ (CL− ⟨CL⟩)
rms (Nuavg− ⟨Nuavg⟩)

rms

32.5D 7D 36 300 36 640 0.192 −1.283 5.320 0.0012 0.0018

34.5D 9D 50 000 50 575 0.191 −1.272 5.385 0.0012 0.0016

36.5D 11D 65 200 66 044 0.191 −1.272 5.387 0.0011 0.0015

38.5D 13D 80 200 81 314 0.191 −1.272 5.387 0.001 0.0015
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TABLE III. Grid sensitivity study for various time-averaged (indicated by

⟨·⟩) quantities (Re= 100, Ri= 1.0, and Pr= 0.7) for a fixed domain size of

34.5D × 9D.

Elements ⟨CL⟩ St ⟨Nuavg⟩

34 896 −1.294 0.189 5.216

50 000 −1.272 0.191 5.385

75 024 −1.275 0.192 5.386

100 236 −1.276 0.192 5.385

in Equation (12)) for Re = 100, Ri = 1, and Pr = 0.7 using various grid resolutions, we choose to

represent the full domain using 50 000 elements for all the results presented in the rest of this paper.

As shown in Table IV, we also confirmed that the domain with 50 000 elements is sufficiently fine to

describe the large Pr flows as well. For all the computations, we ensured that there are at least 8 grid

points within both the viscous and the thermal boundary layers.

The heat transfer occurring at the cylinder surface is best described using the relative magni-

tudes of convection and conduction, quantified by the Nusselt number. The Nusselt number Nu is

defined as in the work of Verzicco and Camussi,35

Nuθ = −
∂T

∂r

�����r=1/2

, (11)

where r =


x2 + y2 = 1/2 denotes the cylinder surface and the subscript θ being the polar angle

measured from the rear point of the cylinder in the anticlockwise direction, as shown in Figure 1.

The average Nusselt number Nuavg is obtained by integrating Nuθ around the entire cylinder surface,

Nuavg =
1

2π

 2π

0

Nuθdθ. (12)

The average Nusselt number Nuavg for Ri = 0, Pr = 0.7, and various Re is compared with the values

in the existing literature, as shown in Table V.

It is noteworthy that the various references in Table V implement different boundary conditions

on the outer boundaries of the computational domain, but still reasonably agree with our results

for the case of Ri = 0, i.e., no coupling between the momentum and energy equations. For Ri > 0,

however, the flow field depends sensitively on the specific boundary conditions implemented on the

domain boundaries. We validated our code further by computing the vortex shedding frequency in

the flow generated using the boundary conditions of Chatterjee,38 who implemented no-normal-flow

boundary condition (v = 0) on the upper and lower boundaries of the domain whose downstream

length was 30D. Specifically, for Re = 35, Ri = 0.9, and Pr = 0.7, Chatterjee38 report St = 0.15,

while our code computes a flow with St = 0.146. In the rest of this paper, all the results correspond

to the boundary conditions described earlier (and shown in Figure 1) in this section, to simulate

flows in unbounded domains. In the rest of the paper, we choose to not include the notation ⟨·⟩ in

Nuθ, Nuavg, CL, and CD since the temporal variations in these quantities are negligible in the regimes

we study.

TABLE IV. Grid sensitivity study for various time-averaged (indicated by

⟨·⟩) quantities (Re= 25, Ri= 1.0, and Pr= 100) for a fixed domain size of

34.5D × 9D.

Elements ⟨CL⟩ ⟨CD⟩ ⟨Nuavg⟩

34 896 0.37 2.14 14.56

50 000 0.39 2.18 14.74

75 024 0.39 2.18 14.74

100 236 0.39 2.18 14.74
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TABLE V. Comparison of Nuavg from the present computations with the

results from the existing literature (the computational schemes used in each

of the references are indicated within brackets) for Ri= 0 and Pr= 0.7.

Literature Re= 10 Re= 20 Re= 40

Dennis et al.10 (2D finite difference) 1.8673 2.5216 3.4317

Lange et al.26 (FVM, simple) 1.8101 2.4087 3.2805

Sparrow et al.36 (expt.) 1.6026 2.2051 3.0821

Soares et al.37 (second-order upwind) 1.8600 2.4300 3.2000

Bharti et al.31 (semi-implicit finite volume) 1.8623 2.4653 3.2825

Present computations (FEM-FVM hybrid) 1.8663 2.5039 3.3723

III. RESULTS AND DISCUSSIONS

Computations are performed for the following range of parameters: Re ≤ 35, 0 ≤ Ri ≤ 2, and

0.25 ≤ Pr ≤ 100. We also include some results for Pr = 1000 wherever necessary, ensuring that

the thermal boundary layer always contains at least eight grid points. We recall that Re ≤ 45 corre-

sponds to a steady, symmetric wake bubble for Ri = 0.6 Depending on the value of Ri, the flow

around the cylinder and the wake develops an asymmetry about the horizontal axis (y = 0). We start

by discussing the asymmetry in heat transfer in Sec. III A

A. Effects of Prandtl number on heat transfer

Most studies on heat transfer in the flow past a heated cylinder assume negligible buoyancy, in

which case the temperature is a passive scalar. The Richardson number Ri, defined in Equation (6),

is a measure of the buoyancy force relative to the inertial force. Small values of Ri correspond

to a low buoyancy force, whereas at larger Ri, the buoyancy force is comparable to the inertial

forces, thus resulting in a coupling between the energy equation (4) and the momentum equation (3)

through the buoyancy force acting against gravity.

Figure 2 shows the Nusselt number (Nuθ) distribution around the cylinder for Re = 25 and

Ri = 1.0 computed at different Prandtl numbers. Nuθ is found to be maximum at the front stagnation

point (given by θ = 180◦ in the unheated case ∆Td = 0) for all Pr, decreases to a minimum value

FIG. 2. Nusselt number (Nuθ) distribution as a function of θ on the surface of the cylinder for Re= 25, Ri= 1.00, and different

values of Pr that are included in the legend.
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near the flow separation points on the lower and upper sides of the cylinder, and then increases to a

finite value at the rear end of the cylinder (θ = 360◦). We note here that the flow separation point and

the point where Nuθ is minimum differ slightly, which we discuss further in detail in Section III C.

The increase in Nuθ upon moving towards the rear of the cylinder from the points of flow separation

is attributed to the recirculation bubble behind the cylinder. The flow inside the recirculation bubble

continuously transfers heat from the cylinder surface to the fluid, thus increasing Nuθ. The front

stagnation point has a higher Nusselt number compared to the rear as the oncoming fluid is cold

(T = 0) and hence the temperature gradient normal to the cylinder surface is higher.

We obtain further insights into the Nusselt number variation through temperature contour plots.

Figure 3 shows the instantaneous isotherms near the cylinder for various Ri and Pr at Re = 25, with

the contour values in all the plots being the same. In Figure 3, the isotherms for Ri = 0.25, 1.25, and

1.75 are shown in the left, center, and right columns, respectively. For a fixed Pr, the flow behind the

FIG. 3. Instantaneous isotherms for Re= 25. Isotherms with the same contour values of T are shown for all the cases. As Pr

increases, the thermal boundary layer thickness decreases, while a finite value of Ri introduces an asymmetry in the flow.
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FIG. 4. Variation of Nuavg with Pr for Re= 25 and various Ri. A best fit curve obeys Nuavg= 3.2Pr1/3.

cylinder shows a clear asymmetry as Ri (or buoyancy) increases. High Pr flows are characterized by

small heat diffusion compared to viscous diffusion. As shown in Figure 3, at large Pr the isotherms

crowd near the cylinder, thus reducing the thermal boundary layer thickness as compared to small

values of Pr. The increase in Nuθ with Pr shown in Figure 2 is therefore an outcome of the reduced

thermal boundary layer thickness or the increase in ∂T/∂r at the cylinder surface. It is noteworthy

that we observe some unsteadiness in the isotherms far from the cylinder for large values of Ri

and Pr in Figure 3. This unsteadiness, though present only far from the cylinder surface and hence

induces no unsteadiness in the wall-based quantities like Nu, CL, and CD, will be discussed in detail

in Section III B.

Figure 4 shows the variation of Nuavg (Equation (12)) with Pr for different Ri at Re = 25. Nuavg

increases with an increase in Pr owing to the decrease in the thermal boundary layer thickness and

an increase in the associated temperature gradient on the cylinder surface. At low Pr (≤ 10), Nuavg

is insensitive to changes in Ri for the range of Ri considered here (0.25 ≤ Ri ≤ 2). As Pr increases,

however, the total heat transfer (or Nuavg) increases slightly with an increase in Ri. The best fit curve

in Figure 4 follows Nuavg = 3.2Pr1/3 for Re = 25. For all other Re for which we ran computations,

the exponent is near 1/3. We now proceed to obtain a correlation similar to the widely used Colburn

factor used for the zero buoyancy case ( j = Nuavg/RePr1/3), by compiling data at different Re.

The Colburn heat transfer factor, j, is useful to investigate a wide range of forced convection

problems with different combinations of Re and Pr.21,22,31,39 We define a similar factor for the mixed

convection flow within the steady laminar regime. This new factor jRi is defined as

jRi =
NuavgRi

Re0.44Pr0.346
. (13)

The exponents in Equation (13) are obtained by curve fitting of the data from all the computations

we performed in the range 10 ≤ Re ≤ 35; 0.05 ≤ Ri ≤ 2; 0.25 ≤ Pr ≤ 100. For comparison, we

also define

jv =
NuavgRi

Re0.32Pr0.31
, (14)

which is motivated by the correlation Nuavg = 1.34Pr0.31Re0.32 given by the experimental studies of

Ref. 16 in the range Ri ≤ 0.5.

The factor jv is plotted against Ri for various combinations of Re and Pr in Figure 5(a). The

plot suggests that the correlation of Vilimpoq et al.16 is reasonably valid in the range Ri ≤ 0.5

though the data exhibit notable deviations from the correlation for Ri close to 0.5. More importantly,



113603-10 Ajith Kumar et al. Phys. Fluids 28, 113603 (2016)

FIG. 5. Variation of (a) jv (Equation (14)) and (b) jRi (Equation (13)) with Ri for various values of Re and Pr. The best fit

straight line in (b) is given by jRi= 0.7435Ri.

the deviations of our data from the expression for Nuavg given by Ref. 16 are significant for Ri larger

than 0.5. The factor jRi is plotted against Ri for all the combinations of Re and Pr in Figure 5(b).

As observed for Re = 25 in Figure 4, an increase in Pr increases Nuavg for other Reynolds numbers

as well. The exponent value of 0.346 for Pr in Equation (13) (which incorporates data from various

Re) differs a little from the exponent of 1/3 obtained using the Re = 25 data only.

The linear variation of jRi with Ri shown in Figure 5(b) suggests that Nuavg is weakly affected

by changes in Ri in the mixed convection regime of the flow past a circular cylinder. It is interesting

to note that all the straight line plots in Figure 5(b) obtained for different combinations of Re and Pr

fall on one another with a maximum deviation of less than 2%. The factor jRi thus provides a new,

accurate quantification of forced and mixed convection heat transfer (in terms of Nuavg) to a wider

range of Re, Pr, and Ri within the laminar separated flow regime. The average Nusselt number is

therefore given by

Nuavg = 0.7435Re0.44Pr0.346,10 ≤ Re ≤ 35, 0.05 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤ 100. (15)

B. Effects of Prandtl number on the wake structure behind the cylinder

The flow past an unheated circular cylinder (∆Td = 0) in the low Reynolds number regime

(6 < Re < 47) results in a steady wake region behind the cylinder consisting of a pair of counter-

rotating vortices attached to the cylinder.6 The steady recirculation bubble, consisting of the two

counter-rotating vortices that elongate as Re is increased, remains symmetric about the horizontal

line passing through the centre of the cylinder, as shown in Figure 6(a), which is plotted for

Re = 25, Ri = 0, and Pr = 0.25. We recall that, for Ri = 0, the velocity field is independent of Pr

and is the same as that for ∆Td = 0, whereas the temperature field is strongly dependent on Pr.

To investigate the changes induced by introducing buoyancy, we plot the streamlines for Re =

25,Ri = 0.25, and Pr = 0.25 in Figure 6(b). Unlike the scenario for Ri = 0 shown in Figure 6(a), the

recirculation bubble in Figure 6(b) is not symmetric about the x-axis. For Ri = 0.25 and Pr = 0.25,

the clockwise and anti-clockwise vortices have moved downstream and upstream, respectively, from

their locations for Ri = 0. The front stagnation point shifts from 180◦ for Ri = 0◦–172◦ for Ri = 0.25

and Pr = 0.25. The changes in the flow pattern with variations in Ri and Pr are explained in more

detail using Figure 7.

Instantaneous streamlines for a representative Reynolds number of Re = 25, which corresponds

to a steady recirculation zone for Ri = 0, are shown in Figure 7. In Figure 7, Pr varies from 0.25 in

the top row to 100 in the bottom row whereas Ri is 0.25, 1.25, and 1.75 in the left, middle, and right

columns, respectively. For Pr = 0.25, (Figures 7(a)–7(c)), there is a strong loss in symmetry (about

the x-axis) as Ri is increased, with strongly skewed vortices observed in the separation bubble for
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FIG. 6. Streamlines for Re= 25, Pr= 0.25 and (a) Ri= 0.0, (b) Ri= 0.25.

Ri = 1.25 and Ri = 1.75. The clockwise vortex in the top part of the separation bubble is detached

from the cylinder for Ri = 0.25, and then continues to move downstream and get elongated in the

x-direction as Ri is increased to larger values. The anti-clockwise vortex in the bottom part of the

separation bubble, however, remains attached to the cylinder for all Ri but decreases dramatically

in size as Ri is increased. The same qualitative changes are observed in the flow pattern with an

increase in Ri for Pr = 1 and Pr = 10, but with the vortices completely disappearing for Ri = 1.25,

Pr = 10 (Figure 7(h)). Based on the results for Pr = 0.25, 1, and 10, we conclude that the value of

Ri at which the vortices disappear is smaller for larger Pr.

In Figure 7, a part of the mean flow is clearly seen to flow between the top and bottom vortices

(Figures 7(a) and 7(d), for example). For Ri = 0, there is no flow between the counter rotating

vortices in the recirculation bubble. A part of the free stream flow entering between the two vortices

is seen in this context as inducing an extra clockwise spin to the detached vortex, creating a move-

ment downstream. At high Ri, the net buoyancy force is larger and the flow around the cylinder

tends to move upwards. The resultant of this upward velocity and the mean flow velocity disturbs

the symmetry in such a way that the upper vortex is pushed further downstream, while the lower is

reduced in size. At sufficiently high Ri, the recirculation bubble extinguishes completely, with the

disappearance of both the bottom and top vortices, as seen in Figure 7(h).

For Pr = 50, as shown in the Figures 7(j)-7(l), increasing Ri after the disappearance of the two

vortices results in the regeneration of the clockwise top vortex; the regeneration is faintly seen in

Figure 7(k), and more clearly visible in Figure 7(l). The various stages leading to the disappearance

of vortices seem to occur between Ri = 0.25 and Ri = 1.25 for Pr = 100, with the reemergence of

the top vortex clearly observed at Ri = 1.25 itself (Figures 7(m)-7(o)).

Figures 7(b), 7(e), 7(h), 7(k), and 7(n) show the streamlines in and around the recircula-

tion bubble for Pr = 0.25,1,10,50, and 100, respectively with Re = 25 and Ri = 1.25. As Pr is

increased, we observe the disappearance of the skewed vortices that are seen at Pr = 0.25, followed

by the reemergence of the top vortex at large Pr. Increasing Pr even further to Pr = 1000, we

observe the reappearance of the bottom vortex also, as shown in Figure 8. In summary, the asym-

metric flow field created due to buoyancy seems to be brought back to a symmetric time-averaged

flow field by increasing Pr to large enough values, an aspect we proceed to investigate further in

detail.

As confirmed by the more crowded isotherms around the cylinder for larger Pr in Figure 3, the

thermal boundary layer thickness decreases with an increase in Pr. In the limit of large Pr, strong

temperature gradients are restricted to a very thin thermal boundary layer around the cylinder.

We recall that the boundary condition at the cylinder surface is always isothermal with T = 1 as

discussed in Section II. To investigate the effects of increasing Pr on the near-wake velocity field, in

Figure 9, the time-averaged horizontal velocity component u at locations x = 1 and x = 2 (marked
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FIG. 7. Instantaneous streamlines for Re= 25 and various combinations of Ri and Pr. The two vertical dashed lines in the

plot for Ri= 0.25 and Pr= 100 correspond to the locations at which velocity profiles are plotted in Figure 9.

as dotted lines in Figure 7(m)) is plotted against the vertical coordinate y for various Pr at Re = 25

and Ri = 2. The time-averaged velocity profiles at these two different locations tend to converge to

the Ri = 0 profile (and hence regain symmetry) at large Pr.

Upon further investigation of the Re = 25, Ri = 1.25 case, we observed that the pressure field

on the cylinder surface does not converge to the Ri = 0 case as Pr → ∞. Specifically, at Pr = 103,

we find the pressure and pressure gradients on the cylinder to be notably different from those

at Ri = 0, thus suggesting that while the symmetry about the centerline is regained as Pr → ∞,

the flow field does not exactly converge to the Ri = 0 scenario. We recall that an increase in Pr

makes the energy equation (4) convection-dominant, whereas an increase in Ri strengthens the

coupling between the momentum and energy equations. Therefore, a simultaneous increase of Ri

and Pr is intuitively expected to increase the likelihood of instabilities and subsequently vortex

shedding.
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FIG. 8. Instantaneous streamlines for Re= 25, Ri= 1.25 and Pr= 1000. The reappearance of the anticlockwise vortex below

the x-axis for large Pr is consistent with our conjecture that time-averaged near-wake region behind the cylinder tends to

regain symmetry as Pr→∞.

An outstanding feature of the flow fields at relatively large values of Ri and Pr is their unstead-

iness in regions far from the cylinder, in Figures 7(l) and 7(o) for example. Plotting the streamlines

as a function of time for Ri = 1.75, Pr = 100, we find that the streamlines far from the cylinder

oscillate in time, and the vortex near the cylinder shrinks and enlarges periodically. To investigate

whether vortex shedding occurs in these unsteady scenarios, we plot snapshots of the vorticity field

in Figure 10. For Ri = 1.25, while the vorticity fields for Pr = 0.25 and Pr = 1 show continuously

varying asymmetric patches of positive and negative vorticities, at Pr = 5 we observe a series of

isolated patches of negative vorticity in the upper half-plane. Indeed, plotting the vorticity field as

a function of time for Ri = 1.25, Pr = 5 shows vortex shedding-like features, but with the shedding

initiated far from the cylinder and seemingly only in the upper half-plane. As Pr is increased further,

as shown in Figures 10(g) and 10(i), the vortex shedding becomes more distinct, with the upward

deflection of the vortex street being reduced. Finally, at large Pr, as shown in Figures 10(k) and

FIG. 9. Time-averaged horizontal velocity profiles at locations (a) x = 1 and (b) x = 2 (indicated in Figure 7(m)) for Re= 25,

Ri= 2, and various Pr. The solid curve corresponds to the unheated case at Re= 25. The profiles for Ri= 2 tend towards the

profile at Ri= 0 as Pr is increased.
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FIG. 10. Snapshots of vorticity field for Re= 25 and various combinations of Ri and Pr. The black dots in each of the figures

indicate the spatial locations at which corresponding time series are plotted in Figure 11.

10(m), the vortex shedding is suppressed, with the flow field regaining symmetry about the centre-

line. At larger Ri, as shown in the right column of Figure 10, we observe a similar progression of

events as Pr is increased, but with a smaller Pr at which vortex shedding is initiated, and a larger Pr

at which it is seemingly suppressed.

To probe the nature of the flow unsteadiness far from the cylinder, we plot (in Figure 11) repre-

sentative time series of u for all the cases shown in Figure 10. The spatial locations, specifically

chosen to be in regions where vortex shedding occurs, corresponding to the various time series are

indicated by black dots in Figure 10. For Ri = 1.25, as shown in the left column of Figure 11, the

flow is steady at Pr = 0.25, then becomes unsteady with a near-sinusoidal behaviour at Pr = 1, and

progressively becomes more non-sinusoidal with an increase in Pr. For all Pr except Pr = 0.25, we

observe the presence of a dominant frequency in the power spectra, and higher harmonics (integer

multiples of the dominant frequency) that become relatively stronger as Pr is increased. A qualita-

tively similar evolution of the time series (and power spectra) with Pr is observed for Ri = 1.75, but
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FIG. 11. Time series of u at specific spatial locations (indicated by the black dots in Figure 10) for all the cases shown in

Figure 10.

with noticeably larger energy in a continuous range of frequencies between the dominant frequency

and the second harmonic (twice the dominant frequency).

More importantly, the flow in a close neighbourhood of the cylinder surface remains steady

for all practical purposes, allowing us to compute a single value for quantities such as Nu, CL,

CD, the stagnation, separation, and plume generation locations for every case. As an example, in

Figure 12(a) we have plotted the variation of CL and CD with time for two different cases: Re = 25,

Ri = 1.75 with (i) Pr = 0.25, (ii) Pr = 100, both of which show unsteadiness in the streamlines far

from the cylinder. As confirmed by Figure 12(a), the wall-based quantities indeed attain a steady

state value despite the far-field flow being unsteady. Specifically, the rms of the fluctuations in CL

and CD for the two cases shown in Figure 12(a) is of the order of 10−6.

The front stagnation angle θS, defined as the azimuthal coordinate of the front stagnation point,

is an important feature of the flow pattern around the cylinder. As shown in Figure 12(b), θS de-

creases with Ri and increases with Pr, with a relatively weak dependence on Re. The asymmetric

streamline pattern for Ri > 0 thus contains more streamlines below the dividing streamline if we

start with an equispaced set of streamlines at the inlet of the computational domain where the

velocity is constant. For example, at Ri = 1 (Figure 13(c)), the stagnation point is at 172◦ and results

in a larger volume of fluid passing below the cylinder than for Ri = 0 (Figure 13(a)). Apart from our
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FIG. 12. (a) Lift and drag coefficients (CL and CD) plotted as a function of time for Re= 25,Ri= 1.75,Pr= 0.25 (thin line)

and Re= 25,Ri= 1.75,Pr= 100 (thick line). (b) Variation of the front stagnation angle with Pr for different combinations of

Re and Ri. Note that the stagnation angle remains constant with time for all the cases.

earlier inference of the flow pattern in the near-wake region regaining symmetry at large Pr for all

Ri, θS also converges to θS = 180◦ at large Pr for all Ri.

C. Effects of Prandtl number on the thermal plume structure

Hot fluid rising due to buoyancy is often termed a plume, even though a clear definition of a

“plume” is still lacking.40–42 Thermal plumes, which typically occur due to boundary layer insta-

bility in thermal convection flows,43 are relevant for understanding the distribution of heat transfer

in flows with a spatially varying temperature field. The plume locations are identified by a spike

or carbuncle-like feature in the temperature contours near the cylinder surface. The carbuncles,

i.e., bulges in the isotherms as seen in Figures 13(c) and 13(d), are locations of small ∂T/∂r , thus

allowing us to identify plume generation locations as local minima of the Nusselt number Nuθ on

the cylinder surface. We recall that the temperature on the cylinder surface is held constant at T = 1.

In other words, the generation of plumes occur at the points on the cylinder where ∂Nuθ/∂θ = 0 and

∂2Nuθ/∂θ
2 > 0. In this section, via temperature contour and streamline plots, we discuss the varia-

tion of the thermal plume generation and viscous boundary layer separation points as a function of

Pr.

Figure 13 shows the isotherms and the dividing streamline for four different combinations of Ri

and Pr at Re = 30. At zero buoyancy (Ri = 0), for which temperature is a passive scalar, there are no

plumes. As shown in Figures 13(a) and 13(b), carbuncles are nevertheless present in the isotherms

for Ri = 0 and are aligned with the dividing streamline along which flow separation occurs. The

locations of flow separation are identified as the points on the cylinder that satisfy ∂uθ/∂r = 0. The

carbuncle locations in the isotherms for Ri = 0 are therefore symmetric about the horizontal center

line of the cylinder and are independent of the value of Pr. The Reynolds number, however, affects

the flow separation points at Ri = 0.6

In the presence of buoyancy, i.e., Ri > 0, the flow is not symmetric about the horizontal center

line, and the temperature field is no longer a passive scalar. For the rest of this section, we focus

on the dynamics of the flow occurring in the upper half-plane y > 0. As shown in Figures 13(c)

and 13(d), the plumes, identified by the carbuncles in the isotherms, rise vertically upwards at

the cylinder surface. The rising plume is then driven along the streamwise direction by the mean

wind/free stream. For Pr = 1, as shown in Figure 13(c), we observe a noticeable difference between

the plume locations and the dividing streamline. At Pr = 100, however, the plume is generated near

the flow separation point and grows along the dividing streamline. It may be noted that the flow

separation point changes only marginally with Pr, as shown in Figure 15(a).
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FIG. 13. Instantaneous isotherms and dividing streamline for Re= 30. The top and bottom rows correspond to Ri= 0 and

Ri= 1, respectively. The left and right columns correspond to Pr= 1 and Pr= 100, respectively. The solid lines indicate the

dividing streamlines and the dotted lines indicate the isotherms around the cylinder. The isotherms in all the four figures

correspond to the same set of values of T .

The asymptotic behavior of the flow field at large Pr for all Ri is further investigated by plotting

the variation of the flow separation and the plume generation angles with Pr. We define αsep and

αplume as the azimuthal coordinate of the points on the cylinder where flow separation and plume

generation, respectively, occur. The difference between the flow separation and the plume gener-

ation locations is then quantified by α = αsep − αplume. The various geometric features of the flow

pattern and the isotherms are depicted in Figure 14.

Figure 14 shows a zoomed-in region near the separation point for Re = 35, Ri = 1, and Pr = 1.

The flow separation and plume generation points on the cylinder surface are shown. In Figures 15(a)

and 15(b), the angles αsep and αplume are plotted for four different pairs of (Re,Ri), with Pr varying

from 0.25 to 100 for each pair. The difference between the separation and plume locations reduces

if the Prandtl number increases and is consolidated in Figure 15(c). In Figure 15(c), the difference

α = αsep − αplume is plotted as a function of Pr for different combinations of Re and Ri. While both

αsep and αplume increase with an increase in Pr, the difference approaches zero as Pr increases.
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FIG. 14. Flow field near the separation point for Re= 35, Ri= 1.0, and Pr= 1.0. The separation point and the plume

generation point are different, with the angle between the two points shown as α in the plot.

D. Effects of Prandtl number on force coefficients—CL and CD

As discussed in Section III B, the front stagnation point moves to the upper half of the cylinder

for Ri > 0, with the resulting flow pattern suggestive of a net lift force in the negative y-direction.

In Figure 16(a), we plot the lift coefficient CL (Equation (9)) as a function of Ri for various Pr

at Re = 25. The magnitude of CL increases with Ri, with a stronger rate of increase for small Pr.

Correspondingly, we plot CL as a function of Pr for various Ri at Re = 25 in Figure 16(b). For all Ri,

the magnitude of CL decreases with Pr and asymptotically converges to zero at large Pr. We recall

that the symmetric flow field associated with Ri = 0 corresponds to CL = 0 too.

In Figure 17(a), the variation of the drag coefficient CD (Equation (10)) with Ri is plotted for

various Pr and Re = 25. For small Pr (less than around 7.5), CD decreases with Ri, reaching values

close to 50% of CD|Ri=0 at Ri = 2 and Pr = 0.25. Interestingly, the change in CD with Ri is very

small at Pr = 7.5, which is close to the value of Pr for water at standard conditions. For Pr > 7.5,

however, we observe an increase in CD with Ri, implying that drag reduction upon heating the

cylinder occurs only for small enough values of Pr. Figure 17(b) shows the variation of CD with

Pr for various Ri and Re = 25. It is observed that for all the values of Ri, CD increases with Pr

and reaches a nearly constant value at large Pr. The asymptotic value of CD at large Pr, however,

depends on Ri. The stress distribution on the cylinder surface therefore does not converge to the case

of Ri = 0 in the limit of large Pr for any Ri > 0.

FIG. 15. Variation of (a) αsep, (b) αplume, and (c) α =αsep−αplume (in degrees) with Pr for different combinations of Re and

Ri.
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FIG. 16. (a) Variation of CL with Ri for different values of Pr at Re= 25. (b) CL variation with Pr for various Ri. As Pr

increases CL approaches zero.

FIG. 17. (a) Variation of CD with Ri for different values of Pr at Re= 25. (b) Variation of CD with Pr for different Ri.

IV. CONCLUSIONS

In this paper, we have performed a numerical study of the role of Prandtl number in the

flow past a heated cylinder in the mixed convection regime. Specifically, we have presented a

detailed analysis of the laminar flow in the parameter range specified by Re ≤ 35, 0 ≤ Ri ≤ 2, and

0.25 ≤ Pr ≤ 102, including some results for Pr = 1000 wherever necessary.

The Nusselt number Nuθ and the average Nusselt number Nuavg, which is a measure of the

heat transfer from the entire cylinder surface, increase with an increase in Pr. The variation of

Nuavg with Re, Ri, and Pr is well captured by the relation: Nuavg = 0.7435Re0.44Pr0.346, valid for

10 ≤ Re ≤ 35, 0.05 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤ 100. This relation represents a significant improvement

over what exists in the current literature.16 The isotherms plotted around the cylinder are asym-

metric about the centerline for Ri > 0, and contain spikes/carbuncles along which thermal plumes

are presumed to grow. The locus of the carbuncles is traced back to the minimum Nuθ point on the

cylinder surface, identified as the plume generation location.

The asymmetry about the centerline for Ri > 0 is also observed in the streamline and vorticity

plots, with the vortices in the recirculation bubble getting distorted as Ri is increased from zero. As

Ri is increased, the top vortex gets pushed downstream whereas the bottom vortex, which reduces in

size, gets closer to the cylinder. Upon reaching a threshold Ri, both the vortices in the recirculation

bubble disappear, followed by the reappearance of the top vortex at a larger Ri. A similar behaviour
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is observed with an increase in Pr for a fixed Re and Ri, but with the reappearance of both the

vortices beyond a threshold value of Pr.

The near-wake flow field regains symmetry about the centerline in the limit of large Pr. This

observation is substantiated with time-averaged velocity profile plots (u vs. y at two different

streamwise locations) that almost regain symmetry at Pr = 100 for Ri = 2. For a fixed Re and Ri,

asymmetric vortex shedding is seen to be initiated far from the cylinder above some threshold value

of Pr; as Pr is increased further, the upward deflection of the shed vortices decreases, and the

vortex shedding is seemingly suppressed at very large Pr giving way to a symmetric flow field.

The location of the front stagnation point converges to the Ri = 0 case at large Pr, with the front

stagnation angle approaching θS = 180◦ from a smaller value as Pr is increased to large values

for a fixed Re and Ri. The difference between the flow separation and plume generation locations,

quantified by the quantity α, was studied in Section III C with the main conclusion that α can be as

large as 30◦ at small Pr but converges to zero at large Pr.

The variation of the time-averaged lift and drag coefficients, CL and CD, with Ri and Pr for

Re = 25 was investigated in Section III D. CL is negative for Ri > 0, and its magnitude increases

with Ri for a fixed Pr. For all Ri, the magnitude of CL decreases with Pr, converging to CL = 0 at

large Pr. CD is observed to decrease with Ri for small enough Pr, whereas CD increases with Ri at

larger Pr. Values of Re and Ri outside the ranges considered here would result in three dimensional

effects, which are not discussed in the present paper.
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