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Spin dynamics under magic angle spinning has been studied using different theoretical approaches
and also by extensive numerical simulation programs. In this article we present a general theoretical
approach that leads to analytic forms for effective Hamiltonians for an N-spin dipolar and
quadrupolar coupled system under magic angle spinning (MAS) conditions, using a combination of
Floquet theory and van Vleck (contact) transformation. The analytic forms presented are shown to
be useful for the study of MAS spin dynamics in solids with the help of a number of simulations in
two, three, and four coupled, spin-1/2 systems as well as spins in which quadrupolar interactions are
also present. © 2010 American Institute of Physics. [doi:10.1063/1.3496407]

I. INTRODUCTION

Advances in nuclear magnetic resonance (NMR) spec-
troscopy in the last several decades have led to a variety of
simulation programs and techniques for following the dy-
namics of nuclear spins in external magnetic fields as well as
those which are inherently due to the electronic and magnetic
environment surrounding the nuclei.' Many novel pulse
schemes and multidimensional techniques have been
proposed.2 Routine analysis and novel experiments for small,
large, and biomolecules/macromolecular systems are now
possible with well-developed simulation packages.3 In addi-
tion, sample spinning at the magic angle has now become
possible at speeds higher than 50 kHz resulting in very
highly ordered and resolved spectra in the solid state.

In this paper we present a general analytic procedure for
nuclear spins coupled by strong dipolar interactions and with
or without electric quadrupolar interactions. Our objective is
to emphasize and expand the derivation of effective Hamil-
tonians for which analytic solutions are possible for spins
coupled to each other as well as to systematize the
procedure.5 Floquet theory,é_9 coupled with van Vleck per-
turbation theory10 (also known as the contact transformation
method) is used to determine effective Hamiltonians of a
spin system subject to sample rotation at high speeds at the
magic angle. Their utility is demonstrated by providing
simple, yet clear simulations of the spectra of two, three, and
four spins coupled through anisotropic interactions and by
examining nuclei with quadrupolar interactions. The purpose
of the paper is twofold: provide a systematic procedure for
coupled spins as the network of spins expands and to dem-
onstrate the utility of analytically derived Hamiltonians in
numerical simulations as opposed to the current brute-force
procedure of numerical diagonalization of Floquet Hamilto-
nians. We hope that this will also enable the avid
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programmer/simulation developer with the tools necessary to
integrate effective Floquet Hamiltonians for analyzing spec-
tra through multiple-pulse experiments.

The procedure we use is the following. The Floquet
Hamiltonian is given for a generalized Hamiltonian of
N-spins which are coupled by anisotropic dipolar interac-
tions and having non-negligible electric quadrupolar interac-
tions (for I=1) in a rotating coordinate system under magic
angle spinning conditions, by a standard procedure originally
due to Shirley.9 The time-independent Floquet Hamiltonian
is usually evaluated using an infinite-dimensional basis set
which is a direct product of the spin and Fourier space.7’8
Although the periodicity of the problem results in eigenval-
ues that are periodic in nature, the convergence criterion re-
quires diagonalizing matrices of large dimension. A solution
to this problem was proposed earlier by one of us in terms of
effective Hamiltonians derived from the method of the con-
tact transformation. The contact transformation method is an
operator equivalent of the standard Rayleigh—Schrodinger
perturbation theory, wherein the perturbation corrections are
obtained in terms of operators as opposed to matrix elements
in the conventional approach.10 Employing this approach, ef-
fective Floquet Hamiltonians were derived in simple model
two-spin systems, both in the Floquet-state space and the
Floquet—Liouville space.s’9 In this article we extend this ap-
proach by presenting a generalized form for effective Floquet
Hamiltonians that describes the dynamics of N-interacting
spins in magic angle spinning (MAS) experiments. The gen-
eralized expression for the effective Hamiltonian finds utility
in a wide variety of systems ranging from single spin (both
I=1/2 and I>1/2 systems) to interacting spin systems. The
complexities involved in the standard Floquet approach7 are
removed using our approach, resulting in a description that
principally depends only on the spin dimension of the prob-
lem (For example see Ref. 7). Such an approach facilitates
the integration of analytic Floquet treatments with numerical

© 2010 American Institute of Physics
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simulation programs.3 The validity of effective Hamiltonians
derived is demonstrated through simple, yet illustrative
simulations.

In the next section, we present the general methodology
for deriving effective Hamiltonians for an interacting N-spin
system. In Sec. Il we present numerical simulations using
analytic results of Sec. II for a few model systems.

Il. THEORY AND METHODOLOGY

A. Effective Floquet Hamiltonians for an interacting
N-spin system

The Hamiltonian under MAS conditions for an interact-
ing N-spin system is represented by

N 2
HO=3 S ofemir,,

A=1 m=-2
N 2 1

+ E 2 w;\iz)eimw,z 2N\ 1y, - E(I;\—I; + I;I;)

A<u=1 m=-2,

m#0

N 2
+2 2 olpe™ 3L, - L], (1)

A=1 m=-2,

m#0

where w, is the spinning frequency and wio)/ w;m) represent

isotropic/anisotropic interactions of the spins (denoted by the
label \), respectively. Specifically, the isotropic chemical
shift associated with a particular spin is represented by w;\o)’
while the anisotropic contributions emerging from the
chemical shift [commonly referred to as chemical shift an-
isotropy (CSA)], dipolar and quadrupolar interactions (only
for nuclei with /=1) are denoted by w;m), w;':?, and w;'g,
respectively. The anisotropic interactions transform as sec-
ond rank tensors and are commonly defined in the principal
axis system. The transformation to the laboratory axis from
the principal axis frame is defined by the Wigner rotation

matrices [represented by D®) 2(Q)],

m 1 m

2
o= 2 DY (QypDY

mzm m 1 m2

(Qpa)RP™,

my,my==2

2
o= 2 DY (DL, (Q)RA™,
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with Rf)m‘, Riz)’"‘, and R;ZQ)'"‘ denoting the principal compo-
nents of the irreducible spatial tensors associated with the
chemical shift, dipolar and quadrupolar interactions, respec-
tively, defined in their respective principal axis frames. In the
principal axis frame of the chemical shift tensor, Rg\z)o
=68,,;; and R;z)ﬂ:—(l/v'6)5ams77)\ (where &, and 7
represent the chemical shift anisotropy and the asym-
metry parameter, respectively) while the dipolar tensor
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between the two spins is R;\zli():\s%bw [where by,
= oW Y,/ 47Tri#(rad/ s) is the dipolar coupling constant]
defined in the dipolar principal axis frame. The quadrupolar
interactions are defined in the quadrupolar principal axis
frame with R;ZQ)O=\"6(1))\Q and R;ZQ)ﬂ:—w)\QmQ [where wyo
=¢%¢,0,/41,(2I,-1)A and 7o Tepresent the quadrupolar
coupling constant and the asymmetry parameter of quadru-
polar nuclei, respectively], being the only nonzero compo-
nents for an axially asymmetric tensor.

Employing the Floquet theorem, the time-dependent
Hamiltonian [as given in Eq. (1)] is transformed into a time-
independent Hamiltonian via Fourier series expansion. The
resulting time-independent Hamiltonian (commonly referred
to as Floquet Hamiltonian) is described in an infinite-
dimensional basis set constructed from a direct product be-
tween the standard spin operator basis (described in a finite-
dimensional vector space) and the Fourier operator basis
(described in an infinite-dimensional vector space known as
the Floquet space). In this article we employ an operator
basis constructed from the direct product between the ficti-
tious spin-1/2 operators (single transition operators) and the
Fourier operators.

Employing this operator basis, the time-independent
Floquet Hamiltonian, HT, is represented by

2N oN N2
F_ P DD 7DD PP 7DD
H' =2 0"+ 2 7257+ 2 2 Pz
p=1 p=1 p=1 m=-2
#0

N 2

+ 333 g ()
A<u=1 p,g m=-2
#0

where 2V is the total number of basis states (denoted by p)
employed for describing an N-spin system. The first term
may be identified with the number operator in the Floquet
basis, while the time-dependent and time-independent terms
illustrated in Eq. (1) are associated with the operators X/7
and ZD'" with m# 0 and m=0, respectively. The Z' opera-
tors connect Floquet states |p,n) and |p,m+n) that differ
only in the Fourier dimension and are associated with the
longitudinal single spin I, (chemical shift anisotropy) and
bilinear operators I,,/,,, and 3Iiz—li associated with the di-
polar and quadrupolar interactions, respectively, as depicted
in Eq. (1). The last term comprised of the XY operators
connects states |p,n) and |g,m+n) that differ both in the spin
and Fourier dimension and is commonly associated with the
flip-flop operators in the dipolar interactions as described in
Eq. (1) and Table I.

The time-independent coefficients associated with a par-
ticular state “p” are represented by the zf” coefficients in
terms of the isotropic chemical shifts w;o) of the spins, i.e.,
z07 :Eﬁ’:@mg‘)wio). The anisotropic interactions correspond-
ing to the chemical shift, w;m) (CSA) and dipolar interactions
(a)g\":j) are represented by the coefficients
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TABLE 1. States connected by the flip-flop operators X?¢ for spins N and u. The indices p and ¢ represent the
spin states and depend on the spin topology. In the case of a two-spin system, 1 =|aa), 2=|af), 3=|Ba), and
4=|8B), while 1=|a,a,a), 2=|a,a,B),..., 8=|B.68.8) and 1=|a,a,a,a), 2=|a,a,a,B),..., 16
=|B.B.B.P) in the cases of three and four spins, respectively.
Two spins Three spins Four spins
A=l  u=2 p 2 A=l pu=2 p 3 4 A=l u=2 p 5 6 1 8
q 3 q 5 6 q 9 10 11 12
A=l wu=3 p 2 4 A=l wu=3 p 3 4 7 8
g 5 7 g 9 10 13 14
A=2 w=3 p 2 6 A=l u=4 p 2 4 6 8
q 3 7 q 9 11 13 15
AN=2  wu=3 p 3 4 11 12
g 5 6 13 14
A=2 u=4 p 2 4 10 12
q 5 7 13 15
A=3  wu=4 p 2 6 10 14
g 3 7 11 15
al N Employing a single or a series of unitary transforma-
P = > Zm;,)‘)w;m) + > 4m$‘)m;"“)w§\"3, tions, the original Hamiltonian, H”, is transformed into an
A=1 A<p=1

g == wg\";)(for I1=1/2),

while, for quadrupolar systems (/=1), they are given by

N
PP = 2 2m(}‘) (m) 2 4mg\)méﬂ)w§\’72 + ng\mQ)
A<pu=I

X[3(m§,}\))2 =L\ +1)]

(where m™ denotes the magnetic quantum number associ-
ated with spin “A” corresponding to the state p). For the
specific case of /=1, x{ = —Zw;lj

B. Application of the contact transformation method

To eliminate the complexity associated with the infinite
dimensionality of the problem, the concept of effective Flo-
quet Hamiltonians derived from the contact transformation
method was proposed in earlier pubhcatlons ' We demon-
strate the utility of this approach in deriving effective Hamil-
tonians for an interacting N-spin system.

In the contact transformation method, the Floquet
Hamiltonian [Eq. (3)] is split into a zero-order Hamiltonian,
HE, and a perturbing Hamiltonian, H’f . The zero-order
Hamiltonian is chosen to contain operators that are diagonal
in the Fourier dimension (m=0) while the perturbing Hamil-
tonian comprises operators that are off-diagonal in the Fou-
rier dimension (m # 0), namely,

2N 2N

HY =2 o PP+ 2 57707, (4a)
p=1 p=1
ZN

HI =2, 2 P74 E > E X4 XP9 (4b)

p=1 m=-2
#0

A<u=l p,g m=-2
#0

where the choice of p and ¢ depends on the choice of A and
m as described in Table 1.

effective Hamiltonian, H, i.e.,

Hgff= “'Un"'U2U1HFUT]UE]"'U;l"'.

We derive an effective Hamiltonian by employing a single
unitary transformation

Hfff= U]HFUT] — ei)\SlHFe—i)\Sl

HP+NHPF+NHDE - (Sa)
Hgl)F=HF’ (5b)
H" = HY +i[S,.Hf). (5¢)
H = HY +i[S), HY 1= 3[S,.[S,. Hy 11, (5d)

where the terms HE)I)F, H(ll)F, and H<21)F represent the zero-
order, first-order, and second-order corrections after the first
transformation, respectively. In the present description of the
system, H’; is zero as all the perturbing terms are included in
HY. The transformation function S, [illustrated in Eq. (5¢)] is
properly chosen to compensate the Off diagonality in HIF and
in general can be expressed as a linear combination of a
complete set of operators employed in describing the per-
turbing Hamiltonian,

N2
_ (P)zp.p
Si=i| > > APz
p=1 m=-2
#0

- E E z {C)\;{mxﬁq-i-lB)\/LmYZq
A<wu=1 p,g m=-2
#0

(6)

The coefficients in the transformation function §; are ob-
tained by solving Eq. (5¢) and can be generalized for an
N-spin system by the following equation which represents a
system of coupled linear equations in the coefficients given
in Eq. (6),
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F, . F
HY +i[S,,Hy]=0. (7)

General expressions for the constants associated with the S,
functions are obtained as

pip _ 94
PRIV © VP C: ik )

m ’ Au,m 2 ’

mo, mo,
(8)
Pa

cra = 4xy 0 Mo,

Ap,m

4m2wf — (P -39

Subsequently, the diagonal corrections to second-order are
obtained by evaluating the right hand side of Eq. (5d) to give

+2
1
,L)iF= Y E E 2 {x)\/.t —m )\,u, m(qu Zgyp)
m=-2 A<wp=1 pg
#0

BPq
)_Lqu+{(Zl7P ) Pf]

+ (Zﬁ’p Nat,m

m —m

xm m(A(p) A(q))} qu}

e 3 s,

N <wp<N\y=1 p,q.r

— P-4 psr q,r
x)\z,u —mB ISYZE m) X + (x)\ s —mC)\z,u.,m

xR, ) Yg»"} . )

In the second-order corrections [Eq. (9)], the first set of terms
summed over p and g on the right hand side contains Z
operators which result from cross-terms between the dipolar
interactions associated with different “m” values, while the X
and Y operators result from cross-terms between the CSA
and the dipolar interactions associated with a particular spin
pair. The second set of terms summed over p, ¢, and r is
obtained only in systems comprising of more than two spins
resulting from dipolar cross-terms between spin pairs (A, u)
and (u,\,).

The transformed effective Floquet Hamiltonian (to
second-order) is given by

2N 2N
Hiye= 2 0,77+ > 47257 + HY)F (10)
p=1 p=1

In the next section we demonstrate the utility of the above,
generalized effective Hamiltonians in describing the spin dy-
namics in systems ranging from single spin (/=1/2) to four-
spin dipolar-coupled and quadrupolar systems. The advan-
tages associated with this approach are substantiated with
simulations based on the analytic theory.

J. Chem. Phys. 133, 174121 (2010)

lll. ANALYTIC SIMULATIONS AND DISCUSSION

A. Effective Hamiltonians for noninteracting spin
systems (/=1/2)

1. Single spin

Following the description in the previous section, the
time-dependent Hamiltonian under MAS conditions for a
single spin-1/2 is given by

2

Hn= 2

m=-2

C!)(m)eimw,tlz ) (1 1 )

After the Floquet transformation the time-independent
Hamiltonian, H” is given by

HF = 2 wI”"+EZ””Z‘””+E E prZ[rj{p’ (12)
p=1 m=-2
m#0

where the superscripts p=1 and p=2 denote the two-spin
states |1/2) and |-1/2), respectively. The constants associ-
ated with various operators in the Hamiltonian in Eq. (12)
are given by

1,1 0 2,2
1,1 m 2,2
Zﬂl = (1)( >, Zm == w(’”).

The Floquet Hamiltonian [Eq. (11)] is split into a zero-order
Hamiltonian Hg and a perturbing Hamiltonian Hf , given by

2 2
HY =2, PP+ X, 57707 and (13a)
p=1 p=l
2 2
H{=2 X 21z, (13b)
p=1 m=-2
m#0

The transformation function S, is determined as described
earlier and is represented by

2 2 PP
. Zm
Si=i| X X "=z (14)
p=1 m=-2, maw,
m#0

Since the transformation function contains only the Z*” op-
. DF .
erators, the second-order corrections H(2 ) , tend to zero, i.e.,

i
Hy" =[S, Hi, (15a)

2 2
(p) 0.0 P-pzpp | —
2 2 171 Z 2 E ZITL Zm 0
p=1 m=-2, p=1 m==2,
m#0 m#0

(15b)

Hence, the effective Hamiltonian for a single spin or a sys-
tem of noninteracting spins is comprised only of the isotropic
chemical shift of the individual spins
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HE = HE. (16)

The calculation of sideband intensities, however, requires the
exponential terms operating on the detection operator and the
corresponding operators do not commute with each other.
Therefore, perturbation theory approach is used here to de-
termine the S; function required for the calculation of the
sideband intensities.

2. Simulation of MAS spectra

The time-domain signal is calculated by evaluating the
expectation value of the detection operator, (1_)5"9,

2

(L= 2 2 pmlU U U UpF (O U UM U U

m=—oo p=1

m,n=—% [,j=1

2

where U=¢1 is the unitary transformation operator, p'*(0)

=U(1,)57U" is the effective time-dependent density opera-

tor, (I}7=U(1,)7*U™" and |w§m)) are the eigenfunctions of

the effective Floquet Hamiltonian H%. In the expansion of

both p'#(0) and (1})%7, the higher-order (second—order in our

case) terms have been neglected, i.e.,

' . i

p'(0) = LIS = (L) + (1)1,
mo,

(17¢)

To eliminate the redundancy in Eq. (17b), one of the Fourier
summation coefficients 7 is set to zero. Furthermore, owing
to the periodicity of the problem, the eigenvalues (depicted
by )\EO)) in the Floquet space can be calculated by evaluating
the supereigenvalues corresponding to the diagonal block,
m=0. Subsequently, the time-domain signal is calculated by
re-expressing Eq. (17b) in a convenient form depicting the
center-band (matrix elements of operators with zero as sub-
script) and the side-band contributions to the MAS spectrum
as

2
WD) = IR BO PO I gy

ij=1
o [ (m) O/ ,/(0)
g m
+ 2 20| R O
m#0 ij=1 \ M W, !
g\, (m) i(()x-o)—)\(-o))ﬂnw )t
X (1)h |z,{/,- Ye''hi A Il (174d)

To simulate the MAS powder spectrum, the above equation
is evaluated for different crystallite orientations, which on
Fourier transformation lead to the MAS spectrum in the
frequency-domain in Fig. 1. In the simulations presented,
sidebands corresponding to m==*=1 and *2 are depicted.

o F e
S, (et 0N M),
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(g =1rlp" (D]
2

= > 2 p.m|lp"()(1)5]

m=—0x p:]

p,m), (17a)

where p” (t)=e‘iHF’pF (O)eiHFt, such that pf(0)=(1,)07=(X}?
+iY 6’2) represents the initial density matrix immediately after
a radiofrequency pulse and {|p,m)} are the Floquet states,
constructed from the direct product of the spin basis (p=1
and 2) with the Fourier basis states, m=-o,...,
—-1,0,1,...,%. Expressing the density matrix and the detec-
tion operator in the transformed basis defined by S,
Eq. (17a) is expanded as follows:

vlu(yuttu

q’ n><q5n p7m>

(17b)

®, =1.0kHz A
08 -

06 F
04 -

02 -

@, =3.0 kHz A,

06

Intensity

—_—
-

w, =5.0kHz A
08 3

04

02

|

0 20 40 60 80 100
Chemical shift (kHz)

FIG. 1. Simulated '3C MAS spectra for a single spin-1/2 system at 100
MHz (°C) frequency. The following CSA parameters were employed in the
simulations: o,,, 0,,, and o, equal to 35, 50, and 65 ppm, respectively;
CSA orientations d,.EM, Bru, and ypy, equal to 70°, 60°, and 122°, respec-
tively. Gaussian line broadening of 70 Hz was employed in the simulations.



174121-6 M. K. Pandey and M. S. Krishnan

Higher-order sidebands can be calculated by evaluating the
higher-order terms in the expansion of p'f(0) and (1,)5¢ in
Eq. (17c). Following the standard procedure, the intensities
are normalized with respect to the center-band by including
the contributions emerging from the sidebands, i.e.,

2 Cz
(1)) = ) ,
() m§203+cﬁl+ciz+C%+Cz

(17e)

where C2 represents the intensity of the center-band and C?
the corresponding intensity of the sidebands. In the slow-
spinning regime higher-order contributions resulting in
higher sidebands (m>2) need to be evaluated in the inten-
sity expression. As the spinning frequency of the sample in-
creases, contributions from the CSA decrease, resulting in
the decrease in the intensity of the sidebands and leading to
improved sensitivity and resolution. This aspect of the pro-
cedure is illustrated in Fig. 1 which depicts simulations of
MAS spectrum at three different spinning frequencies.

B. Effective Hamiltonians for interacting spin systems
1. Two spins

The time-dependent MAS Hamiltonian for a homo-
nuclear dipolar-coupled spin pair is represented by

2 2
H(I) E 2 w(m) imw tI L+ E (1)12 elma)t
A=1 m=-2 m=—
m#0
(205 3 + 1)) (18)

Employing the procedure described in the previous section,
the Floquet Hamiltonian for a dipolar-coupled system is split
into a zero-order Hamiltonian, Hg , and a perturbing Hamil-
tonian, Hf (the two groups of terms on the right side, respec-
tively),

4 4

H =\ > o PP+ >, PZ07

p=1 p=1

EEZPPZPP+2)C Xzf. (19)

p=1 m=-2
#0 #0

The transformation function S, is expressed in terms of a
complete basis set of operators as

4
Si=i| X X Az
p=1 m=-2
#0
2
> (CH,X0 +iBl, Y. (20a)
m=-=2
+#0

Employing Eq. (8), the coefficients in the transformation
function S; for a dipolar-coupled spin pair are obtained as
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*
A, @, =4kHz B, ), =TkHz
08 - - *
z 06 = o
=
5
02 F T s ‘
00— — A AL
-0 0 100 200 30 S0 00 100 200 30

Chemical shift (kHz)

FIG. 2. A, and B, represent simulated '*C MAS spectra for a homonuclear
dipolar-coupled two spin-1/2 system obtained at two different spinning fre-
quencies. The following CSA parameters were employed: CSA orientations
Ay Bors Yol @, B2, and ¥, equal to 160°, 33°, 90°/119°, 94°, and
—13°, asymmetry parameters 7,/ 7, equal to 1.0/0.91, isotropic chemical
shifts wIO)/ w{o) (denoted by asterisk) equal to 21.87 kHz/5.25 kHz and
chemical shlft anisotropies ¢/, equal to 8.54 kHz/1.41 kHz. The dipolar
coupling strength was set to 457 Hz (r;,=2.55 A).

2,2
12 m(Z ) )

A . Bl =
w, 2mo,
y (20b)
C%’23m = 2—24)612,,3,,’3"%2 222"
o dmtel - (77 - 75)

In a similar vein, the second-order corrections to the zero-
order Hamiltonian can be written down by employing Eq. (9)
as

2
1
F 2,3 2,2 3,3
H(z,gt Y E ~X12,-m 12m(Z -Zy”)
m=-2
m#0
2,3
2,2 3,3 12, 2.3 33
+(Z—m_z—m 2mX0 +{ - )C12m
i
+ X153 (Apn - g))}EY(%J . (1)

In contrast with the single spin /=1/2 system, the second-
order corrections comprise the operators X3, Y¢, and Zg.
Following the standard procedure described in the previous
section, the frequency-domain spectrum for a dipolar-
coupled spin pair is calculated and is depicted in Fig. 2. The
reduced central transition intensity in the case of w,
=4 kHz is most certainly due to a higher CSA value and a
lower rotational frequency for that particular nucleus. As w,
increases perturbation corrections are more meaningful and
the central transition intensity increases obviously.

2. Three spins

The Hamiltonian for a dipolar-coupled
(I=1/2) system under MAS is represented by

three-spin
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*
A] @ =6kHz B1 @, =10kHz C1 * @ =12kHz
0.8 I
By i
Z 06 F
5
E 0.4 F ]
o
0.2 F
I ll HIIJ. ‘.I y } . .1 . .L -\ IL lI’. ‘l
-0 0 100 20 30 40 0 200 30 40 0 10 20 30 40
Chemical shift (kHz)

FIG. 3. A, By, and C, represent the simulated '>*C MAS spectra for a three-spin dipolar-coupled system at different spmmng frequenc1es The following

chemical shift parameters were employed: o'l =160°, g1 =33°,

) =90°, 7=1.0, §=8.54 kHz, \"=21.87 kHz, o’

o o A2 o
O =119°, Bo) =94°, o) =—13°,

P P 7p
7,=091, 3,=141 kHz, 0)’=14.2 kHz and o %— —49°, A(” ) =48°, % ) =—170°, 73=0.92, &=3.0 kHz @'=3.0 kHz. The dipolar parameters employed

were r1,=2.55 A, r;;=3. 72 A, and r5;=59 A(

c-c dlpolar couphng strength at 1 A internuclear dletance is equal to 7.5859 kHz). The asterisks denote

the position of the center-band associated with the isotropic chemical shifts of the three spins.

3 2
Hn=2 X

g\m)ezmwrtlxz

A=1 m=-2
3 2
o 1
+ 2 X eflemand, - SR+ L) .
A<u=1 m=-2,
m#0

(22)

The Floquet Hamiltonian for a three-spin dipolar-coupled
system is expressed as

8 8

E w " + 2 BPZpP

p=1 p=1

E 2 prpr+ 2 ['x%;m m + 23m mj

p=1 m=-2
#0 #0

H' =

2,5 7 3,5 3.5 4,6 6
+X13me +x13m m le,mX +'x1 X4 ]

(23)

The transformation function S; for a three-spin system is
represented by

8 2
Sl:i 2 2 A(n[:)Z[,)n’p E {(C23m m + B23mY2’3
p=1 m=-2
#0 #0

7 6,7 25 2.5
+ (C23 WleVL +lBZ'§ mY ) + (C13me BH mYm
+ (C‘l‘é, +zB13 ;YR 4 (Cy X35+ B12 > Y

DX + lBlz inf)} ) (24)

12m m

with the coefficients having the same functional form as that
described in Eq. (8).

The diagonal corrections (in Fourier label) obtained to
second-order are given by

+2
1
\F ]
Hg,()l =_§ 2 E 2 x)\,u —m )\,um(Z Sp)
m==2 | \<u=1 pg
#0
Bl)f]
+ (PD — 1) AP | (PP 2net

+x>\;¢—m(A(p) A(q )} qu

17#1 P-q
+ 2 E Ny = )\2,u m x)\z,u, mB)\l,u,m)
N <u<Ny=1 p.g.r

. :
XSXE"+ (4, C e AR 4

Ny = )\zum_x)\z,u—m Ny psm 2

(25)

In contrast with the two-spin system, the second-order cor-
rections in the three-spin system comprise both sets of terms,
one set which is summed over p and g and the other set
which is summed over p, ¢, and r, for a dipolar coupled
N-spins of /=1/2. Employing the generalized effective
Hamiltonians, simulations have been carried out for a three-
and a four-spin system and the results are depicted in Figs. 3
and 4, respectively. In a similar manner one can obtain ef-
fective Floquet Hamiltonians for many spins coupled by di-
polar interactions from the generalized expression given in
the previous section [Eq. (9)].

C. Effective Hamiltonians in dipolar recoupling
experiments

In dipolar recoupling experiments, a part of the dipolar
interaction represented in Eq. (1) is reintroduced by compen-
sating the spatial averaging rendered by MAS. The theoreti-
cal description of such experiments has been described in
both the average Hamiltonian'? and Floquet framework "
and will not be dealt with in this article. For the purpose of
demonstration, we derive the effective Floquet Hamiltonian
describing the (rotational resonance) R> exchange dynamics
from the generalized effective Floquet Hamiltonians pre-
sented in the previous section. Following standard descrip-
tion, the Floquet Hamiltonian for a homonuclear dipolar
coupled system under R? condition is represented by
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FIG. 4. A,, B,, and C, represent the simulated '*C MAS spectra for a four-spin dipolar-coupled system at different spmmng frequenmes The following

chemical shift parameters were employed: a(” =160°, (]) n=33°
72,2091, 5=1.41 kHz, 0"'=5.25 kHz, a‘” "o, ﬁm ase,

Yol =90°, 7=1.0, §,=8.54 kHz, " =21.87 kHz, o'
“>——170° 7;,=0.92, 8,=3.0 kHz, o

=94°, ¥ =-13°,

=119°, ﬁ s
_147° “M =120,

b_30 KkHz and am =57°, 8

7,=0.0, 8,=2.5 kHz, w(O% 437 KHz. The dlpola.r parameters employed were r,=2.55 A, r3=3. 72 A, r3=59 A, ru=59 A r24—70 A Yand i
=2.55 A (Pc-Bc dlpolar coupling strength at 1 A internuclear distance is equal to 7.5859 kHz). The asterisks represent the position of the center-band

associated with the isotropic chemical shifts of the four spins.

4 4

F_ B P s
HE =2 0 PP+ 2 287787 + 173
p=1 p=1

23
0 +zy120Y

B B 2,3 2.3
+2 E Zm prp+ 2 [x12m m +ly12mYm
p=1 m=-2,
m#0 m#0

(26)

In contrast with the Floquet Hamiltonian for a dipolar-
coupled spin pair represented in Eq. (19), the Floquet Hamil-
tonian for a recoupling experiment consists of X and Y2 3
operators % This form is common to both selectlve and
broadband recoupling schemes in solid state NMR and the
description presented below is valid for N-spin systems.

To reduce the complexity in the description involving
many spins, the time-independent terms associated with the
dipolar interactions (represented by X3 and Y3~ operators)
are separated from the zero-order Hamiltonian as

T N S F
H =H,+H, =H, +H1d1a+H1,off—dia’

where
4 4
F D7D
=S w7+ S 70,
p=1 p=1
_ 23 23
H1 dia = X12, 0 T4i )’120Y and (27)

PP 7D-P 2,3 2,3
loffdla Z Z Zm Z + 2 [xIZme +1 ylZmYm .
p=1 m=-2, m=—4,

m#0 m#0

The transformation function S, is chosen to compensate the
off-diagonality present in H{ (i.e., Hf q,), by solving
Eq. (28),

DF _
H( ) 1d1a+H1 offdla+l[sl’H0] H1 dia* (28)

The second-order corrections are obtained by evaluating the
right hand side of the equation below

1
0 =15, {1 15, L5,

_ i
=[S}, HY 4] + E[Sl HY o dia) - (29)

In the above equation, the first expression results in operators
that are off-diagonal in the Fourier dimension (i.e., m#0)
and has a minimal contribution to the overall spin dynamics.
Hence, second-order corrections are confined only to the
evaluation of the second term. The effective Hamiltonian de-
scribing the spin dynamics in R? experiments is

F _ (HF
Heff - HO Hl dla H2,dia
4 4
, , (1)F
—Ewlp’p+22 prp"'X]z 0 +ly|20Y +H2<)11a’
p=1 p=l

(30)

which is in agreement with the descriptions presented in ear-
lier reports. In Fig. 5, we present the simulation of the MAS
spectrum at the R? condition and compare the spectrum with
the dipolar-coupled spin pair. The observed broadening of
the spectrum is in agreement with experiment and confirms
the validity of the generalized effective Hamiltonian ap-
proach presented in the article. It is important to note here
that the effective Hamiltonian for rotational resonance could
well have been obtained by taking the Hﬁ dia in H{. Such an
approach results in a set of coupled equations given below
and complicates the procedure for evaluating the coefficients

associated with the various operators in S function'? in the
equation
HVF = HY +i[S),Hy | = HY . (31)

This equation represents the following group of equations for
the coefficients:
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8
02r F | I J FIG. 5. Comparison of '*C MAS spectrum for a
e iy Jo . SN, | I M dipolar-coupled spin-1/2 system (top panel) and the cor-
80 -40 0 40 80 120 12 16 20 30 84 88 52 94 responding spectrum at the R? matching condition
(lower panel). The spectrum at R? matching condition is
broad due to the reintroduction of the dipolar interac-
z 03 tions resulting in lower sensitivity. Input parameters
g 06 - r employed for the simulation are similar to that used in
% 04k F\ L Fig. 2.
021 | r |
—p S . N i
80 40 0 40 80 120 12 16 20 80 84 88 92 94
Chemical shift (ppm)
L1 (1) 2 2
-A 'mw,=0
m m r > i i 2 2
H()= > ™M 4 > w(Qm)elm“’r'[SIZ—I 1. (33)
m=-=2 m==2,
Zf,;4—A53)mw,=0, m#0
The corresponding Floquet transformation H' is represented
by
22 _ 4@,
Ly — Ay C12mYO +Blme0 =0,
2
33 - (32) HF = 2 wI"P + 2 BPZEP + E E LPZP (34)
—-A, mw+C12my0 _BImeo =0, p=1 p=1 m=—2
m#0
3 2 1r 2, 3.3 where the superscripts p=1, 2, and 3 denote the three-spin
x12m+C12mmw +3 (A() Al ))yIZO_Z[Z() -2 ]Bl2m 0, P pis p ¢ pu
states |1), 1), respectively. The constants associ-
ated with various operators in the Hamiltonian in Eq. (34)
(B)_ 42 2_ 33 are given b
y12m+B12mmw +3 (Am _AI )x120 [ ]C12m 0. & y
' =200, 77=0, z'=-20)
Rather than solving these, the approach presented in Egs.
(27)-(29) is simpler and convenient for deriving effective ! =2w(’”)+2wg’), 2 =—do tm)
Hamiltonians in recoupling experiments and can well be ex-
tended to multiple spins. 23=—20™ 42 w(Q'").
The subsequent description is identical to the single spin /
=1/2 system and the MAS spectra are depicted in Figs. 6
D. Effective Hamiltonians in rupolar spin . .
ective Hamiltonians in quadrupolar sp and 7. In Fig. 6 are shown the “H MAS spectra for various
systems )
quadrupolar coupling strengths from 10 to 60 kHz, at a fixed
The Hamiltonian for a quadrupolar spin system (/=1) spinning frequency of 30 kHz (A, By, C,, D;, E;, and F)).
under MAS conditions is given by As the strength of the quadrupolar coupling increases, the
A i, =10kHz B, w, =20kHz (o} a, =30kHz
0.8 @ =30kHz | @ =30 kHz | @, =30 kHz
.‘é‘ 06 |
= 0.
g
E 04r
02F ‘ ‘ FIG. 6. A, B|, C;, Dy, E|, and F, represent simulated
] . . . . l J l . ] . |I ) [ . . MAS spectra for a single spin-1 system obtained by
2200 0 200 200 0 200 200 0 200 varying the quadrupolar coupling strength keeping
spinning frequency fixed. The following parameters
were employed in the simulations: w(lo)=0.5 kHz,
osh D1 wp=40kHz | E, @p=50kHz | F, @, =60kHz 8y csa=-3.38 kHz, 7, 5=0.99, and », ,=0; CSA ori-
= & =30 kHz @, =30 kHz @, =30 kHz entations apy, Bpy» and ypy, are equal to 40°, 128°,
g oer and 122°, respectively. Quadrupolar orientations a,,,
% 0.4 ,BgM, and ng equal to 30°, 60°, and 120°, respectively.
T o2t - -
— A — L
-200 0 200 -200 0 200 -200 0 200

Chemical shift (kHz)
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= 06 -
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£ 04r b
02F r
W [ {1 | | | .
-200 0 200 =200 0 200 -200 200 FIG. 7. A,, B,, C,, D,, E,, and F, represent simulated
MAS spectra for a single spin-1 system obtained by
varying spinning frequency keeping quadrupolar cou-
ogL D2 w,=40kHz | E, @=40kHz | F, @, =40kHz pling strength fixed. Input parameters employed for the
= @, =40 kHz @, =50 kHz w, =60 kHz simulation are similar to that used in Fig. 6.
% 0.6 - -
= 0.4 F r
g [
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Chemical shift (kHz)

intensity of the central transition decreases. This trend is ob-
vious from Fig. 7, where the spectra are compared at differ-
ent spinning frequencies for a given quadrupolar coupling
strength.

IV. CONCLUSIONS

In summary, the present study provides a generalized
description of effective Floquet Hamiltonians for a system
comprised of N-interacting spin systems including quadrupo-
lar interactions. Attention is restricted to first-order quadru-
polar interactions. The infinite dimensionality associated
with conventional Floquet treatments is circumvented in our
approach, thereby facilitating analytic treatments in terms of
effective Hamiltonians derived from the contact transforma-
tion procedure. The generalized expressions for effective
Hamiltonians presented here can be integrated with numeri-
cal methods for optimization and design of new NMR ex-
periments and with the use of quadrupole interacting frames
in the case of second-order and other quadrupole interac-
tions.
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